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Introduction	  I 
•  Planck	  data	  release	  in	  March	  2013	  &	  2015	   

è	  Precise	  information	  about	  the	  physics	  of	  the	  early	  Universe 

e.g.,	  constraint	  on	  single-‐field	  inflation	  models 
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Planck Collaboration: Planck 2013 Results. XXIV. Constraints on primordial NG

Table 9. Results for the fNL parameters of the primordial local, equilateral, and orthogonal shapes, determined by the KSW, binned
and modal estimators from the SMICA, NILC, SEVEM, and C-R foreground-cleaned maps. Both independent single-shape results and
results marginalized over the point source bispectrum and with the ISW-lensing bias subtracted are reported; error bars are 68%
CL .

Independent ISW-lensing subtracted

KSW Binned Modal KSW Binned Modal

SMICA

Local . . . . . . . . . . . . . . . . 9.8 ± 5.8 9.2 ± 5.9 8.3 ± 5.9 . . . . . 2.7 ± 5.8 2.2 ± 5.9 1.6 ± 6.0
Equilateral . . . . . . . . . . . . �37 ± 75 �20 ± 73 �20 ± 77 . . . . . �42 ± 75 �25 ± 73 �20 ± 77
Orthogonal . . . . . . . . . . . . �46 ± 39 �39 ± 41 �36 ± 41 . . . . . �25 ± 39 �17 ± 41 �14 ± 42

NILC

Local . . . . . . . . . . . . . . . . 11.6 ± 5.8 10.5 ± 5.8 9.4 ± 5.9 . . . . . 4.5 ± 5.8 3.6 ± 5.8 2.7 ± 6.0
Equilateral . . . . . . . . . . . . �41 ± 76 �31 ± 73 �20 ± 76 . . . . . �48 ± 76 �38 ± 73 �20 ± 78
Orthogonal . . . . . . . . . . . . �74 ± 40 �62 ± 41 �60 ± 40 . . . . . �53 ± 40 �41 ± 41 �37 ± 43

SEVEM

Local . . . . . . . . . . . . . . . . 10.5 ± 5.9 10.1 ± 6.2 9.4 ± 6.0 . . . . . 3.4 ± 5.9 3.2 ± 6.2 2.6 ± 6.0
Equilateral . . . . . . . . . . . . �32 ± 76 �21 ± 73 �13 ± 77 . . . . . �36 ± 76 �25 ± 73 �13 ± 78
Orthogonal . . . . . . . . . . . . �34 ± 40 �30 ± 42 �24 ± 42 . . . . . �14 ± 40 �9 ± 42 �2 ± 42

C-R

Local . . . . . . . . . . . . . . . . 12.4 ± 6.0 11.3 ± 5.9 10.9 ± 5.9 . . . . . 6.4 ± 6.0 5.5 ± 5.9 5.1 ± 5.9
Equilateral . . . . . . . . . . . . �60 ± 79 �52 ± 74 �33 ± 78 . . . . . �62 ± 79 �55 ± 74 �32 ± 78
Orthogonal . . . . . . . . . . . . �76 ± 42 �60 ± 42 �63 ± 42 . . . . . �57 ± 42 �41 ± 42 �42 ± 42

squeezed configurations, its impact is well known to be largest
for the local shape. The ISW-lensing bias is also important for
orthogonal measurements (there is a correlation coe�cient r ⇠
�0.5 between the local and orthogonal CMB templates), while
it is very small in the equilateral limit. The values of the ISW-
lensing bias we subtract, summarized in Table 1, are calculated
assuming the Planck best-fit cosmological model as our fidu-
cial model. The same fiducial parameters were of course consis-
tently used to compute the theoretical bispectrum templates and
the estimator normalization. Regarding the point source contam-
ination, we detect a Poissonian bispectrum at high significance
in the SMICA map, see Sect. 5.3. However, marginalizing over
point sources still carries a nearly negligible impact on the final
primordial fNL results, because the Poisson bispectrum template
has very small correlations with all the other shapes.

In light of the discussion at the beginning of this section, we
take the numbers from the KSW SMICA analysis in Table 8 as the

Table 10. Results for the fNL parameters of the primordial local,
equilateral, and orthogonal shapes, determined by the subopti-
mal wavelet estimator from the SMICA foreground-cleaned map.
Both independent single-shape results and results marginalized
over the point source bispectrum and with the ISW-lensing bias
subtracted are reported; error bars are 68% CL. As explained in
the text, our current wavelets pipeline performs slightly worse in
terms of error bars and correlation to primordial templates than
the other bispectrum estimators, but it still provides a useful in-
dependent cross-check of other techniques.

Independent ISW-lensing subtracted

Wavelets Wavelets

SMICA

Local . . . . . . . . . 10 ± 8.5 0.9 ± 8.5
Equilateral . . . . . 89 ± 84 90 ± 84
Orthogonal . . . . . �73 ± 52 �45 ± 52

final local, equilateral and orthogonal fNL constraints for the cur-
rent Planck data release. These results clearly show that no evi-
dence of NG of the local, equilateral or orthogonal type is found
in the data. After ISW-lensing subtraction, all fNL for the three
primordial shapes are consistent with 0 at 68% CL. Note that
these numbers have been cross-checked using two completely
independent KSW pipelines, one of which is an extension to
Planck resolution of the pipeline used for the WMAP analysis
(Bennett et al. 2012).

Unlike other methods, the KSW technique is not designed
to provide a reconstruction of the full bispectrum of the data.
However, the related skew-C` statistic described in Sect. 3.2.2
allows, for each given shape, visualization and study of the con-
tribution to the measured fNL from separate `-bins. This is a
useful tool to study potential spurious NG contamination in the
data. We show for the SMICA map in Fig. 5 the measured skew-
C` spectrum for optimal detection of primordial local, equilat-
eral and orthogonal NG, along with the best-fitting estimates of
fNL from the KSW method for di↵erent values of `. Contrary to
the case of the point source and ISW-lensing foregrounds (see
Sect. 5), the skew-C` statistics do not show convincing evidence
for detection of the primordial shapes. In particular the skew-
spectrum related to primordial local NG does not have the right
shape, suggesting that whatever is causing this NG signal is not
predominantly local. Again, point sources contribute very little
to this statistic; ISW-lensing contributes, but only a small frac-
tion of the amplitude, so there are indications of additional NG
not captured by these foregrounds. In any event the estimators
are consistent with no primordial signal of the types considered.

As mentioned before, our analysis went beyond the simple
application of the KSW estimator to the SMICA map. All fNL
pipelines developed for Planck analysis were actually applied
to all component-separated maps by SMICA, NILC, SEVEM, and
C-R. We found from simulations in the previous Sections that
the KSW, binned, and modal pipelines saturate the Cramér-Rao
bound, while the wavelet estimator in its current implementation
provides slightly suboptimal results. Wavelets remain however a
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Table 11. Constraints on flattened or collinear bispectrum models (and related models) using the SMICA foreground-cleaned Planck
map. These bispectrum shapes, with equation numbers given, are described in detail in the text.

Flattened model (Eq. number) Raw fNL Clean fNL � fNL � Clean �

Flat model (13) . . . . . . . . . . . . . . . . . . . 70 37 77 0.9 0.5
Non-Bunch-Davies (NBD) . . . . . . . . . . . 178 155 78 2.2 2.0
Single-field NBD1 flattened (14) . . . . . . 31 19 13 2.4 1.4
Single-field NBD2 squeezed (14) . . . . . . 0.8 0.2 0.4 1.8 0.5
Non-canonical NBD3 (15) . . . . . . . . . . . 13 9.6 9.7 1.3 1.0
Vector model L = 1 (19) . . . . . . . . . . . . �18 �4.6 47 �0.4 �0.1
Vector model L = 2 (19) . . . . . . . . . . . . 2.8 �0.4 2.9 1.0 �0.1

Table 12. Planck bispectrum estimation results for feature models compared to the SMICA foreground-cleaned maps. This prelim-
inary survey on a coarse grid in the range 0.01  kc  0.025 and 0  kc < ⇡/4 finds specific models with significance up to
99.7%.

Phase � = 0 � = ⇡/4 � = ⇡/2 � = 3⇡/4
Wavenumber fNL ± � fNL (�) fNL ± � fNL (�) fNL ± � fNL (�) fNL ± � fNL (�)

kc = 0.01000 . . . . . . . �110 ± 159 (�0.7) �98 ± 167 (�0.6) �17 ± 147 (�0.1) 56 ± 142 ( 0.4)
kc = 0.01125 . . . . . . . 434 ± 170 ( 2.6) 363 ± 185 ( 2.0) 57 ± 183 ( 0.3) �262 ± 168 (�1.6)
kc = 0.01250 . . . . . . . �70 ± 158 (�0.4) 130 ± 166 ( 0.8) 261 ± 167 ( 1.6) 233 ± 159 ( 1.5)
kc = 0.01375 . . . . . . . 35 ± 162 ( 0.2) 291 ± 145 ( 2.0) 345 ± 147 ( 2.3) 235 ± 162 ( 1.5)
kc = 0.01500 . . . . . . . �313 ± 144 (�2.2) �270 ± 137 (�2.0) �95 ± 145 (�0.7) 179 ± 154 ( 1.2)
kc = 0.01625 . . . . . . . 81 ± 126 ( 0.6) 177 ± 141 ( 1.2) 165 ± 144 ( 1.1) 51 ± 129 ( 0.4)
kc = 0.01750 . . . . . . . �335 ± 137 (�2.4) �104 ± 128 (�0.8) 181 ± 117 ( 1.5) 366 ± 126 ( 2.9)
kc = 0.01875 . . . . . . . �348 ± 118 (�3.0) �323 ± 120 (�2.7) �126 ± 119 (�1.1) 137 ± 117 ( 1.2)
kc = 0.02000 . . . . . . . �155 ± 110 (�1.4) �298 ± 119 (�2.5) �241 ± 113 (�2.1) �44 ± 105 (�0.4)
kc = 0.02125 . . . . . . . �43 ± 96 (�0.4) �186 ± 107 (�1.7) �229 ± 115 (�2.0) �125 ± 104 (�1.2)
kc = 0.02250 . . . . . . . 22 ± 95 ( 0.2) �115 ± 92 (�1.2) �194 ± 105 (�1.8) �148 ± 107 (�1.4)
kc = 0.02375 . . . . . . . 70 ± 100 ( 0.7) �56 ± 94 (�0.6) �159 ± 93 (�1.7) �164 ± 101 (�1.6)
kc = 0.02500 . . . . . . . 106 ± 93 ( 1.1) 6 ± 97 ( 0.1) �103 ± 98 (�1.1) �153 ± 94 (�1.6)

composition, namely an oscillating Fourier basis (nmax = 300)
augmented with a local SW mode (the same used for the recon-
struction plots in Sect. 7). The results from this basis are shown
in Appendix B and they are fully consistent with the polynomial
measurements presented here. The previous best-fit WMAP fea-
ture model, kc = 0.014 (`c ⇡ 200) and phase � = 3⇡/4, attained
a 2.15� signal with ` < 500 (Fergusson et al. 2012), but it only
remains at this level for Planck.

