Horava-Lifshitz gravity with extra U(1) symmetry

Shinji Mukohyama (Kavli IPMU, U of Tokyo)

ref. arXiv: 1007.5199 (review of HL gravity) arXiv: 1206.1338 w/ K.Lin, A.Wang arXiv: 1310.6666 w/ K.Lin, A.Wang, T.Zhu

Power counting

 $I \supset \int dt dx^3 \dot{\phi}^2$

• Scaling dim of ϕ $t \rightarrow b t \ (E \rightarrow b^{-1}E)$ $x \rightarrow b x$ $\phi \rightarrow b^{s} \phi$ 1+3-2+2s = 0s = -1

 $dt dx^3 \phi^n$

 $\propto E^{-(1+3+ns)}$

- Renormalizability $n \le 4$
- Gravity is highly nonlinear and thus nonrenormalizable

Abandon Lorentz symmetry?

 $I \supset \int dt dx^3 \dot{\phi}^2$

- Anisotropic scaling $t \rightarrow b^{z} t \quad (E \rightarrow b^{-z}E)$ $x \rightarrow b x$ $\phi \rightarrow b^{s} \phi$ z+3-2z+2s = 0s = -(3-z)/2
- s = 0 if z = 3

 $\int dt dx^3 \phi^n$

 $\propto E^{-(z+3+ns)/z}$

- For z = 3, any nonlinear interactions are renormalizable!
- Gravity becomes renormalizable!?

Cosmological implications

Horava-Lifshitz Cosmology: A Review, arXiv: 1007.5199

- The z=3 scaling solves the horizon problem and leads to scale-invariant cosmological perturbations without inflation (Mukohyama 2009).
- New mechanism for generation of primordial magnetic seed field (S.Maeda, Mukohyama, Shiromizu 2009).
- Higher curvature terms lead to regular bounce (Calcagni 2009, Brandenberger 2009).
- Higher curvature terms (1/a⁶, 1/a⁴) might make the flatness problem milder (Kiritsis&Kofinas 2009).
- Absence of local Hamiltonian constraint leads to DM as integration "constant" (Mukohyama 2009).

Where are we from?

Primordial Fluctuations

Horizon Problem & Scale-Invariance

Horizon @ decoupling << Correlation Length of CMB

3.8 x 10⁵ light years << 1.4 x 10¹⁰ light years

(1 light year ~ 10¹⁸ cm)

Scale-invariant spectrum $\Delta \sim \text{constant}$

 $\left\langle \zeta_{\vec{k}} \zeta_{\vec{k}'} \right\rangle = (2\pi)^3 \delta^3 (\vec{k} + \vec{k}') \frac{\Delta}{|\vec{k}|^3}$

Usual story

• $\omega^2 >> H^2$: oscillate H = (da/dt) / a $\omega^2 << H^2$: freeze a: scale factor oscillation \rightarrow freeze-out iff $d(H^2/\omega^2)/dt > 0$ $\omega^2 = k^2/a^2$ leads to $d^2a/dt^2 > 0$ Generation of super-horizon fluctuations requires accelerated expansion, i.e. inflation.

Usual story

- $\omega^2 >> H^2$: oscillate H = (da/dt) / a $\omega^2 << H^2$: freeze a: scale factor oscillation \rightarrow freeze-out iff $d(H^2/\omega^2)/dt > 0$ $\omega^2 = k^2/a^2$ leads to $d^2a/dt^2 > 0$ Generation of super-horizon fluctuations requires accelerated expansion, i.e. inflation.
- Scaling law

Scale-invariance requires almost const. H, i.e. inflation.

New story with z=3 Mukohyama 2009

• oscillation \rightarrow freeze-out iff d(H²/ ω^2)/dt > 0 $\omega^2 = M^{-4}k^6/a^6$ leads to d²(a³)/dt² > 0 OK for a~t^p with p > 1/3

