DEVELOPMENT OF MWCNT EMBEDDED MICROMECHANICAL RESONATOR WORKING AS RAREFIED GAS SENSOR

Hiroyuki KISHIHARA¹, Itsuo HANASAKI², Naoki MATSUDUKA¹, Ichiro YAMASHITA¹, Yukiharu URAOAKA¹, and Yoshitada ISONO¹

¹Kobe University, ²Osaka University, ³Akashi National College of Technology, and ⁴Nara Institute of Science and Technology, JAPAN

ABSTRACT: This research has newly developed the multi-wall carbon nanotubes (MWCNTs) embedded-micromechanical resonator working as a novel rarefied gas sensor. The inertial effect of rarefied gas fluid is detected as a variation of the resonance frequency, and the dissipation of the interaction energy between the resonator and the gas molecules affects the damping of oscillation. Thus, two kinds of gaseous species can be distinguished with one device. The MWCNTs have been arranged on the resonator for enhancing its sensitivity by the bio-MEMS compatible process. The MWCNTs embedded-resonator has successfully demonstrated to detect and distinguish hydrogen and nitrogen gases under pressures of 0.02 Pa to 0.9 Pa.

Design And Process of MWCNTs Embedded Micromechanical Resonator

The density of the MWCNTs can be increased by an increase of ferritin density. The inertial effect of rarefied gas fluid and the dissipation of the interaction energy between the resonator and the gas molecules.

Considering the case of a Newtonian fluid, the fluid force on the oscillating resonator is described in the following equation

\[\Delta F = m \Delta \dot{u} = m \Delta \frac{du}{dt} + k \Delta x + k_\xi \Delta x^2 \]

(1)

Rewriting Eq. (1) by the addition of Eq (2), the following equation is derived.

\[\Delta F = m \Delta \dot{u} = m \Delta \frac{du}{dt} + k \Delta x + k_\xi \Delta x^2 \]

\[\Delta F = m \Delta \dot{u} = m \Delta \frac{du}{dt} + k \Delta x + k_\xi \Delta x^2 \]

(2)

Therefore, the fluid can contribute to increases in both the effective mass and the dissipation of resonator.

In order to arrange MWCNTs on the resonator, this study employed MWCNTs synthesis using the charge-controlled ferritin proteins coating process for APCVD. Ferritin protein is a 12 nm-sized protein molecule with a hollow structure of 7 nm that can contain a 5FeO₄(OH)₂ nanoparticle. In this study, the iron composite nanoparticles inside ferritin molecules were used as catalysts to synthesize MWCNTs in APCVD.

Results and Discussions

Characteristics of MWCNTs Embedded Micromechanical Resonator

The anti-resonance frequency ratios in H₂ and N₂ gases increase with an increase of the pressure. This is caused by the increase of the effective mass due to inertial effect of the gas fluid around the resonator. The ratio in N₂ gas also shows the larger change than that in H₂ gas under each pressure because of the difference between their molecular weight.

The similar trend of the damping parameter 1/ξ is observed. The change of 1/ξ in N₂ gas is larger than that in H₂, which also depends on the molecular weight. From these figures, we can distinguish gaseous species of H₂ and N₂.