We note however that the apparently high statistical signifi-
cance of these results is much lower if we consider this to be a
blind survey of feature models, because we are seeking several
uncorrelated models simultaneously. Following what we did for
our study of impact of foregrounds in Sect. 8, we considered a
set of 200 realistic lensed FFP6 simulations, processed through
the SMICA pipeline, and including realistic foreground residuals.
If we use this accurate MC sample to search for the same grid
of 52 feature models as in Table 12, we find a typical maximum
signal of 2.23(±0.56)�. Searching across all feature models (see
below) studied here yields an expected maximum 2.37(±0.53)�
(whereas the survey for all 511 models from all paradigms in-
vestigated yielded 2.55(±0.52)�). This means that our best-fit
model from data has a statistical significance below 1.5� above
the maximum signal expectation from simulations, so we con-
clude that we have no significant detection of feature models
from Planck data.

Feature models typically have a damping envelope repre-
senting the decay of the oscillations as the inflaton returns to
its background slow-roll evolution. Indeed, the feature envelope
is a characteristic of the primordial mechanism producing the
fluctuations, decaying as k increases for inflation while rising

Fig. 12. CMB bispectrum shown for the best-fit feature model
with an envelope with parameters k = 0.01875, phase � = 0 and
�k = 0.045 (see Table 13). Compare with the Planck bispectrum
reconstruction, Fig. 7.

for contracting models like the ekpyrotic case (Chen 2011). We
have made an initial survey to determine whether a decaying
envelope improves the significance of any feature models. The
envelope employed was a Gaussian centred at kc = 0.045 with
a fallo↵ �k = 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045 and re-
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make	  us	  discuss	  a	  variety	  of	  models	  in	  more	  detail.. 



Introduction	  II 
•  Primordial	  non-‐Gaussianity	  (local	  type)	  

	  
	  
	  
small	  local-‐type	  non-‐Gaussianity	  is	  consistent	  with	  single	  inflation.	  
	  

But,	  of	  course,	  the	  models	  which	  could	  predict	  the	  large	  nG	  
are	  still	  viable	  and	  Planck	  result	  just	  gives	  tight	  constraint	  on	  
the	  parameters	  in	  such	  models.	  	  	  
 

Komatsu	  and	  Spergel	  (2001),	  and	  a	  lots	  of	  ref. 

95%	  CL 

Curvaton,	  modulated	  reheating,	  and	  so	  on. 
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Introduction	  III 
•  Curvaton	  scenario 

A	  mechanism	  of	  generating	  primordial	  adiabatic	  curvature	  perturbations	  
through	  the	  decay	  of	  a	  scalar	  field	  (curvaton)	  other	  than	  inflaton 

energy	  
density radiation produced from inflaton; r 

oscillating scalar field;  

time 

;	  decay	  rate	  of	  curvaton	  
	  (constant	  in	  time	  in	  simple	  standard	  case) 

background	  dynamics 

time 

curvature	  
perturbation; 

neglecting	  the	  contribution	  	  
from	  the	  inflaton	  fluctuations 

m;	  mass	  of	  curvaton	  
(for	  quadratic	  oscillation) 

(	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ) 

Lyth and Wands, Moroi and Takahashi, 
Enqvist and Sloth (2002) 
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non-‐Gaussianity? 

1 Introduction

Very recently, the Planck mission has released data from the first 15.5 months of Planck
operations for cosmic microwave background (CMB) anisotropies [1]. They determined
cosmological parameters with unprecedented accuracy such as the baryon, the dark mat-
ter, and the dark energy densities, which strongly support the so-called concordance model
of cosmology [2]. They also gave strong constraints on primordial curvature perturbations.
The spectral index ns = 0.9603 ± 0.0073 (68%CL) [3] significantly deviates from unity,
supporting the slow-roll inflation paradigm. Any deviations from Gaussianities of primor-
dial curvature perturbations are not found. In particular, the local type of fNL is now
strongly constrained as −8.9 < fNL < 14.3 at two sigma level [4], which rules out a lot of
light field models predicting large local type non-Gaussianities.

In fact, one may wonder if light field models such as the curvaton [5–7] and the mod-
ulated reheating [8, 9] scenarios might be excluded because they are often claimed to
generate large non-Gaussianities. However, this is not the case. For example, as is well
known, in the curvaton scenario with a quadratic potential, the local type of fNL is given
by [10,11]

fNL =
5

4r
− 5

3
− 5r

6
. (1)

Here r is roughly the fraction of the curvaton energy density at the curvaton decay and is
defined as

r =
3ρσ

3ρσ + 4ρr

∣∣∣∣
at decay

, (2)

where ρσ is the curvaton energy density and ρr is the radiation energy density. The
constraint −8.9 < fNL < 14.3 (95% CL) is equivalent to 0.08 < r (≤ 1) (95% CL), which
rules out the curvaton model with small r. However, to be fair, the natural value of r
without fine-tuning is unity because the curvaton easily dominates the energy density of
the Universe since the curvaton behaves like matter while the other components behave as
radiation. Such a value of r(= 1) yields fNL = −5/4, which is still allowed by the recent
Planck data. Thus, the simple and natural model of the curvaton is still viable.

In the same way, the modulated reheating scenario predicts fNL as [12,13]

fNL = 5

(
1 − ΓΓσσ

Γ2
σ

)
, (3)

where Γ is the inflaton decay rate depending on the modulus σ, Γσ = ∂Γ/∂σ, Γσσ =
∂2Γ/∂σ2, and the inflaton is assumed to oscillate around its minimum with a quadratic
potential. The constraint −8.9 < fNL < 14.3 leads to −1.9 < ΓΓσσ/Γ2

σ < 2.8, which
suggests that the second derivative of Γ with respect to σ is significantly suppressed.
Thus, as long as Γ linearly depends on the modulus σ, fNL is predicted to be 5, which is
still allowed by the recent Planck data.

Thus the light field models are still viable. After excluding the model parameters
inconsistent with Planck data, we end up with the light field models that generically

1

dec 

dec 

2.1 Curvaton

In the curvaton model, the curvaton fluctuations are converted into the curvature pertur-
bations when the curvaton decays into relativistic degrees of freedom, which occurs after
inflation. The important quantities determining the resultant curvature perturbation are r
representing the curvaton fraction to the total energy density and σosc, the curvaton value
when the curvaton starts oscillations. If a curvaton potential deviates from a quadratic
form, σosc generally depends on the curvaton value σ∗ at the time of horizon crossing. The
non-linearity parameters from the curvaton are given by [25]

6

5
fNL =

3

2r

(
1 +

σoscσ′′
osc

σ′2
osc

)
− 2 − r, (10)
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4r2
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osc

σ′3
osc

+ 3
σoscσ′′

osc

σ′2
osc

)
− 9

r

(
1 +

σoscσ′′
osc

σ′2
osc

)

+
1

2

(
1 − 9

σoscσ′′
osc

σ′2
osc

)
+ 10r + 3r2, (11)

where σ′
osc ≡ ∂σosc/∂σ∗ etc. Though the relation between σosc and σ∗ is nontrivial in

general, σosc has a linear dependence on σ∗ for a quadratic potential of the curvaton. In
this case (σ′′

osc = σ′′′
osc = 0), the non-linear parameters reduce to

6

5
fNL =

3

2r
− 2 − r, (12)

54

25
gNL = −9

r
+

1

2
+ 10r + 3r2, (13)

which lead to the following consistency relation,

gNL =
1

54

[
54f2

NL − 60fNL − 125 − (9fNL + 5)
√

36f 2
NL + 120fNL + 250

]
. (14)

In this model, r should be in the range of 0 < r < 1. As mentioned in introduction, a
likelihood analysis of r with adopting a prior 0 < r < 1 gives the constraint 0.15 < r (95%
CL) [4]. Due to the fact that r should be r < 1, the non-linearity parameter gNL is limited
as gNL < 2. Furthermore, the Planck constraint can be translated into a lower bound for
gNL as −26.8 < gNL (95% CL).

2.2 Modulated reheating

In the modulated reheating model, the decay rate of the inflaton Γ depends on some
light field called modulus σ. After inflation, the inflaton starts the oscillation around its
minimum. When the potential around the minimum is well approximated by a quadratic
type, the energy density of the inflaton oscillation decays in proportional to a−3 (a: the
scale factor) and hence the oscillation behaves like a non-relativistic matter. On the other

4

Planck	  constraint; 

dec 95%	  CL 

Curvaton	  should	  decay	  after	  it	  becomes	  relatively	  
dominant	  component	  in	  the	  Universe. 
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Introduction	  V 
There	  are	  several	  works	  which	  discuss	  the	  curvaton	  
scenarios	  in	  more	  detail,	  in	  order	  to	  construct	  realistic	  
curvaton	  scenario. 

Potential	  ?	  
	  
	  
Initial	  condition	  ?	  
	  
	  
Decay	  process	  ?	  

Self-‐interacting	  curvaton,	  
Hill-‐top	  curvaton,	  … 

Enqvist	  and	  Nurmi	  (2005),	  
Enqvist	  et	  al.(2009,	  2010),	  	  
Enqvist,	  Lerner	  and	  Taanila	  (2011)…	   
Kawasaki	  et	  al.	  (2009),	  
Kawasaki	  et	  al.(2011,2013),	  … 

Stochastic	  approach,	  
Attractor	  behavior,	  … 

Resonant	  decay,	  .. 

Demozzi	  et	  al.(2010),	  Enqvist	  et	  al.	  (2012),	  
Nurmi	  et	  al.(2013),	  Lerner	  and	  Melville	  (2014),	  … 

Enqvist,	  Figueroa	  and	  Lerner	  (2012),	  
Enqvist	  et	  al.(2013),	  … 
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Among	  such	  detailed	  discussions,	  we	  focus	  on	  the	  fact	  
that	  the	  curvaton	  lives	  in	  thermal	  bath.	  
	  
We	  would	  like	  to	  revisit	  the	  primordial	  fluctuations;	   
•  Curvature	  perturbations	  with	  temperature-‐dependent	  decay	  rate	  
•  CDM	  isocurvature	  perturbations	  in	  curvaton	  scenario 

By	  using	  sudden	  decay	  approximation	  and	  also	  numerical	  calculation 



Curvature	  perturbations	  in	  the	  
curvaton	  scenario	  with	  

temperature-‐dependent	  decay	  rate 
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Curvaton	  in	  thermal	  bath 
•  Thermal	  effects? 

For	  background	  dynamics	  of	  the	  curvaton	  decay, 

e.g.,	  	  

There	  are	  several	  works	  
about	  the	  dynamics	  of	  oscillating	  scalar	  field	  in	  thermal	  bath; 

temperature-‐dependent	  mass/decay	  rate	   

	  We	  focus	  on	  the	  effect	  of	  the	  temperature	  dependent	  decay	  rate	  on	  
the	  primordial	  curvature	  fluctuations	  in	  the	  curvaton	  scenario. 