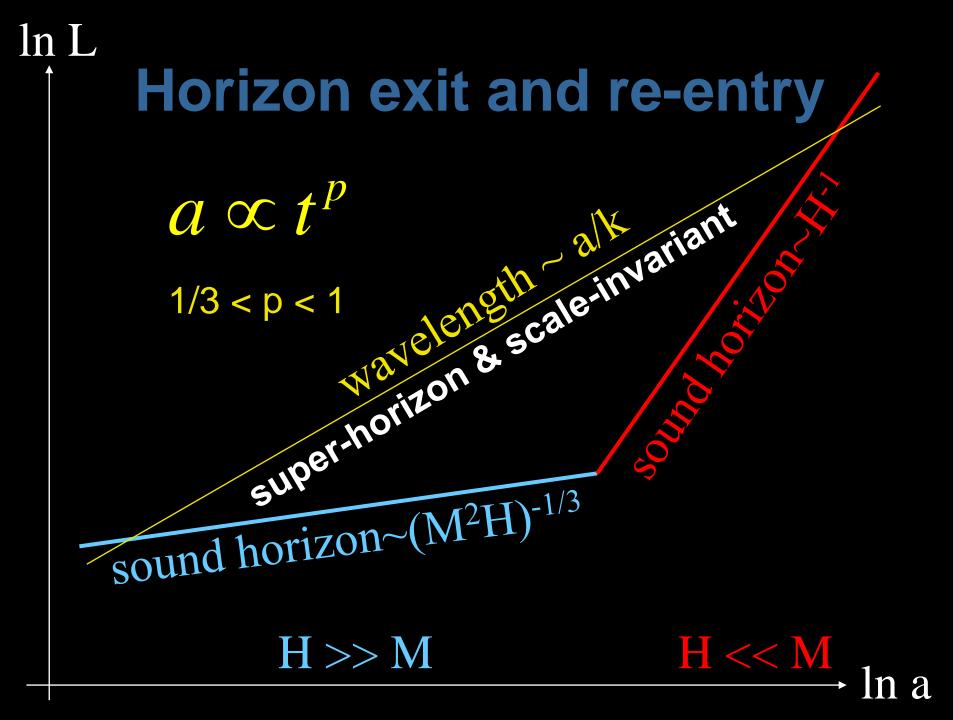
New story with z=3 Mukohyama 2009

- oscillation \rightarrow freeze-out iff d(H²/ ω^2)/dt > 0 $\omega^2 = M^{-4}k^6/a^6$ leads to d²(a³)/dt² > 0 OK for a~t^p with p > 1/3
- Scaling law
 - $t \rightarrow b^3 t \ (E \rightarrow b^{-3}E)$
 - $x \rightarrow b x$ $\phi \rightarrow b^{0} \phi$

Scale-invariant fluctuations!

New story with z=3 Mukohyama 2009

- oscillation \rightarrow freeze-out iff d(H²/ ω^2)/dt > 0 $\omega^2 = M^{-4}k^6/a^6$ leads to d²(a³)/dt² > 0 OK for a~t^p with p > 1/3
- Scaling law
 - $t \rightarrow b^3 t \ (E \rightarrow b^{-3}E)$
 - $x \rightarrow b x$ $\phi \rightarrow b^{0} \phi$ Scale-invariant fluctuations!
- Tensor perturbation $P_h \sim M^2/M_{Pl}^2$



New Quantum Gravity

New Mechanism of Primordial Fluctuations

- Horizon Problem Solved
- Scale-Invariance Guaranteed
- Slight scale-dependence calculable
- Predicts large non-Gaussianity

Minimal Horava-Lifshitz gravity Horava (2009)

- Basic quantities: lapse N(t), shift Nⁱ(t,x), 3d spatial metric g_{ij}(t,x)
- ADM metric (emergent in the IR) $ds^2 = -N^2 dt^2 + g_{ij} (dx^i + N^i dt)(dx^j + N^j dt)$
- Foliation-preserving deffeomorphism $t \rightarrow t'(t), x^i \rightarrow x'^i(t,x^j)$
- Anisotropic scaling with z=3 in UV t → b^z t, xⁱ → b xⁱ
- Ingredients in the action

$$Ndt \sqrt{g} d^{3}x \qquad g_{ij} \qquad D_{i} \qquad R_{ij}$$
$$K_{ij} = \frac{1}{2N} \left(\partial_{t}g_{ij} - D_{i}N_{j} - D_{j}N_{i} \right) \qquad (C_{ijkl} = 0 \text{ in } 3d)$$

UV action with z=3

Kinetic terms (2nd time derivative)

$$\int N dt \sqrt{g} d^{3}x \left(K_{ij} K^{ij} - \lambda K^{2} \right)$$

c.f. $\lambda = 1$ for GR

• z=3 potential terms (6th spatial derivative) $\int Ndt \sqrt{g} d^{3}x \begin{bmatrix} D_{i}R_{jk}D^{i}R^{jk} & D_{i}RD^{i}R \end{bmatrix}$ $R_{i}^{j}R_{j}^{k}R_{k}^{i} = RR_{i}^{j}R_{j}^{i} = R^{3}$

c.f. D_iR_{jk}D^jR^{ki} is written in terms of other terms

Relevant deformations (with parity)

- z=2 potential terms (4th spatial derivative)
 - $\int N dt \sqrt{g} d^3 x \left[\qquad R_i^j R_j^i \qquad R^2 \right]$
- z=1 potential term (2nd spatial derivative) $\int Ndt \sqrt{g} d^3x \begin{bmatrix} R \end{bmatrix}$
- z=0 potential term (no derivative)

$$\int N dt \sqrt{g} d^3 x \left[\qquad 1 \qquad \right]$$

IR action

- UV: z=3, power-counting renormalizability
 RG flow
- IR: z=1 , seems to recover GR iff $\lambda \rightarrow 1$ kinetic term

$\frac{1}{16\pi G_N} \int N dt \sqrt{g} d^3 x \left(K_{ij} K^{ij} - \lambda K^2 + c_g^2 R - 2\Lambda \right)$

note:

IR potential

Renormalizability has not been proved. RG flow has not yet been investigated.

