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Einstein’s eqns — even in simplest cases
Ruv = A Iuv
encode a vast amount of physics

Black holes colliding,

radiating gravitational waves ...



Einstein’s eqns — even in simplest cases
Ruv = A Iuv
encode a vast amount of physics

Expanding, inflationary universe



Einstein’s eqns — even in simplest cases
Ruv = A Iuv
encode a vast amount of physics

Holography: quark-gluon plasma,
holographic superconductors...



Einstein’s eqns — even in simplest cases
Ry, =0
Ruv = A Iuv

encode a vast amount of physics

but they are very hard to solve (really!)



Numerical GR is a mature, indispensable tool

but insights are often hard to come by



A small parameter can take you a long way

eQED around e“ = 0
eSU(N) Yang-Mills around N = o



What parameter in

Ry, = 07



Varying D in GR

D is the natural parameter in R, = 0

— natural to study GRin D # 4



Low D

D < 4: widely studied

UV regulator
Changes IR behavior

* no propagating dof’s — no gravity force
* no asympflatness

* but keep diffeo invce, so may learn something
about Quantum Gravity



Low D

Plus:

2D and 3D black holes are relevant for more
‘realistic’ (D = 4,5 ...) bhs as near-horizon

geometries

Relevant also for D — ool Soda



Large D

D > 4: 1R regulator / UV wrecker
D — oo: |ots of local gravitational dynamics

strongly localized close to horizons

Maybe not good for Quantum Grav

but OK for classical GR

Kol+Miyamoto et al



Large D

Large D expansion may help for

— deeper understanding of the theory
(reformulation?)

— calculations: new perturbative expansion

Universality (due to strong localization) is
good for both



How do we take

D — oo
N

R,, =07

U



Regard R, = 0 as a theory of
Black Holes

interacting with/via
gravitational waves



Black Hole
dynamics at large D



General Relativity @ large D

Two main effects:

1. Small cross sections

e elementary geometry effect

2. Interactions localized near horizon

e gravitational effect



Elementary geometry @ large D

Area of spheres becomes small

compared to hypercubes that enclose them
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Elementary geometry @ large D

Lots of space in diagonal directions

L>?=xf+-+x5_,=D—-1

I
N

L - D2 > 1

Sphere of finite radius but zero area
= vanishing cross sections



Large D black holes

Basic solution

length scale 7



Large D black holes

o hot the only scale

Small parameter 1/D = scale hierarchy

ro/D K 1y



Localization of interactions

Large potential gradient:

d(r)
ro\ D3
O(r) ~ (7)
VCI) ~ D/TO
To
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Far zone

Fixedr >ry D — o
D-3

f(r) =1 (TO) 51

r

ds® - —dt* + dr* + r?dQp_,

Flat, empty space atr > 1y

no gravitational field



scale O(1,D")

Far zone geometry

Holes cut out in Minkowski space




Near-horizon

Gravitational field appreciable only in thin
near-horizon region

()=o) & r-n <




Near-horizon
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Near-horizon
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2d string black hole

Elitzur et al
Mandal et al
Witten 1991

Soda 1993
Grumiller et al 2002



Near-horizon universality

2d string bh is near-horizon geometry
of all neutral non-extremal bhs

- rotation appears as a local boost

(in a direction along horizon)

- cosmo const shifts 2d bh mass



Near-horizon geometries

Limiting well-defined geometry

Well known: (near-)extremal black holes
Charge Q < M

Rotation | S M*



Increasing charge of black hole

Spatial geometry of neutral black holes

S



Increasing charge of black hole

Spatial geometry of charged black holes

e




Increasing charge of black hole

Spatial geometry of (near-)extremal bh

) j? M0




(Near-)Extremal black holes

Throat geometries near-horizon

throat supports

(B

“decoupled” dynamics

e.g. AdS/CFT decoupling limit



(Near-)Extremal black holes

Decoupled dynamics:

[

finite-frequency
excitations that are
normalizable in n-h
geometry

Don’t propagate into
far-region



(Near-)Extremal black holes

Decoupled dynamics:

finite-frequency

excitations that are

T normalizable in n-h
geometry

B

effective radial

potential Don’t propagate Into
far-region



Is the large D limit
a decoupling limit?