•  modulation	  of	  the	  evolution	  of	  the	  curvaton	  energy	  density	  
•  life	  time	  of	  the	  curvaton	  (related	  to	  the	  decay	  rate) 

e.g.,	  	  

Parwani	  (1992),	  J.	  Yokoyama	  (2004,2005),	  Enqvist	  et	  al.	  (2011),	  Mukaida	  and	  Nakayama	  (2012),	  
Drewes	  and	  Kang	  (2013),	  Mukaida,	  Nakayama	  and	  Takimoto	  (2013,2014),	  Enqvist,	  Lerner	  and	  Takahashi	  (2013)…. 

curvaton;	  oscillating	  scalar	  field	  in	  the	  radiation	  dominated	  Universe	  
	  	  
è It	  is	  expected	  that	  some	  thermal	  effects	  should	  exist. 
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Figure 8: The rate Γ in the model defined by (22) as a function of T , normalized to its
zero temperature value. We set λ1 = 0.01, λ2 = 1, m1 = m2 = 0.001m. The solid line is
calculated from (26), it takes into account thermal mass corrections for χi, but neglects the
thermal widths. The dashed light blue line is the result one obtains when also neglecting
thermal masses. The dark blue dots are numerical evaluations of (32), which also take into
account thermal χi-widths.

thermal mass (24) implies that even soft modes become very thermally heavy. For these
reasons the upper bound on the reheating temperature found in this section is a rather
special case.

5 Example II: no blocking by thermal masses

We now consider a situation in which the coupling between φ and χi is the same as in
(22), but the χi have different interactions. This illustrates how strongly the behaviour of
Γ depends on the interactions within the primordial plasma even if the inflaton coupling
is the same. We use the following model

L =
1

2
∂µφ∂

µφ−
1

2
m2φ2 − gφχ1χ2 +

1

2
∂µξ∂

µξ −
1

2
m2

ξξ
2 (33)

+
2
∑

i=1

(

1

2
∂µχi∂

µχi −
1

2
m2

iχ
2
i − giχiξ

2

)

+ Lbath.

Here ξ is another real scalar field. We can again use (23) to calculate Γ, but in this case
the dissipative and dispersive parts of the χi self-energies are both calculated from the one

integrand in (31) is of order 1/(Π−
i )

2 and the integral is of order one.

22

0.01 0.1 1 10
0.1

1

10

100

1000

104

105

T!m
!
"T
#!
!
"0
#

Figure 12: The contribution to Γ from a hi/(4!)φχ3
i -interaction for λi = 0.1. The solid line

is a numerical evaluation of (40), the dashed line the approximation (41) and the dotted line
the approximation (42). All contributions are normalized to the value at T = 0. For larger
temperatures than plotted here our numerical evaluation is not reliable, but Γ may decrease
again due to the shrinking phase space for φχi ↔ χiχi scatterings. Note also that (40) does
not take into account finite widths or resummed vertices.

both on-shell.31 We consider the simplest case, with m1 = m2 = mχ, h1 = h2 = h and
λ1 = λ2 = λ. The rate (26) then reduces to

Γdecay =
g2

16πM

[

1−
(

2Mχ

M

)2
]1/2

(

1 + 2fB(M/2)
)

θ(ω − 2Mχ), (43)

The rate for φχi ↔ χiχi scatterings can be estimated by (41). At Tc ≈ (6(m2−4m2
χ)/λ)

1/2

it takes the value

Γscatter(Tc) ≈ 2
h2m

128πλ

(

1−
(2mχ

m

)2
)

. (44)

This can be compared to the decay rate (43) at the temperature where it is maximal and
at T = 0. The temperature dependence of (43) is plotted in figure 13, below Tc it is very
similar to theM1 ̸= M2 case discussed in section 4.3. For 0 ≤ T ≤ Tc φ dissipates its energy
via the decay φ → χ1χ2. Since both final states are bosonic, Bose enhancement causes Γ
to increase as a function of T . At the same time, the phase space for this process shrinks
due to the large thermal χi masses. Competition between these two effects determines
the temperature Tmax, at which Γ is maximal. The value of Tmax can be found using the
requirement ∂Γdecay/∂T = 0 at T = Tmax, which allows to formulate the condition

m
(

6((2mχ)
2 −m2) + T 2

maxλ
)

+ T 3
maxλsinh(m/Tmax) = 0. (45)

31The discussion closely follows [46].

28

Drewes	  and	  Kang,	  1305.0267	   

3 Elements of thermal quantum field theory

The crucial quantity that determines how efficiently φ can reheat the universe is the relax-
ation rate Γ. It determines how much energy φ dissipates into the primordial plasma per
unit time. The “in-out formalism” and S-matrix, commonly used in quantum field theory
in vacuum, do not provide an appropriate tool to describe nonequilibrium phenomena in a
dense plasma. The reason is that a nonequilibrium process is an initial value problem, in
which the final state is not known a priori and memory effects can be important. Further-
more, the definition of asymptotic states is ambiguous in the omnipresent plasma when
the density is large enough that particles always feel the presence of their neighbours. A
consistent treatment is possible in the framework of nonequilibrium quantum field theory,
where all properties of the system can be expressed in terms of correlation functions of
quantum fields.8 The approach we use in the following is known as Schwinger-Keldysh
formalism [70], but sometimes also referred to as “closed time path” or “in-in formalism”.
We use the notation of [46, 63, 69].

In the Schwinger-Keldysh formalism, the gain and loss rates Γ<
q and Γ>

q for the φ-mode
q are related to self-energies Π<(x1, x2) and Π>(x1, x2). Inflaton couplings that are linear
in φ can be expressed as φO[Xi], where O[Xi] represents operators that are composed of
fields Xi other than φ. In the following sections we will use the model Lagrangian

L =
1

2
∂µφ∂

µφ−
1

2
m2φ2 + Ψ̄ (i̸∂ −m)Ψ+

2
∑

i=1

(

1

2
∂µχi∂

µχi −
1

2
m2

iχ
2
i

)

−gφχ1χ2 − Y φΨ̄Ψ−
2
∑

i=1

hi

4!
φχ3

i + LX . (3)

The χi are scalar and Ψ is a fermionic field to which φ couples. LX contains all other degrees
of freedom (including the SM fields) and their couplings to the χi and Ψ. In this section we
do not specify the interactions in LX ; as before, we symbolically characterise their strength
by dimensionless numbers αi. It is assumed that m ≫ mi,m and g/m, Y, hi ≪ αi. For (3)
the operator O[Xi] is identified with

O[x] = gχ1(x)χ2(x) + Y Ψ̄(x)Ψ(x) +
2
∑

i=1

hi

4!
χ3
i (x). (4)

To leading order in the tiny inflaton couplings the self-energies can be calculated as

Π>(x1, x2) = ⟨O(x1)O(x2)⟩, Π<(x1, x2) = ⟨O(x2)O(x1)⟩. (5)

The average ⟨. . .⟩ is defined in the usual way as ⟨A⟩ = Tr(ϱA), where ϱ is the density
matrix of the thermodynamic ensemble under consideration. It includes the usual quantum
average as well as a statistical average over initial conditions. It is convenient to define the
spectral self-energy,

Π−(x1, x2) = Π>(x1, x2)− Π<(x1, x2), (6)

8For a review see [68].
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a) b) c) d)

Figure 2: Relevant Feynman diagrams, solid lines represent φ, dashed lines χ1, dotted lines
χ2, solid lines with arrow Ψ.

Figure 3: Diagrams contributing to the χi self-energy up to order λ2
i .

Here Ωip = ReΩ̂ip and Γip = 2ImΩ̂ip are the quasiparticle energy and thermal width for χi

excitations with spacial momentum p. The continuous contribution due to multiparticle
states is often suppressed in weakly coupled theories, see [71, 78] for some discussion.
Therefore it is often neglected. The fermionic spectral density ρp(p0) is more complicated,
we discuss it in section 7.

4 Example I: blocking by thermal masses

We first discuss the dissipation into bosons. We consider a situation where the interactions
of φ can effectively be described by the following model

L =
1

2
∂µφ∂

µφ−
1

2
m2φ2 +

2
∑

i=1

(

1

2
∂µχi∂

µχi −
1

2
m2

iχ
2
i −

λi

4!
χ4
i

)

− gφχ1χ2 + Lbath.

(22)

Here φ is the inflaton, χi are two other scalars with mi ≪ m and Lbath represents all other
fields in the primordial plasma. Using the real time formalism of thermal field theory (see
e.g. [64]), the contribution to Γ from the diagram shown in figure 2a) is obtained from13

Π−
q (ω) = −ig2

∫

d4p

(2π)4
(1 + fB(p0) + fB(ω − p0)) ρ1p(p0)ρ2q−p(ω − p0). (23)

Here fB(ω) = (eω/T − 1)−1 is the Bose-Einstein distribution. We will use different approx-
imations to the spectral densities ρi.

For the quartic χi-self interaction in (22) the χi-dispersion relations in the plasma can
at leading order in λi be parametrized as Ωi = (p2+M2

i )
(1/2), with momentum independent

13See e.g. [46].
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Here,	  φ	  is	  curvaton,	  χ;	  fields	  in	  thermal	  bath	  
	  
Temperature	  dependence	  seems	  to	  be	  very	  model-‐dependent.. 
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Planck mass. The above description is valid from an initial time ti corresponding to the onset
of the curvaton oscillations with H ⇠ m�, when the total energy density of the universe is
dominated by that of radiation. The curvaton and radiation energy densities then evolve
according to eqs. (2.2). When the Hubble parameter reaches H ⇠ �(T ), the curvaton starts
to decay and its energy density is very rapidly transferred into that of radiation.

As for the perturbations, the existence of initial fluctuations ��i of a subdominant
curvaton field implies the presence of the initial isocurvature perturbation S, which is given by

Si = 3(⇣�,i � ⇣r,i) . (2.3)

In the above expression, the subscript i indicates that the corresponding quantity is evalu-
ated at the initial time ti. We have also introduced the curvature perturbation ⇣a for each
component a, which is defined nonlinearly as [30] (see also [31–34] for a covariant definition)

⇣a = �N +
1

3(1 + wa)
ln

✓
⇢a(t, ~x)

⇢̄a(t)

◆
, (2.4)

where �N denotes the local perturbation of the number of e-folds, wa ⌘ P̄a/⇢̄a is the equation
of state for a fluid a, which is assumed to be constant, and a barred quantity must be
understood as the homogeneous one.

