Constraints on radion in a warped extra dimension model from Higgs boson searches at the LHC

お茶の水女子大学 素粒子論研究室

大野 慶子

共同研究者:曹基哲(お茶大),野村大輔(東北大)

arXiv:1305.4431 [hep-ph].

@神戸大学セミナー 2013/ 6/ 19 (水)

0: Today's talk

- I: Introduction
 - Short review of Randall-Sundrum model
- II: Production and Decay of radion
- III : Constraints on m_Φ and Λ_Φ from search for Higgs boson at the LHC
 - (IV : Discrimination of heavy Higgs search and heavy radion search at LHC)
- V : Conclusion

原子より小さい、物質の"最小"構成単位=素粒子 素粒子の振る舞いを説明する枠組み=標準模型(Standard Model)

2012年(平成24年)7月5日(木曜日)

万物に質量与えた「神の粒子」

Phys. Lett. **B716**, 1(2012)

I: Introduction

Short review of Randall-Sundrum model

Gauge hierarchy problem:

Standard Model (SM) can explain behavior of particle physics in electroweak scale M_{EW} .

On the other hand, the planck scale M_{pl} which is characterized by Newton constant G_N exists in our world.

<u>Why kr_c = 10~12 ?</u>

→ ex) Goldberger-Wise Mechanis

To stabilize the distance between I brane and visible brane, we introdue a scalar field.

Radion Φ is a canonically normalized 4D scalar field after integrating out the extra dimension.

W. D. Goldberger, M. B. Wise Phys.Rev.Lett. **83**, 4922-4925 (1999)

Radion Φ: Metric fluctuation (G55), Scalar particle (spin=0)

① Production & decay are very similar to Higgs

(2) Radion mass m_{Φ} is O(TeV) and it is lighter than 1st KK graviton

③ Strength of coupling to the SM fields is proportional to $1/\Lambda_{\Phi}$ (~1/TeV)

Motivation:

SM Higgs was found at low mass

reç	gi <u>G</u> o/o	n.	A7	LAS	2011			2	2011	Data	
	UO	10		Exp.			ſ	Ldt = 4	.6-4.	9 fb ⁻¹	
\rightarrow	<u>iti</u>	her	ר ע	ten de la constante La constante de la consta	OCL	ISe	d ĥe	a¥y	7 TeV		
	95%CL	adic	n	Sea	arch).					
	(r	10 ra	ad	ion	-Hiç	ggs	mix	king)		
		10 ⁻¹	CL	.s Lim	its		00 40	E 440		450	
	ll p _o	10	110	115	120	125 1	30 13	5 140	145 m	150 _H [GeV]
		• ATLAS 2011 ∫Ldt~4.6-								s = 7 Te	V
	-008	10		Exp.	Comb.	I	Exp. H → Z	Z → IIII		Exp. H →	bb
	-	10		Obs. Exp.	Comb. H → γγ	Obs. $H \rightarrow ZZ \rightarrow IIII$ Exp. $H \rightarrow WW \rightarrow IvIv$				Obs. Η → bb Exp. Η → ττ	
				Obs.	Н→үү	(Obs. H → \	WW → lvlv		Obs. H →	ττ
		I									
		10 ⁻¹									1σ
		10 ⁻²									2σ
		10									
		10 ⁻³	110	115	120	125	130	135	140	145	3σ 150
										т _н [(GeV]

σ

σ

Motivation:

SM Higgs was found at low mass region.

→ Then we focused heavy radion search.

(no radion-Higgs mixing)

Motivation:

SM Higgs was found at low mass region.

→ Then we focused heavy radion search.

(no radion-Higgs mixing)

- I) Production & decay of radion are very similar to SM Higgs.
- II) We know the ratio of $\sigma/\sigma_{\text{SM}}$ from SM Higgs search.

It might be an indirect constraint on an extra (SM Higgs like) scalar.

\rightarrow we study allowed region of m_{Φ} and Λ_{Φ} .

II: Production and Decay of radion

Interaction of radion to SM fields (in detail) For fermion, W, Z, SM Higgs :

$$\mathcal{L}_{\text{int}} = \frac{\phi}{\Lambda_{\phi}} T^{\mu}_{\mu}(\text{SM}) ,$$

$$\int_{f} \int_{f} (T^{\mu}_{\mu}(\text{SM}) = \sum_{f} m_{f} \bar{f} f - 2m_{W}^{2} W^{+}_{\mu} W^{-\mu} - m_{Z}^{2} Z_{\mu} Z^{\mu} + (2m_{H}^{2} H^{2} - \partial_{\mu} H \partial^{\mu} H) + \cdots),$$
Free parameter