Is the large D limit
a decoupling limit?
No



Perturbative BH dynamics @ large D
is concentrated close to the horizon

States can be characterized in terms of
their properties within N-H geometry



but N-H geometry is not long throat

41
Dg (—tanh? p dt2,, + dp?) + r¢dQ5_,

/

small extent & 1,/D

2 _
dS.;, =

D

crossed very quickly t, .4 = —t
0

Can’t expect to support excitations fully trapped within



Black Hole dynamics:
Quasinormal modes



Quasinormal modes

Black holes vibrate when perturbed:

metric perturbation §g,,, ~ e ™'t

But they don’t have normal modes:
Imw # 0

due to absorption of the vibration by
the horizon



Quasinormal modes

09y ~ e ~IRewt+imwt Imw < 0: stable

damped oscillations
~ ringing of a bell



Quasinormal modes

0guv ~ e TIRewt+Imwt 114, < 0: stable

QNM spectrum
characterizes a black
hole, much like normal
modes characterize
other systems



Massless scalar field dynamics

D-2

CD — O b=7r 2 ¢(T) e—ia)t Yg(ﬂ)
d*¢
| 2 _
dr? (w*=V(@r))p =0
V() I.: tortoise coord

horizon



Schwarzschild bh grav perturbations

Kodama+Ishibashi

Gravitational scalar, vector, tensor modes
SO(D — 1) reps




Quasinormal modes

Free, damped oscillations of bh

e

horizon

infty



Quasinormal modes

Free, damped oscillations of bh

outgoing

e

horizon

infty



Quasinormal modes

Free, damped oscillations of bh

ingoing outgoing

e

horizon

infty



Quasinormal modes @ large D

Most QNMs are not decoupled states

not normalizable N-H states

But 3 a few decoupled QNMs

normalizable N-H states



Non-decoupling and decoupling
sectors are very different



Non-decoupling QNMs

High frequencies w ~ D /1

Imw

Small damping ratios 7 0

Control interaction between bh and
environment

Little information about black hole

Universal spectrum



Decoupling QNMs

Low frequencies w ~ DY/,

Imw

~1

Damping ratio .

Insulated from asymptotic zone

Specific dynamics of each black hole

instabilities, hydrodynamic modes etc

Non-universal
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(D/ 27”0)2

horizon



horizon

D .
WL @ > — : perfect transmission

2 To

w = 0(D) /1, : perfect reflection

.
To

T.
infty )



Non-decoupled QNMs

w ~ D /r,

connect near-zone
and far-zone:

not decoupled




Non-decoupled QNMs

w ~ D /r,

Universal structure
V black holes @ D — oo




Decoupled QNMs

(D/ 21"0)2

— A~ S~— ]

—

horizon

Strongly suppresed in far-zone:
decoupled



Decoupled QNMs

(D/ 21"0)2

— A~ S~— ]

—

horizon

We have computed these in the
1/D expansion up to 1/D?



Quantitative accuracy

Decoupled modes wry = 0(1)
Vector mode (purely imaginary)
e AtD =100:

£ =2 mode Im wry =-1.01044742 (analytical)
-1.01044741 (numerical Dias et al)



Quantitative accuracy

Decoupled modes wry = 0(1)
Vector mode (purely imaginary)
e AtD =100:

£ =2 mode Im wry =-1.01044742 (analytical)
-1.01044741 (numerical Dias et al)
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Quantitative accuracy

Non-decoupled modes wry = O(D)

Re wry: good at moderate D

35
Re wry £ =2
23
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A B

9 "'10D

Im wry, ~ D3 : only good at very high D



Outlook



Universal features @ large D

Far region

Vbhs: empty space

Near-horizon region
Vneutral bhs: 2D string bh



BH dynamics splits into:

wry = O(D) : non-decoupled dynamics
scalar field oscillations of a hole in space
universal normal modes

wry = O(D?) : decoupled dynamics

localized in near-horizon region



wry = O(DY) : decoupled dynamics

— specific of each bh
—less numerous

— ultraspinning instabi
—hydro modes of blac

ities in this sector

K branes



wry = O(D) : non-decoupled dynamics
— universal normal modes of hole in space
— much more numerous
— describe interaction of bh w/ environment

— connection to BH entropy?