In the following, for explicit calculations, we assume a specific functional form of �(T )
given as

�(T ) = �0


A+

C (T/m�)
n

1 + C (T/m�)
n

�
, (2.5)

where m� is the zero-temperature mass of the curvaton, �0, A ⌧ 1 and C are constant
parameters. A constant index n determines the power of the temperature dependence of
�(T ). Although the actual temperature dependence of �(T ) is far more complicated than
eq. (2.5), we will use eq. (2.5) as a simple model for the decay rate. For more realistic form
of �(T ), see for example refs. [23, 24]. For the above form of �(T ), in the high temperature
limit T ! 1, the decay rate becomes as �(T ) ! �0 (1 +A). On the other hand, in the low
temperature limit T ! 0, one has �(T ) ! �0A. In the intermediate temperature range where
A < C(T/m�)n < 1, the decay rate depends on the temperature as �(T ) ' �0C(T/m�)n. If
the decay rate can be approximated as �(T ) ⇠ Tn at the time around when H ⇠ �(T ) as in
the intermediated case mentioned above, such temperature dependence is expected to a↵ect
the final curvature perturbations, as will be discussed later.

3 Sudden decay approximation

In this section, we attempt to derive an analytical estimate of the final curvature perturbation,
by adopting the sudden decay approximation which has been widely used in the context of
the standard curvaton scenario. In this approximation, the curvaton is supposed to decay
instantaneously, which leads to the notion of a spacelike decay hypersurface, on which one
can explicitly compute the perturbations.

Inverting the nonlinear definition (2.4) of the curvature perturbation for each individual
fluid, one can express the energy density of the species a in the form

⇢a(t, ~x) = ⇢̄a(t)e
3(1+wa)(⇣a��N). (3.1)

– 3 –
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Figure 1. Numerically evaluated curvature perturbation, (⇣ � ⇣
inf

)/Si in the curvaton scenario with
constant decay rate. We take m� = 10�16M

P

, � = 10�12m� for the numerical calculation. r̃ is varied
by changing �̄i.

sudden decay analytic formula r̃/3, the blue box and red circle show the numerical results as
a function of numerically evaluated rdec and rs given by eq. (4.3), respectively. As shown in
this figure, if one uses rs, the analytic formula ⇣ = (rs/3)Si can well describe the numerically
obtained ⇣. On the other hand, the use of rdec does not give a good description, particularly,
when rdec is large. (We should also note that both parameters give a good description of
⇣ when r̃ ⌧ O(1).) Furthermore, even when rs reaches unity, rdec does not because of the
existence of radiation produced by the curvaton. Therefore, we can see that the sudden decay
formula with rs can describe ⇣ in this respect as well.

4.2 Temperature-dependent decay rate

Given some initial conditions for the energy densities and some specific function �(T ), one
can easily solve numerically the system of equations (2.2) governing the evolution of the
curvaton and radiation energy densities.

Here we consider two examples with di↵erent decay rates �(T ): a constant one, i.e.
n = 0 and a temperature-dependent one with e.g. n = 1.5 in eq. (2.5). The evolutions of
⌦�,⌦r and �/H are shown in figure 2 as a function of the number of e-folds. The left and
right panels correspond to the cases n = 0 and n = 1.5, respectively. In these examples, we
have adjusted the initial conditions �̄i so that the parameter rs, given by eq. (4.3), is given as
rs = 0.1 (top panels) and 0.9 (bottom panels). This means that the net fraction of radiation
created by the curvaton decay is the same in both cases, even if the temperature dependence
of � is di↵erent.

Let us now investigate the cosmological perturbations about these background solu-
tions. To calculate the perturbations in the curvaton scenario, one can use either the �N
formalism [30, 42–45] or the standard cosmological perturbation theory with multiple fluids
(see, e.g., refs. [39, 40, 46–48]).

In the �N formalism, the curvature perturbation ⇣ on a uniform total energy density
hypersurface can be evaluated as

⇣(t) = N(t; �̄i + ��i)�N(t; �̄i), (4.4)

where N(t;�i) is the e-folding number measured between the initial time ti on a flat hyper-
surface and the final time tf on a uniform total energy density one.

– 7 –
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The above expression is valid even at nonlinear order and can also be used to compute,
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up to the second order, in the form

⇣ = ⇣G +
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5
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�
⇣2G � h⇣2Gi
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where ⇣G represents the linear part of ⇣ which obeys pure Gaussian statistics. Using the
Taylor expansion of N(t;�i) and Wick’s theorem (the fluctuations ��i being treated as purely
Gaussian), one easily finds

fNL =
6

5

N��

N2
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, (4.6)

where N� and N�� respectively denote N� := @N(t; �̄i)/@�̄i and N�� := @2N(t; �̄i)/@�̄2
i .

Note that the expression (4.6) applies when the curvaton contribution in ⇣ is dominant over
the inflaton contribution.
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Throughout this paper, we consider only the so-called local non-Gaussianity, which is relevant in the

curvaton scenario.
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1 Introduction

ζ =
rdec
3

δσ∗

σ∗
(1)

Current cosmological data such as Planck [1,2] are so precise that now we have detailed
information on the nature of primordial density fluctuations. Although fluctuations of
the inflaton is usually assumed to be the origin, one can also envisage another possibility.
It has been widely discussed that another scalar field other than the inflaton, whose
energy density is negligible during inflation, can also generate primordial fluctuations. The
curvaton model [3–5] is one of such an example. In this model, along with the curvature
perturbation, isocurvature fluctuations can also be produced, depending on when and
how dark matter particles are created and/or the baryon asymmetry of the Universe
has been generated [6–10]. Although current observations have severely constrained the
size of isocurvature fluctuations [2], some fractional contribution is still allowed. If the
isocurvature mode is found to be nonzero, it gives many implications for the scenario of the
early Universe. Even if it is not observed, we can obtain a severe limit on the isocurvature
fluctuations, which can still be useful to constrain models of dark matter and baryogenesis
and give implications to the generation mechanism of primordial fluctuations.

In fact, as mentioned above, there have been several works which investigated isocur-
vature fluctuations in the curvaton model in some detail and, in most of the study, the
so-called sudden decay approximation is essentially adopted to calculate the perturbations.
However, recently we have argued that, in some cases, the sudden decay approximation
cannot well describe density perturbations, particularly when the thermal effects are in-
volved [11]. In fact, such thermal effects, or the temperature dependence, also appear
when one considers the freeze-out of dark matter particles. Usually, the epoch of the
freeze-out is evaluated to be the time when H = n ⟨σv⟩. Here nDM is the number density
of DM particles which is determined by specifying the temperature of the Universe, σ
is its annihilation cross section and v is the relative velocity. Before the freeze-out, the
dark matter obeys the thermal distribution and, in general, σ can also depend on the
temperature, which may involve some thermal effects. In the light of the results of [11],
it would be important to check whether the isocurvature fluctuations evaluated by using
the sudden decay approximation is valid or not by comparing with results obtained by
exactly following the equation of motion numerically. As will be discussed in this paper,
for WIMP dark matter, the sudden decay approximation looks to work well in evaluat-
ing the final value of isocurvature fluctuations. However, regrading the time when the
isocurvature fluctuations vanishes, it would be much earlier than previously considered:
the common wisdom is that isocurvature fluctuations in the curvaton model vanish when
dark matter is created after the curvaton decay. However we will show that, if DM is cre-
ated after when the curvaton dominates the universe (before its decay), the isocurvature
fluctuations would be highly suppressed to vanish. Given the current constraint on non-
Gaussianity, the curvaton should dominate the Universe relatively early. Therefore our
findings indicates that isocurvature fluctuations may not be so hazardous for the curvaton
model. [We should also mention the axion case.]

1



•  Let	  us	  consider	  the	  primordial	  curvature	  
perturbation	  in	  case	  with	  such	  
temperature-‐dependent	  decay	  rate.	  

•  First	  we	  consider	  the	  analytic	  estimation	  by	  
using	  sudden	  decay	  approximation. 



Enhancement	  of	  primordial	  
adiabatic	  fluctuations?	  I 

•  Additional	  curvature	  perturbations	  ?? 

decay	  hypersurface	   

In	  case	  with	  the	  temperature-‐dependent	  decay	  rate, 

constant	  Hubble	  hypersurface 

cf.	  In	  the	  reheating	  era	  (inflaton	  decay),	  because	  of	  no	  iso-‐
curvature	  fluctuation,	  	  the	  enhancement	  does	  not	  occur..	  	   

ref.	  Armend	  áriz-‐Pic	  ́on;	  astro-‐ph/0312389,	  	  
	  	  	  	  	  	  	  Weinberg;	  astro-‐ph/0401313,	  0405397 

due	  to	  the	  existence	  of	  the	  iso-‐curvature	  fluctuations	   

è 	  Additional	  primordial	  fluctuations	  from	  the	  fluctuations	  	  
	  	  	  	  	  of	  the	  decay	  hypersurface?? 

Cf.	  modulated	  reheating 



Delta	  N	  formalism 
Starobinsky	  (1985),	  Sasaki	  and	  Stewart	  (1996),	  Sasaki	  and	  Tanaka	  (1998),	  … 

Curvature	  perturbation	  can	  be	  related	  with	  the	  fluctuation	  of	  the	  e-‐folding	  
number	  measured	  between	  initial	  time	  (flat	  hypersurface)	  and	  final	  time	  
(uniform	  energy	  density); 

Friedmann Friedmann

Initial
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final�
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sudden	  decay	  approximation	  I 
In	  the	  sudden	  decay	  approximation,	  	  
the	  curvaton	  instantaneously	  decays	  into	  radiation	  when	  H=Γ.	  
	  
	  
	  

Introducing	  curvaton	  iso-‐curvature	  fluctuation	  as	  	  
``bar”	  means	  the	  background	  quantity 

;	  just	  before	  decay 

;	  just	  after	  decay 

;	  at	  the	  decay 

;	  const.	  in	  time	  before	  curvaton	  decay	  in	  sudden	  decay	  approx. 
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thermal effects on the curvaton dissipation rate. For simplicity, we neglect the contribution
to the curvature perturbation from the inflaton field ζinf through the whole discussion in
this Letter.

The background evolution equations for the system are given by

d

dt
ρσ = −3Hρσ − Γ(T )ρσ,

d

dt
ρr = −4Hρr + Γ(T )ρσ,

H2 =
1

3M2
P

(ρσ + ρr),

(1)

where MP ≃ 2.4×1018 GeV is the reduced Planck mass, ρσ and ρr are the energy densities
of the curvaton and the radiation, respectively. t is the cosmic time, H is the Hubble
parameter and Γ(T ) is the temperature dependent dissipation rate of curvaton. The
last equation serves as the constraint of the system. Here and hereafter, we assume the
following curvaton dissipation rate with the thermal effects:

Γ(T ) = Γ0

(
1 + C

(
T

mσ

)n)
, (2)

where mσ is the zero-temperature mass of the curvaton, Γ0 and C are constant parameters.
A constant index n determines the power of the temperature dependence of Γ(T ). Al-
though the actual temperature dependence of Γ(T ) is far more complicated than Eq. (2),
we will use Eq. (2) as a simple model of the dissipation rate. For more realistic form of
Γ(T ), see for example Refs. [12, 13].