Physical d.o.f.

- (6+3)-3-3=3 $g_{ij}: 6$ components $N^i: 3$ components $x^i \rightarrow x'^i(t,x): 3$ gauge d.o.f. $\delta I/\delta N^i=0: 3$ constraints
- 3 = 2 + 1 tensor graviton: 2 d.o.f. scalar graviton: 1 d.o.f.

Different versions of HL gravity

- There are versions w/wo the projectability condition.
- Horava's original proposal was with the projectability condition, N=N(t).
- Naïve non-projectable extension is inconsistent [c.f. Henneaux, et.al. 2009].
- Inclusion of a_i = (In N)_i (and thus more terms) in the action can cure the non-projectable extension [Blas, Pujolas and Sibiryakov 2009].
- U(1) extension [Horava & Melby-Thompson 2010]

HL gravity with extra U(1)

- Existence of scalar graviton is not necessarily a problem but is at least a source of technical complications.
- In order to get rid of the scalar graviton, Horava & Melby-Thompson (2010) introduced an extra local U(1) symmetry.
- Basic quantities: lapse N(t), shift Nⁱ(t,x), 3d spatial metric g_{ij}(t,x), "gauge field" A(t,x), "Newtonian pre-potential" v(t,x)
- A/N and v transform as scalars

U(1) extension of HL gravity

• Local U(1)

Ingredients in the action

$$Ndt \quad \sqrt{g}d^{3}x \qquad g_{ij} \qquad D_{i} \qquad R_{ij}$$
$$\tilde{K}_{ij} \equiv K_{ij} + D_{i}D_{j}V \qquad \sigma \equiv \frac{A}{N} - \partial_{\perp}v - \frac{1}{2}g^{ij}\partial_{i}v\partial_{j}v$$

Scaling dimensions

$$egin{aligned} &[\partial_i]=1, & [\partial_t]=z, & [dtd^3ec x]=-z-3, & [\partial_{\perp}]=z, \ & [g_{ij}]=0, & [N_i]=[N^i]=z-1, & [N]=0, \ & [lpha]=z-2, & [A]=2z-2, & [
u]=z-2. \end{aligned}$$

UV action with z=3

Kinetic terms (2nd time derivative)

$$\int Ndt \sqrt{g} d^3 x \left(\tilde{K}_{ij} \tilde{K}^{ij} - \lambda \tilde{K}^2 \right)$$

• z=3 potential terms (6th spatial derivative) $\int Ndt \sqrt{g} d^{3}x \left[D_{i}R_{jk}D^{i}R^{jk} D_{i}RD^{i}R \right]$ $R_{i}^{j}R_{j}^{k}R_{k}^{i} R_{k}^{j}R_{i}^{j} R^{3} \right]$ • New term with σ ([σ]=2z-2=4) $\int Ndt \sqrt{g} d^{3}x \left[R\sigma \right]$

Relevant deformations (with parity)

• New term with σ

$$\int Ndt \sqrt{g} d^3x \left[\sigma \right]$$

- z=2 potential terms (4th spatial derivative) $\int Ndt \sqrt{g} d^3x \left[R_i^j R_j^i R_j^2 \right]$
- z=1 potential term (2nd spatial derivative) $\int Ndt \sqrt{g} d^3x [R]$
- z=0 potential term (no derivative) $\int Ndt \sqrt{g} d^3x \begin{bmatrix} 1 \end{bmatrix}$

cf. This construction is based on da Silva (2012).

Total action

Absence of scalar graviton

- Background eom for N = 1, Nⁱ = 0, g_{ij} = δ_{ij} , A = 0, v = 0 $\rightarrow \Lambda = \Omega = 0$
- Scalar perturbation

 $N = 1 \qquad N_i = \partial_i \beta \qquad g_{ij} = (1 + 2\zeta)\delta_{ij} \qquad A \qquad \nu = 0$

- Quadratic action $I_{\vec{k}} = \int dt \left[-\frac{3}{2} (3\lambda - 1)\dot{\zeta}^2 - (3\lambda - 1)\vec{k}^2\beta\dot{\zeta} + \vec{k}^2\zeta^2 - 2\vec{k}^2A\zeta - \frac{1}{2}(\lambda - 1)\vec{k}^4\beta^2 \right]$
- A-eom $\hat{\delta}$ β -eom & ζ -eom $\hat{\delta} = \beta = \overline{A} = 0$
- Extra U(1) eliminates scalar graviton!
- This result extends to FLRW background