For gluon, photon :

$$T^{\mu}_{\mu}(\mathrm{SM})^{\mathrm{anom}} = \sum_{a} \frac{\beta_{a}(g_{a})}{2g_{a}} F^{a}_{\mu\nu} F^{a\mu\nu} .$$

$$\left(\begin{array}{c} \beta_{\mathrm{QCD}}/2g_{s} = -(\alpha_{s}/8\pi)b_{\mathrm{QCD}} \end{array} \right) \\ \left(\begin{array}{c} b_{\mathrm{QCD}} = 7 & (for \quad n_{f} = 6) \end{array} \right) \end{array}$$

C. Csáki, M. Graesser, L. Randall, J. Terning, PRD62, 045015 (2000)

Production(main):

gluon fusion (top + bottom loops)

g 0000000
g
$$\sigma(s) = \int_{m_{\phi}^2/s}^{1} \frac{dx}{x} g(x) g\left(\frac{m_{\phi}^2}{sx}\right) \frac{\alpha_s^2}{256\pi\Lambda_{\phi}^2} \frac{m_{\phi}^2}{s} |b_{\text{QCD}} + x_t(1 + (1 - x_t)f(x_t)|^2)$$

g 0000000
K.Cheung, PR**D63**, 056007 (2001)

Radion decay:

Ξ

III: Constraints on m_Φ and Λ_Φ from search for Higgs boson at the LHC

high mass region→WW, ZZ modes

Experimental bound from LHC

Radion interaction to SM fields is very similar to SM Higgs.

We know the ratio of σ/σ_{SM} from SM Higgs search.

 \rightarrow It might be an indirect constraint on an extra (SM Higgs like) scalar.

In other words, we calculated ...

$$\begin{split} \left[\int \mathcal{L}_{7\text{TeV}} dt \cdot \sigma(pp \rightarrow \phi X; 7\text{TeV}) + \\ \int \mathcal{L}_{8\text{TeV}} dt \cdot \sigma(pp \rightarrow \phi X; 8\text{TeV}) \right] \text{Br}(\phi \rightarrow ZZ) \\ & \leq \\ f(m_h) \left[\int \mathcal{L}_{7\text{TeV}} dt \cdot \sigma(pp \rightarrow hX; 7\text{TeV}) + \\ \int \mathcal{L}_{8\text{TeV}} dt \cdot \sigma(pp \rightarrow hX; 8\text{TeV}) \right] \\ & \times \text{Br}(h \rightarrow ZZ) \Big|_{m_h = m_{\phi}} \end{split}$$

→ We study allowed region of $\Lambda \Phi$ and m_{Φ} .

 \rightarrow The bounds are *not* depend on the stabilization mechanism .

On the other hand ...

Constraints on Λ_Φ from search for 1st KK graviton at the LHC

Constraints of $\Lambda \Phi$

1st KK Graviton mass is

$$m_{G_1} = x_1 \frac{k}{M_{pl}} \Lambda_G \quad (x_1 = 3.83)$$

free parameter

Relation between AG and A_Φ is $\Lambda_{\phi} = \sqrt{6}\Lambda_{G}$

Thus the relation between $\Lambda\Phi$ and m_{G1} is

$$\therefore \quad \Lambda_{\phi} = \frac{\sqrt{6}}{x_1} \frac{M_{pl}}{k} m_{G_1}$$

k/Mpl=	0.1	0.01	k/Mpl=	0.1	0.01
M G1	2.23TeV	1.03TeV	ΛΦ	14.3TeV	65.8TeV

Constraints of App

Considering the correlation between mp and k/Mpl

Results:

ex: natural $k/M_{pl} = 1, 0.1, 0.01$ unnatural $k/M_{pl} = 10, 0.00001...$

V: Conclusion (and Future Works...)

*We study production and decay of the radion in Randall-Sundrum (RS) model at the LHC taking account of the recent SM Higgs search by the ATLAS and CMS experiments.

*A certain class of new physics predicts extra neutral scalars, e.g., MSSM/THDM...

*Discrimination of radion to heavier Higgs in MSSM is studied

(in a decoupling scenario in MSSM Higgs sector)

*From analysis, we found useful modes to discriminate two models (RS,MSSM).

- $\Phi \rightarrow WW/ZZ$ (no H/A $\rightarrow WW/ZZ$) - Number of events (pp $\rightarrow \Phi \rightarrow WW/ZZ$) \sim 1000 (WW @8TeV, $\mathcal{L}=100[fb]^{-1}$, $\Lambda \Phi=5$ TeV) ~ 500 (ZZ @8TeV, $\mathcal{L}=100[fb]^{-1}$, $\Lambda \Phi=5$ TeV) *Our future works: (for m $\Phi=1$ TeV)

estimation of backgrounds, *p*_T cut ,...