Following the standard curvaton scenario, we set the initial time ti as the onset of
the curvaton oscillation with H = mσ and the total energy density of the universe is
dominated by the radiation at that time. Each energy density of the curvaton and the
radiation evolves according to Eqs. (1) and (2), respectively. Eventually, after H = Γ(T ),
the curvaton decays or dissipates its energy very rapidly and completely transforms into
the radiation. As for the perturbations, the isocurvature perturbation S at the initial
time due to the existence of the sub-dominant curvaton field is given by (up to the second
order)

Si = 3(ζσ,i − ζinf) =
2δσi

σ̄i
− δσ2

i

σ̄2
i

. (3)

Here and hereafter, the quantities with bar “¯” are the background values, the quantities
with the subscript i are the values at the initial time and ζα = δN − H̄δρα/ ˙̄ρα (dot “ ˙ ”
is the time derivative) is the curvature perturbation of the component α (here δρα is the
fluctuation of ρα and δN is equal to the total curvature perturbation in the uniform total
energy density slicing).

2

	  related	  to	  the	  fluctuation	  of	  the	  curvaton 

we	  use	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  before	  curvaton	  decay 



sudden	  decay	  approximation	  II 
•  Standard	  case	  =	  	  decay/dissipation	  rate;	  Γ	  =	  constant	  case;	  

•  Then	  we	  have	  

	  	  and	  non-‐linearity	  parameter	  fNL	  is	  

	  

	  

uniform	  total	  energy	  density	  hypersurface	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  =	  decay	  hypersufrace	  (H=Γ	  hypersurface) 

Large	  fNL	  can	  be	  realized	  	  
for	  the	  small	  r_dec. 



sudden	  decay	  approximation	  III 
•  Thermal	  effect	  è	  	  decay/dissipation	  rate;	  Γ = Γ(T)	  can	  fluctuate;	  

•  Then	  we	  have	  
	  

	  
	  	  	  	  	  and	  in	  our	  setting,	  

	  	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  (``self-‐modulated”	  decay	  of	  the	  curvaton)	  

	  

	  

Γ	  depends	  on	  the	  temperature,	  i.e.,	  only	  radiation	  component.	  
On	  the	  other	  hand,	  total	  energy	  density	  is	  determined	  by	  the	  radiation	  
component	  and	  curvaton	  component.	  	  
	  
è	  

decay	  hypersurface	   constant	  Hubble	  hypersurface 

cf.	  modulated	  decay	  	  
	  	  	  	  	  of	  the	  curvaton,	  
	  	  	  	  	  with	  another	  field 
Langlois	  and	  Takahashi	  (2013) 
Assadullahi	  et	  al.	  (2013)	  
Enomoto	  et	  al.	  (2013) 

cf.	  Mukaida	  et	  al.	  (2014)	   

;	  temperature 



sudden	  decay	  approximation	  IV 
•  Finally	  we	  obtain,	  

and	  also,	  the	  non-‐linearity	  parameter	  is	  given	  by	  
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fNL =
5
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(
1 − 1

2 Γ̃′

1 −
(

r
6 + 1

2

)
Γ̃′
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(
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[
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2 Γ̃′
]2 [

1 −
(
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2

)
Γ̃′

]

⎞
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This is the new result which take into account of the tem-
perature dependence of Γ and is one of the main result
in this letter.

Numerical evaluation— In the following, we evaluate
ζ and fNL for typical Γ based on Eqs. (12) and (14).
We will see that ζ and fNL can be significantly different
from the ones in the standard curvaton scenario with
Γ = const..

Let us consider the case in which the curvaton dissipa-
tion rate Γ at the curvaton decay epoch is given by the
constant term and the power of the temperature as

Γ = Γ0 (1 + C (Td/mσ)n) , (15)

where Γ0 and C are model dependent constant, n is
a constant and mσ is the curvaton mass. There are
actually some interactions giving such a Γ. Examples
are known, for instance, Lint = −Mσχ2 − λχξ2 and
Lint = −yσψ̄ψ − gAµψ̄γµψ [8] where M,λ, y, g are cou-
plings and the temperature should be much greater than
the masses of σ and the other fields (χ, ξ,ψ, Aµ) in the
plasma [20]. Now, using Eq. (15), we obtain

Γ̃′ =
T̄

Γ̄
∂Γ
∂T

∣∣∣
Td

= n (1 − fn(r, σ̃)) ,

Γ̃′′ =
T̄ 2

Γ̄
∂2Γ
∂T 2

∣∣∣
Td

= n(n − 1) (1 − fn(r, σ̃)) .

(16)

Here, fn(r, σ̃) is the function of r and σ̃ = C
1
2n σ̂/mσ:

fn(r, σ̃) =
1

1 + C (Td(r)/mσ)n

=
1

1 +
[

45
4π2g∗

σ̃2 (r−1 − 1)
]n/4

,
(17)

where we have used Eq. (8) and ρσ = 1
2m2

σσ̂2 (σ̂ is the
amplitude of the curvaton coherent oscillation).

In Figs. 1 and 2, we show the r dependence of (ζ−ζr)/S
and fNL, respectively. Here, we show fNL consistent
with the Planck result [16] at the 1σ level (−3.1 ≤
f local

NL ≤ 8.5). From the figures, we can confirm that
(ζ − ζr)/S and fNL converge to the standard curvaton
case when r = 1 since the radiation vanishes at r = 1
and the constant term dominates Γ. On the other hand,
for smaller r, where fn(r, σ̃) ∼ 0, fNL behaves as ∝ 1/r
but slightly differs from the standard case.

Here, let us comment on the behavior of n = 1.7 case.
Although we do not show n > 1.7 cases, they have sim-
ilar behavior with n = 1.7 case. Since the denomina-
tor of Eqs. (12) and (14), 1 − (r/6 + 1/2) Γ̃′, vanishes at
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FIG. 1: The r dependence of (ζ − ζr)/S for Γ =
Γ0 (1 + C (Td/mσ)n) (n = 0, 1, 1.5, 1.6, 1.7) (n = 0 is the

standard curvaton scenario case). Here, we set C
1
2n σ̂/mσ =

103 for n ̸= 0.

two points in r when n is large enough, divergences are
observed in Figs. 1 and 2 for n = 1.7 at r ∼ 0.6 and
1. However, it should be emphasized that these diver-
gences are unphysical. This is because we employ the
sudden decay approximation and determine δT by the
self-consistent equation (10) in which δT is an equilib-
rium value. We note that the relaxation time of the evo-
lution of the temperature fluctuation enhanced by the
dissipation rate is zero in the sudden decay approxima-
tion and thus in Eq. (10). This entails the infinitely large
enhancement of the temperature fluctuation by the posi-
tive feedback for large enough n. In other words, in order
to regulate the divergence we have to trace the time evo-
lution of the temperature fluctuation enhanced by the
dissipation rate Γ. The more accurate analysis will be
reported elsewhere [17].

Conclusions— In this letter, we have examined the new
idea that the temperature dependence of the curvaton
dissipation rate Γ contributes to the curvature pertur-
bation. We have evaluated the curvature perturbation
ζ and the non-linearity parameter fNL in the existence
of the temperature dependence of Γ. The results are
given by Eqs. (12) and (14), respectively. As we noted in
the main text, such a Γ is actually realized for the typi-
cal curvaton interactions to the standard model particles
when the plasma temperature is greater than the curva-

where	   
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with the Planck result [16] at the 1σ level (−3.1 ≤
f local

NL ≤ 8.5). From the figures, we can confirm that
(ζ − ζr)/S and fNL converge to the standard curvaton
case when r = 1 since the radiation vanishes at r = 1
and the constant term dominates Γ. On the other hand,
for smaller r, where fn(r, σ̃) ∼ 0, fNL behaves as ∝ 1/r
but slightly differs from the standard case.

Here, let us comment on the behavior of n = 1.7 case.
Although we do not show n > 1.7 cases, they have sim-
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FIG. 1: The r dependence of (ζ − ζr)/S for Γ =
Γ0 (1 + C (Td/mσ)n) (n = 0, 1, 1.5, 1.6, 1.7) (n = 0 is the

standard curvaton scenario case). Here, we set C
1
2n σ̂/mσ =

103 for n ̸= 0.

two points in r when n is large enough, divergences are
observed in Figs. 1 and 2 for n = 1.7 at r ∼ 0.6 and
1. However, it should be emphasized that these diver-
gences are unphysical. This is because we employ the
sudden decay approximation and determine δT by the
self-consistent equation (10) in which δT is an equilib-
rium value. We note that the relaxation time of the evo-
lution of the temperature fluctuation enhanced by the
dissipation rate is zero in the sudden decay approxima-
tion and thus in Eq. (10). This entails the infinitely large
enhancement of the temperature fluctuation by the posi-
tive feedback for large enough n. In other words, in order
to regulate the divergence we have to trace the time evo-
lution of the temperature fluctuation enhanced by the
dissipation rate Γ. The more accurate analysis will be
reported elsewhere [17].

Conclusions— In this letter, we have examined the new
idea that the temperature dependence of the curvaton
dissipation rate Γ contributes to the curvature pertur-
bation. We have evaluated the curvature perturbation
ζ and the non-linearity parameter fNL in the existence
of the temperature dependence of Γ. The results are
given by Eqs. (12) and (14), respectively. As we noted in
the main text, such a Γ is actually realized for the typi-
cal curvaton interactions to the standard model particles
when the plasma temperature is greater than the curva-

where	   
For	  example,	   

Diverge?? 



However,… 

How	  about	  	  in	  numerical	  calculation?? 
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Numerical	  study	  by	  delta	  N	  I 
•  r-‐parameter	  related	  with	  entropy	  production	  rate	   

;	  total	  entropy	  after	  the	  
complete	  curvaton	  decay 

;	  initial	  entropy 

*	  Changing	  	  	  	  	  	  	  	  	  corresponds	  to	  	  
	  	  	  changing	   

magenta;	  sudden	  decay	  formula 
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Figure 2. Numerical results for the background evolution of ⌦�, ⌦r and �/H for the cases of n = 0
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numerical calculation are m� = 10�16M
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and �
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time coordinate, and ND corresponds to the time when � = H.

The above expression is valid even at nonlinear order and can also be used to compute,
in the case of local non-Gaussianity,4 the non-linearity parameter fNL defined by writing ⇣,
up to the second order, in the form

⇣ = ⇣G +
3

5
fNL

�
⇣2G � h⇣2Gi

�
, (4.5)

where ⇣G represents the linear part of ⇣ which obeys pure Gaussian statistics. Using the
Taylor expansion of N(t;�i) and Wick’s theorem (the fluctuations ��i being treated as purely
Gaussian), one easily finds

fNL =
6

5

N��

N2
�

, (4.6)

where N� and N�� respectively denote N� := @N(t; �̄i)/@�̄i and N�� := @2N(t; �̄i)/@�̄2
i .

Note that the expression (4.6) applies when the curvaton contribution in ⇣ is dominant over
the inflaton contribution.