Coupling to matter at low-E

- Among (N, Nⁱ, g_{ij}), Nⁱ is not U(1) invariant but $\tilde{N}^{i} \equiv N^{i} Ng^{ij} \partial_{i} \nu$ is U(1) invariant.
- In addition to (N, Nⁱ, g_{ij}), there is a U(1) invariant scalar σ and it can also couple to matter at low-E.
- The equivalence principle requires that coupling to matter should be universal.
- A proposal: $(\tilde{N}, \tilde{N}^{i}, \tilde{g}_{ij})$ couple to matter universally, where $\tilde{N} \equiv F(\sigma)N$ $\tilde{g}_{ij} \equiv \Omega^{2}(\sigma)g_{ij}$

A possible scenario

- Consider a heavy scalar field χ neutral under U(1) with potential V(χ) + σ U(χ)
- Suppose that $\tilde{N} \equiv f(\chi) N$ and $\tilde{g}_{ij} \equiv \omega^2(\chi) g_{ij}$ couple to matter. After integrating out χ , we obtain $f(\chi) \rightarrow F(\sigma)$, $\omega(\chi) \rightarrow \Omega(\sigma)$.
- In general (F, Ω) depend on matter species, but universality may emerge at low-E. It is worthwhile trying to see if this is possible.
- c.f. Emergent Lorentz symmetry: Lorentz-invariant IR fixed point (Chadha and Nielsen 1983) & SUSY or/and strong dynamics to speed-up the RG flow

Solar system tests

- Matter propagates on the 4d metric $\gamma_{\mu\nu}dx^{\mu}dx^{\nu} = -\tilde{N}^{2}dt^{2} + \tilde{g}_{ij}(dx^{i} + \tilde{N}^{i}dt)(dx^{j} + \tilde{N}^{j}dt)$
- Define $T^{\mu\nu}$ by varying matter action w.r.t. $\gamma_{\mu\nu}$.
- Introduce PPN parameters for $\gamma_{\mu\nu}$.
- By using gravity equations of motion with Λ = Ω = 0, express PPN parameters in terms of other parameters of the theory.
- All solar system tests are passed if $|c_g^2 1|$, $|F'(\sigma=0) 1|$, $|\Omega'(\sigma=0)| < 10^{-5}$ Here, $F(\sigma=0)$ and $\Omega(\sigma=0)$ are set to 1.
- This condition is independent of λ .

PPN parameters

$$G = \frac{1}{8} \frac{al^{2} \gamma}{Mp^{2} \pi} \quad beta_{-} = \frac{1}{2} \frac{\gamma al + 1}{\gamma al} \quad gamma_{-} = -\frac{-1 + \gamma a2}{\gamma al}$$

$$\alpha l = -\frac{4(-al \gamma a2 + al^{2} \gamma l - 2 + al)}{al^{2} \gamma l} \qquad \alpha 3 = 0$$

$$\alpha 2 = -\frac{\lambda al^{2} \gamma l + 6\lambda al - 4\lambda - 3\lambda al^{2} + al^{2} + 2 - al^{2} \gamma l - 2al}{al^{2} \gamma (\lambda - 1)}$$

$$\zeta l = \frac{(-1 + 3\lambda)(-1 + al)}{\gamma al (\lambda - 1)} \qquad zeta B = -\frac{(-1 + 3\lambda)(-1 + al)}{\gamma al (\lambda - 1)}$$

$$\zeta l = \frac{(\zeta - 1 + 3\lambda)(-1 + al)}{\gamma al (\lambda - 1)} \qquad zeta B = -\frac{(-1 + 3\lambda)(-1 + al)}{\gamma al (\lambda - 1)}$$

$$\zeta l = \frac{(\zeta - 1 + 3\lambda)(-1 + al)}{\gamma al (\lambda - 1)} \qquad zeta B = -\frac{(-1 + 3\lambda)(-1 + al)}{\gamma al (\lambda - 1)}$$

Summary

- Horava-Lifshitz gravity is power-counting renormalizable and can be a candidate theory of quantum gravity.
- The z=3 scaling solves horizon problem and leads to scaleinvariant cosmological perturbations for a~t^p with p>1/3.
- The original theory has an additional d.o.f. called scalar graviton. This is not necessarily a problem but leads to a lot of technical complications. [See the review for discussions.]
- In order to get rid of the scalar graviton, Horava & Melby-Thompson (2010) introduced an extra local U(1) symmetry.
- The U(1) extension (with projectability condition) indeed removes the scalar graviton.
- We proposed a universal coupling to matter.
- We calculated all PPN parameters.
- All solar-system constraints are satisfied under a certain condition.