4
Throughout this paper, we consider only the so-called local non-Gaussianity, which is relevant in the

curvaton scenario.
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Planck mass. The above description is valid from an initial time ti corresponding to the onset
of the curvaton oscillations with H ⇠ m�, when the total energy density of the universe is
dominated by that of radiation. The curvaton and radiation energy densities then evolve
according to eqs. (2.2). When the Hubble parameter reaches H ⇠ �(T ), the curvaton starts
to decay and its energy density is very rapidly transferred into that of radiation.

As for the perturbations, the existence of initial fluctuations ��i of a subdominant
curvaton field implies the presence of the initial isocurvature perturbation S, which is given by

Si = 3(⇣�,i � ⇣r,i) . (2.3)

In the above expression, the subscript i indicates that the corresponding quantity is evalu-
ated at the initial time ti. We have also introduced the curvature perturbation ⇣a for each
component a, which is defined nonlinearly as [30] (see also [31–34] for a covariant definition)

⇣a = �N +
1

3(1 + wa)
ln

✓
⇢a(t, ~x)

⇢̄a(t)

◆
, (2.4)

where �N denotes the local perturbation of the number of e-folds, wa ⌘ P̄a/⇢̄a is the equation
of state for a fluid a, which is assumed to be constant, and a barred quantity must be
understood as the homogeneous one.

In the following, for explicit calculations, we assume a specific functional form of �(T )
given as

�(T ) = �0


A+

C (T/m�)
n

1 + C (T/m�)
n

�
, (2.5)

where m� is the zero-temperature mass of the curvaton, �0, A ⌧ 1 and C are constant
parameters. A constant index n determines the power of the temperature dependence of
�(T ). Although the actual temperature dependence of �(T ) is far more complicated than
eq. (2.5), we will use eq. (2.5) as a simple model for the decay rate. For more realistic form
of �(T ), see for example refs. [23, 24]. For the above form of �(T ), in the high temperature
limit T ! 1, the decay rate becomes as �(T ) ! �0 (1 +A). On the other hand, in the low
temperature limit T ! 0, one has �(T ) ! �0A. In the intermediate temperature range where
A < C(T/m�)n < 1, the decay rate depends on the temperature as �(T ) ' �0C(T/m�)n. If
the decay rate can be approximated as �(T ) ⇠ Tn at the time around when H ⇠ �(T ) as in
the intermediated case mentioned above, such temperature dependence is expected to a↵ect
the final curvature perturbations, as will be discussed later.

3 Sudden decay approximation

In this section, we attempt to derive an analytical estimate of the final curvature perturbation,
by adopting the sudden decay approximation which has been widely used in the context of
the standard curvaton scenario. In this approximation, the curvaton is supposed to decay
instantaneously, which leads to the notion of a spacelike decay hypersurface, on which one
can explicitly compute the perturbations.

Inverting the nonlinear definition (2.4) of the curvature perturbation for each individual
fluid, one can express the energy density of the species a in the form

⇢a(t, ~x) = ⇢̄a(t)e
3(1+wa)(⇣a��N). (3.1)
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Figure 2: Numerical results for the curvature perturbation ζ after the curvaton completely
decays (left panel) and its non-linearity parameter fNL (right panel). The parameters mσ,
Γ0 and C are the same as in Fig.1. For n which determines the power of the temperature
dependence in Γ(T ), we take n = 0, 1, 1.5, 1.8. We have neglected ζinf in the right panel.

Also, f (ana)
NL is given in Eq. (17). Note that the horizontal axis is the new variable rs which

is the function of the total entropy ratio S̄f/S̄i. In the figure, rs varies via the initial
curvaton amplitude σi.

4 Analytical approximation to the numerical results

In this section, we derive an approximation formula to the resultant ζ and fNL obtained in
the previous section (see Fig. 2). For this purpose, the usual sudden decay approximation
(ρσ + ρrφ)|before = ρr|after (”before (after)” denotes just before (after) H = Γ) with the
widely used variable rdecay are not suitable. In fact, such an approximation leads to a
formula ζ = ζinf + (rdecay/3)Si − (rdecay/6)δΓ 3 (here δΓ = δΓ/Γ̄) which significantly differs
from the numerical result (we extract δΓ from the numerical calculation at H = Γ). This
is because rdecay does not include the amount of the dilute gas and does not characterize
the system. Furthermore, the usual sudden decay approximation assumes S = Si since
the curvaton and the radiation are completely decoupled from each other until the time
H = Γ. However, this is not appropriate since the isocurvature perturbation S = 3(ζσ−ζr)
is actually quite different from its initial value Si = 3(ζσ,i − ζinf) especially when the
curvaton tends to dominate the universe.

In order to overcome the difficulties mentioned above, we use the following modified
sudden decay approximation. Namely, we consider the sudden decay approximation for
the energy density in the “curvaton sector”:

ρ̄σ e3(ζσ,i−δND) = ρ̄rσ e4(ζrσ−δND), (10)

where δND is the perturbation of the e-folding number N on the decay hypersurface
H = Γ. From Eq. (10) and ρ̄σ = ρ̄rσ, we obtain the following relation up to the linear

3This formula has the same form as the one in the modulated decay scenario of the curvaton [28, 29].

5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

(ζ
−

ζ i
nf

)/
S i

rs

n = 0
n = 1

n = 1.5
n = 1.8

rs/3

-2

 0

 2

 4

 6

 8

 10

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

f N
L

rs

n = 0
n = 1

n = 1.5
n = 1.8
fNL(ana)

Figure 2: Numerical results for the curvature perturbation ζ after the curvaton completely
decays (left panel) and its non-linearity parameter fNL (right panel). The parameters mσ,
Γ0 and C are the same as in Fig.1. For n which determines the power of the temperature
dependence in Γ(T ), we take n = 0, 1, 1.5, 1.8. We have neglected ζinf in the right panel.

Also, f (ana)
NL is given in Eq. (17). Note that the horizontal axis is the new variable rs which

is the function of the total entropy ratio S̄f/S̄i. In the figure, rs varies via the initial
curvaton amplitude σi.

4 Analytical approximation to the numerical results

In this section, we derive an approximation formula to the resultant ζ and fNL obtained in
the previous section (see Fig. 2). For this purpose, the usual sudden decay approximation
(ρσ + ρrφ)|before = ρr|after (”before (after)” denotes just before (after) H = Γ) with the
widely used variable rdecay are not suitable. In fact, such an approximation leads to a
formula ζ = ζinf + (rdecay/3)Si − (rdecay/6)δΓ 3 (here δΓ = δΓ/Γ̄) which significantly differs
from the numerical result (we extract δΓ from the numerical calculation at H = Γ). This
is because rdecay does not include the amount of the dilute gas and does not characterize
the system. Furthermore, the usual sudden decay approximation assumes S = Si since
the curvaton and the radiation are completely decoupled from each other until the time
H = Γ. However, this is not appropriate since the isocurvature perturbation S = 3(ζσ−ζr)
is actually quite different from its initial value Si = 3(ζσ,i − ζinf) especially when the
curvaton tends to dominate the universe.

In order to overcome the difficulties mentioned above, we use the following modified
sudden decay approximation. Namely, we consider the sudden decay approximation for
the energy density in the “curvaton sector”:

ρ̄σ e3(ζσ,i−δND) = ρ̄rσ e4(ζrσ−δND), (10)

where δND is the perturbation of the e-folding number N on the decay hypersurface
H = Γ. From Eq. (10) and ρ̄σ = ρ̄rσ, we obtain the following relation up to the linear

3This formula has the same form as the one in the modulated decay scenario of the curvaton [28, 29].

5

•  n-‐dependence 

JCAP10(2014)032

Planck mass. The above description is valid from an initial time ti corresponding to the onset
of the curvaton oscillations with H ⇠ m�, when the total energy density of the universe is
dominated by that of radiation. The curvaton and radiation energy densities then evolve
according to eqs. (2.2). When the Hubble parameter reaches H ⇠ �(T ), the curvaton starts
to decay and its energy density is very rapidly transferred into that of radiation.

As for the perturbations, the existence of initial fluctuations ��i of a subdominant
curvaton field implies the presence of the initial isocurvature perturbation S, which is given by

Si = 3(⇣�,i � ⇣r,i) . (2.3)

In the above expression, the subscript i indicates that the corresponding quantity is evalu-
ated at the initial time ti. We have also introduced the curvature perturbation ⇣a for each
component a, which is defined nonlinearly as [30] (see also [31–34] for a covariant definition)

⇣a = �N +
1

3(1 + wa)
ln

✓
⇢a(t, ~x)

⇢̄a(t)

◆
, (2.4)

where �N denotes the local perturbation of the number of e-folds, wa ⌘ P̄a/⇢̄a is the equation
of state for a fluid a, which is assumed to be constant, and a barred quantity must be
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A < C(T/m�)n < 1, the decay rate depends on the temperature as �(T ) ' �0C(T/m�)n. If
the decay rate can be approximated as �(T ) ⇠ Tn at the time around when H ⇠ �(T ) as in
the intermediated case mentioned above, such temperature dependence is expected to a↵ect
the final curvature perturbations, as will be discussed later.

3 Sudden decay approximation

In this section, we attempt to derive an analytical estimate of the final curvature perturbation,
by adopting the sudden decay approximation which has been widely used in the context of
the standard curvaton scenario. In this approximation, the curvaton is supposed to decay
instantaneously, which leads to the notion of a spacelike decay hypersurface, on which one
can explicitly compute the perturbations.

Inverting the nonlinear definition (2.4) of the curvature perturbation for each individual
fluid, one can express the energy density of the species a in the form

⇢a(t, ~x) = ⇢̄a(t)e
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In	  sudden	  decay	  approximation,	  it	  could	  be	  possible	  to	  realize	  the	  large	  enhancement!	  
However,	  we	  cannot	  see	  such	  effect	  in	  the	  numerical	  calculations.. 



•  Validity	  of	  sudden	  decay	  approximation	  
•  Focus	  on	  the	  evo.	  of	  the	  curvaton	  iso-‐curv.	  

Discussion 



Perturbation	  equation 
For a deeper understanding of the numerical results, we now examine the system of

equations governing the evolution of the curvature and isocurvature perturbations us-
ing the standard cosmological perturbation theory with multiple fluids. The evolution
equations for ζ and S are given by [39, 40, 46–48]

dζ

dN
= Tζ

S

3
,

dS

dN
= TS S, (32)

with the time-dependent coefficients Tζ and TS

Tζ ≡

(

3− 2g

3(1− g)

)

(

4− 4−3g
1−g Ωσ

4− Ωσ

)

(

3Ωσ

4− Ωσ

)

,

TS ≡ −
g

2(1 − g)

4(1− g)− (4− 3g)Ωσ

3− 2g

×

[

1 +

(

3− 2g

4(1− g)− (4− 3g)Ωσ

)2

Ωσ(2− Ωσ)−
α

2(1− Ωσ)

]

, (33)

where g(N) ≡ Γ/(Γ+H) < 1. We can formally integrate the above equation, which leads
to an expression for ζ of the form

ζ = ζinf +

∫

dNF(N)
Si

3
, (34)

where

F(N) ≡ Tζ(N) exp

[
∫ N

dN ′ TS(N
′)

]

. (35)

In Fig. 7, we show the transfer function F(N) defined in Eq. (35) as a function of
the e-folding number measured from the decay time ND, corresponding to the instant at
which H = Γ. First let us focus on the cases with relatively small values of rs shown
in the top panels of Fig. 7. For such values of rs, the energy density of the Universe is
still dominated, at the curvaton decay, by the radiation component produced from the
inflaton. From the figure, we see that the transfer function F(N) has a peak around the
decay time N = ND. We also find that the height of the peak becomes lower and the
“width” of the function F(N) becomes broader as the value of n increases.

Next, let us consider the cases where rs is close to unity. In Fig. 7, we show the cases
with rs = 0.99 (bottom left) and 0.9999 (bottom right). For such cases, the curvaton en-
ergy density starts to dominate the Universe long before the curvaton decay. Interestingly,
the peak position of the transfer function corresponds to the time when the curvaton be-
gins to dominate, not at the decay time. Furthermore, the peak position shifts to smaller
values of N as n increases, which comes from the fact that the curvaton begins to dom-
inate the Universe earlier when n is larger. To illustrate that the peak position indeed
corresponds to the time of the curvaton domination, we plot in Fig. 8 the transfer function
F(N) as a function of N −Ndom where Ndom is defined as the time when Ωσ = 1/2. From
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ing the standard cosmological perturbation theory with multiple fluids. The evolution
equations for ζ and S are given by [39, 40, 46–48]

dζ

dN
= Tζ

S

3
,

dS

dN
= TS S, (32)

with the time-dependent coefficients Tζ and TS

Tζ ≡

(

3− 2g

3(1− g)

)

(

4− 4−3g
1−g Ωσ

4− Ωσ

)

(

3Ωσ

4− Ωσ

)

,

TS ≡ −
g

2(1 − g)

4(1− g)− (4− 3g)Ωσ

3− 2g

×

[

1 +

(

3− 2g

4(1− g)− (4− 3g)Ωσ

)2

Ωσ(2− Ωσ)−
α

2(1− Ωσ)

]

, (33)

where g(N) ≡ Γ/(Γ+H) < 1. We can formally integrate the above equation, which leads
to an expression for ζ of the form

ζ = ζinf +

∫

dNF(N)
Si

3
, (34)

where

F(N) ≡ Tζ(N) exp

[
∫ N

dN ′ TS(N
′)

]

. (35)

In Fig. 7, we show the transfer function F(N) defined in Eq. (35) as a function of
the e-folding number measured from the decay time ND, corresponding to the instant at
which H = Γ. First let us focus on the cases with relatively small values of rs shown
in the top panels of Fig. 7. For such values of rs, the energy density of the Universe is
still dominated, at the curvaton decay, by the radiation component produced from the
inflaton. From the figure, we see that the transfer function F(N) has a peak around the
decay time N = ND. We also find that the height of the peak becomes lower and the
“width” of the function F(N) becomes broader as the value of n increases.

Next, let us consider the cases where rs is close to unity. In Fig. 7, we show the cases
with rs = 0.99 (bottom left) and 0.9999 (bottom right). For such cases, the curvaton en-
ergy density starts to dominate the Universe long before the curvaton decay. Interestingly,
the peak position of the transfer function corresponds to the time when the curvaton be-
gins to dominate, not at the decay time. Furthermore, the peak position shifts to smaller
values of N as n increases, which comes from the fact that the curvaton begins to dom-
inate the Universe earlier when n is larger. To illustrate that the peak position indeed
corresponds to the time of the curvaton domination, we plot in Fig. 8 the transfer function
F(N) as a function of N −Ndom where Ndom is defined as the time when Ωσ = 1/2. From
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In our case, we need to consider only two species: radiation (wr = 1/3) and the curvaton
field, treated as a pressureless fluid (wσ = 0). Note that this can be generalized to an
arbitrary number of species [35].

On the decay hypersurface, characterized by H = Γ and the perturbation δND, one
can write, just before the decay [36]

ρtotal = ρσ + ρr = ρ̄σe
3(ζσ,i−δND) + ρ̄re

4(ζr,i−δND) = 3M2
PΓ

2 = 3M2
PΓ̄

2(1 + δΓ)
2 , (7)

where we have introduced the relative fluctuations δΓ on the decay hypersurface, defined
as

Γ ≡ Γ̄ (1 + δΓ) . (8)

Indeed, Γ is in general nonuniform on the decay hypersurface, since it depends on the
temperature which can fluctuate. Expanding the above relation (7), one finds at linear
order

δND =
1

3Ωσ + 4Ωr
(3Ωσζσ,i + 4Ωrζr,i − 2δΓ) , (9)

where the parameters Ωa ≡ ρ̄a/ρ̄tot denote the energy density fractions just before the
decay, and satisfy Ωσ + Ωr = 1.

The relation between the total energy density and the decay rate of the curvaton at
the decay hypersurface, expressed in (7), can also be written as

ρ̄tot e
4(ζ−δND) = 3M2

PΓ̄
2(1 + δΓ)

2 , (10)

which implies the following relation between ζ , δND and the decay rate fluctuation

ζ = δND +
1

2
δΓ, (11)

at linear order. Combining Eqs. (9), (11) and the definition (3), we finally get

ζ = ζinf +
rdec
3

Si −
rdec
6
δΓ, (12)

with

ζinf ≡ ζr,i, rdec ≡
3Ωσ,dec

4− Ωσ,dec
=

3ρ̄σ,dec
3ρ̄σ,dec + 4ρ̄r,dec

, (13)

where the subscript “dec” means that the corresponding quantities are evaluated on the
decay hypersurface, just before the decay.

The expression for ζ given in Eq. (12) has exactly the same form as the one obtained
for the modulated decay of the curvaton [36–38]. However, in the latter scenario, the
fluctuations δΓ originate from a light scalar field other than the inflaton or the curvaton.
By contrast, in the present case, the fluctuations δΓ arise from the temperature dependence
of the decay rate [19], and are given, at linear order, by

δΓ = α

(

δT

T

)

D

, α ≡
d lnΓ

d lnT
. (14)
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in the top panels of Fig. 7. For such values of rs, the energy density of the Universe is
still dominated, at the curvaton decay, by the radiation component produced from the
inflaton. From the figure, we see that the transfer function F(N) has a peak around the
decay time N = ND. We also find that the height of the peak becomes lower and the
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values of N as n increases, which comes from the fact that the curvaton begins to dom-
inate the Universe earlier when n is larger. To illustrate that the peak position indeed
corresponds to the time of the curvaton domination, we plot in Fig. 8 the transfer function
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Evolution	  of	  the	  iso-‐curvature 

the figure, we can clearly see that the position of the peak almost corresponds to the
domination time Ndom and this tendency does not depend on the functional form of Γ(T ).
Furthermore, by comparing the plots for the cases with rs = 0.99 and 0.9999, one can
also notice that, as rs approaches unity, the transfer function becomes identical regardless
of the value of n. And then, as rs decreases from 1, the tail of the transfer function is
broader for larger n.
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Figure 9: Evolution of the isocurvature perturbation as a function of the e-folding number
N − ND. The red solid line is for rs = 0.6, where the curvaton energy density never
dominates the Universe when n = 0 and 1.5. The blue dotted line and green dashed line
are respectively for rs = 0.99 and rs = 0.9999, and each down-pointing arrow represents
the time when the curvaton energy density starts to dominate the Universe, which is
defined as the time when Ωσ = 1/2 holds.

For completeness, we also plot in Fig. 9 the evolution of the isocurvature perturbation
for several fixed values of rs and n. As one can see in the figure, the amplitude of
the isocurvature perturbation decreases during the curvaton decay phase, more or less
early depending on the value of rs and more or less rapidly depending on the value
of n. In the transfer function F(N), the evolution of the isocurvature perturbation,
expressed by exp[

∫

dN ′TS(N ′)], is combined with the function Tζ(N), which represents the
transfer of the isocurvature into the adiabatic perturbations and also peaks at the decay
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In	  curvaton	  scenario,	  for	  relatively	  large	  r_s	  case,	  
The	  iso-‐curvature	  perturbations	  have	  been	  already	  suppressed	  at	  the	  decay!!	  	   
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of the value of n. And then, as rs decreases from 1, the tail of the transfer function is
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defined as the time when Ωσ = 1/2 holds.
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Sudden	  decay	  formula	  in	  case	  with	  temperature	  dependent	  decay	  rate,	   

We	  assumed	  that	  the	  isocurvature	  perturbations	  remain	  constant	  è	  not	  correct!!	   



	  Summary	  1 
•  Thermal	  effect	  really	  appears	  in	  primordial	  
curvature	  perturbations? 

By	  using	  simple	  sudden	  decay	  approximation,	  large	  thermal	  effect	  seems	  to	  
appear. 

But,	  in	  the	  numerical	  result	  obtained	  by	  using	  delta	  N	  formalism,	  such	  large	  
effect	  does	  not	  appear.	  	  
è	  Sudden	  decay	  approximation	  is	  not	  always	  valid!	  
	  
	   
Temperature	  dependence	  of	  the	  decay	  rate	  seems	  not	  to	  give	  large	  effects	  
in	  the	  adiabatic	  curvature	  perturbations.	  (but	  small	  deviations	  appear..)	  	   



•  New	  questions;	  
	  	  	  	  	  
	  	  	  Sudden	  decay	  approximation	  is	  good	  or	  not?	  
	  
•  How	  about	  the	  estimation	  for	  the	  CDM	  isocurvature	  
perturbations? 

Kitajima,	  Langlois,	  Tahakashi,	  SY	  in	  prep. 
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If we choose a log-constant prior on ⇠⇤ we find

⇠⇤  2.2 (95 % CL). (118)

For both cases the results are insensitive to the upper limit cho-
sen for the prior on ⇠⇤ since the likelihood quickly goes to zero
for ⇠⇤ > 3. As the likelihood for ⇠⇤ is fairly flat, the tighter con-
straint seen for the log-constant case is mildly prior-driven. The
constraints from the bispectrum are consistent with and slightly
worse than the result from the power spectrum alone.

Using a similar procedure and Eq. (109) one can also obtain
a constraint on ↵/ f . Adopting a log-constant prior 2  ↵/ f 
10016 and uniform priors 50  N⇤  70 and 1.5 ⇥ 10�9  P⇤ 
3.0 ⇥ 10�9 we obtain the 95 % CL constraints

↵/ f  48 M�1
Pl for p = 1, ↵/ f  35 M�1

Pl for p = 2,
(119)

and
↵/ f  42 M�1

Pl for p = 4/3 . (120)

For example, for a linear potential, p = 1, if ↵ = O(1) as sug-
gested by effective field theory, then the axion decay constant f
is constrained to be

f � 0.020 MPl (95 % CL) , (121)

while for a potential with p = 4/3

f � 0.023 MPl (95 % CL). (122)

These limits are complementary to those derived in Sect. 10.3
where a gauge coupling of the axion field is taken into account.

11. Constraints on isocurvature modes

In PCI13, we presented constraints on a number of simple mod-
els featuring a mixture of the adiabatic (ADI) mode and one
type of isocurvature mode. We covered the cases of CDM den-
sity isocurvature (CDI), neutrino density isocurvature (NDI),
and neutrino velocity isocurvature (NVI) modes (Bucher et al.,
2000), with different assumptions concerning the correlation
(Langlois, 1999; Amendola et al., 2002) between the primordial
adiabatic and isocurvature perturbations. Isocurvature modes,
possibly correlated among themselves and with the adiabatic
mode, can be generated in multi-field models of inflation; how-
ever, at present a mechanism for exciting the neutrino velocity
isocurvature mode is lacking. Section 11.2 shows how these con-
straints have evolved with the new Planck TT+lowP likelihoods,
how much including the Planck lensing likelihood changes the
results, and what extra information the Planck high-` polariza-
tion contributes. A pure isocurvature mode as a sole source of
perturbations has been ruled out (Enqvist et al., 2002), since, as
can be seen from Fig. 42, any of the isocurvature modes leads
to an acoustic peak structure for the temperature angular power
very different from the adiabatic mode, which fits the data very
well. The different phases and tilts of the various modes also
occur in the polarization spectra, as shown in Fig. 42 for the E
mode.17

16 We give only the results for a log-constant prior on ↵/ f , which is
well-motivated since it corresponds to a log-constant prior on the axion
decay constant for some fixed ↵.

17 The transfer function mapping the primordial CDI mode to CTT
` is

suppressed by a factor (k/keq)�2 ⇠ (`/`eq)�2 relative to the ADI mode,
where keq is the wavenumber of matter-radiation equality. As seen in
Fig. 42, there is a similar damping for the E mode in the CDI versus
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Fig. 42. Angular power spectra for the scale invariant (i.e., nRR =
1) pure adiabatic mode (ADI, green dashed curves) and for the
scale invariant (nII = 1) pure isocurvature (CDI, NDI, or NVI)
modes, with equal primordial perturbation amplitudes. The thick
lines represent the temperature auto-correlation (TT ), and the
thin lines the E mode polarization auto-correlation (EE).

In Sect. 11.4 we add one extra degree of freedom to the
generally-correlated ADI+CDI model by allowing primordial
tensor perturbations (assuming the inflationary consistency re-
lation for the tilt of the tensor power spectrum and its running).
Our main goal is to explore a possible degeneracy between ten-
sor modes and negatively correlated CDI modes, tending to tilt
the large-scale temperature spectrum in opposite directions. In
Sect. 11.5, we update the constraints on three special cases mo-
tivated by axion or curvaton scenarios.

The goal of this analysis is to test the hypothesis of adi-
abaticity, and establish the robustness of the base ⇤CDM
model against different assumptions concerning initial condi-
tions (Sect. 11.3). Adiabaticity is also an important probe of the
inflationary paradigm, since any significant detection of isocur-
vature modes would exclude the possibility that all perturbations
in the Universe emerged from quantum fluctuations of a single
inflaton field, which can excite only one degree of freedom, the
curvature (i.e., adiabatic) perturbation.18

the ADI case. Therefore, to be observable at high `, a CDI mode should
be (highly) blue tilted. So, if the data favoured as small as possible a
disturbance by CDI over all scales, then the CDI should have a spectral
index, nII, of roughly three. In practice, the lowest-` part of the data
has very little weight due to cosmic variance, and thus we expect that
the data should favour nII less than three, but significantly larger than
one. This should be kept in mind when interpreting the results in the
CDI case, i.e., one cannot expect strong constraints on the primordial
CDI fraction at small scales, even if the data are purely adiabatic. The
imprint of the baryon density isocurvature (BDI) mode, at least at linear
order, in the CMB is indistinguishable from the CDI case, and hence
we do not consider it separately as it can be described by Ie↵ective

CDI =
ICDI+ (⌦b/⌦c)IBDI. The trispectrum, however, can in principle be used
to distinguish the BDI and CDI modes (Grin et al., 2014).

18 However, conversely, if no isocurvature was detected, the fluctua-
tions could have been seeded either by single- or multi-field inflation,
since later processes easily wash out inflationary isocurvature pertur-

ADI;	  adiabatic	  pert.	  
CDI;	  CDM	  isocurvature	  pert.	  
NDI;	  neutrino	  density	  iso-‐.	  
NVI;	  neutrino	  velocity	  iso-‐. 

CMB	  temperature	  anisotropies	  
	  and	  E-‐polarization 

where we have defined x ≡ E/T and m̃ = m/T in the last equality.
In the relativistic limit, we have

n(eq) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ζ(3)

π2
g∗T

3 (BOSE)

3ζ(3)

π2
g∗T

3 (FERMI).

(30)

As we did in the previous section, we rewrite above set of equation by introducing the
new variables X, Y and Z:

dX

dN
=

Γ

H
eNY, (31)

dY

dN
= − Γ

H
Y, (32)

dZ

dN
= −λ e−3N

H

[
Z2 −

(
Z(eq)

)2]
, (33)

H2 =
1

3M2
pl

(
e−4NX + e−3NY

)
, (34)

where we have introduced the variable Z as

Z ≡ e3NnCDM. (35)

CDM isocurvature perturbation is defined by

SCDM ≡ 3(ζCDM − ζ), (36)

where ζCDM is defined by its number density, and, with Z variable, it is given by

ζCDM =
1

3
ln

(
Z(Nf , x⃗)

Z̄(Nf )

)
, (37)

By evaluating ζCDM at N = Nf on the hypersurface with δN = 0, then we obtain the
expression at linear order as

ζCDM =
1

3

∂ lnZ(Nf , x⃗)

∂ lnYi

δYi

Yi
. (38)

In Eq. (36), ζ is the final curvature perturbation generated from the curvaton, which
can be given by ζ = rs/3×Si

#1, and Si = δYi/Yi as shown in previous section. From this
expression, we get

SCDM/ζ = 3

[
1

rs

∂ lnZ(Nf , x⃗)

∂ lnYi
− 1

]
. (39)

#1In the previous section, we have also considered the case where the decay rate of the curvaton depends
on the temperature. However, here, for simplicity, we assume the temperature-independent decay rate
of the curvaton. In such case, the sudden decay formalism has been known to be valid for the adiabatic
curvature perturbation and it is given by Eq. (16) with α = 0.
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In this section, theoretical predictions were obtained with
a modified version of the camb code (version Jul14) while
parameter exploration was performed with the MultiNest
nested sampling algorithm.

11.1. Parameterization and notation

A general mixture of the adiabatic mode and one isocurva-
ture mode is described by the three functions PRR(k), PII(k),
and PRI(k), describing the curvature, isocurvature, and cross-
correlation power spectra, respectively. Our sign conventions are
such that positive values for PRI correspond to a positive contri-
bution of the cross-correlation term to the Sachs-Wolfe compo-
nent of the total temperature spectrum.

As in PCI13, we specify the amplitudes at two scales k1 < k2
and assume power-law behaviour, so that

Pab(k) = exp
" 

ln(k) � ln(k2)
ln(k1) � ln(k2)

!

ln
⇣

P(1)
ab

⌘

+

 

ln(k) � ln(k1)
ln(k2) � ln(k1)

!

ln
⇣

P(2)
ab

⌘

#

,

(123)

where a, b = I,R and I = ICDI, INDI, or INVI. We set
k1 = 0.002 Mpc�1 and k2 = 0.100 Mpc�1, so that [k1, k2] spans
most of the range constrained by the Planck data. The positive
definiteness of the initial condition matrix imposes a constraint
on its elements at any value of k:

[Pab(k)]2  Paa(k)Pbb(k) . (124)
We take uniform priors on the positive amplitudes,

P(1)
RR,P(2)

RR 2 (10�9, 10�8) , (125)

P(1)
II,P(2)

II 2 (0, 10�8) . (126)
The correlation spectrum can be positive or negative. For a , b
we apply a uniform prior at large scales (at k1),

P(1)
ab 2 (�10�8, 10�8) , (127)

but reject all parameter combinations violating the constraint in
Eq. (124). To ensure that Eq. (124) holds for all k, we restrict
ourselves to a scale-independent correlation fraction

cos�ab =
Pab

(PaaPbb)1/2 2 (�1, 1) . (128)

Thus P(2)
ab is a derived parameter19 given by

P(2)
ab = P(1)

ab

⇣

P(2)
aa P(2)

bb

⌘1/2

⇣

P(1)
aa P(1)

bb

⌘1/2 , (129)

bations (Mollerach, 1990; Weinberg, 2004; Beltrán et al., 2005). An
example is the curvaton model, in which perturbations can be purely
isocurvature at Hubble exit during inflation, but are later converted to
ADI if the curvaton or curvaton particles (Linde & Mukhanov, 2006)
dominate the energy density at the curvaton’s decay. For a summary of
various curvaton scenarios, see, e.g., Gordon & Lewis (2003).

19 Given our ansatz of power-law primordial spectra, if we treatedP(2)
ab

as an independent parameter as we do withP(1)
ab , Eq. (124) would always

be violated somewhere outside [k1, k2]. In PCI13, we dealt with this by
assuming that when maximal (anti-)correlation is reached at some scale,
the correlation remains at (�)100 % beyond this scale. This introduced a
kink in the cross-correlation spectrum, located at a different wavenum-
ber for each model. Even though the range [k1, k2] was chosen to span
most of the observable scales, this kink tended to impact the smallest
(or largest) multipole values used in the analysis. In particular, the kink
helped fit the dip in the temperature angular power in the multipole
range ` ⇡ 10–40.

which, in terms of spectral indices, is equivalent to

nab =
1
2

(naa + nbb) . (130)

The conservative baseline likelihood is Planck TT+lowP.
The results obtained with Planck TT,TE,EE+lowP should be in-
terpreted with caution because the data used in the 2015 release
are known to contain some low level systematics, in particular
arising from T ! E leakage, and it is possible that such system-
atics may be fit by the isocurvature auto-correlation and cross-
correlation templates. (See Planck Collaboration XIII (2015) for
a detailed discussion.)

In what follows, we quote our results in terms of derived
parameters identical to those in PCI13. We define the primordial
isocurvature fraction as

�iso(k) =
PII(k)

PRR(k) + PII(k)
. (131)

Unlike the primordial correlation fraction cos� defined in
Eq. (128), �iso is scale-dependent in the general case. We present
bounds on this quantity at klow = k1, kmid = 0.050 Mpc�1, and
khigh = k2.

We report constraints on the relative adiabatic (ab = RR),
isocurvature (ab = II), and correlation (ab = RI) according to
their contribution to the observed CMB temperature variance in
various multipole ranges:

↵ab(`min, `max) =
(�T )2

ab(`min, `max)
(�T )2

tot(`min, `max)
, (132)

where

(�T )2
ab(`min, `max) =

`max
X

`=`min

(2` + 1)CTT
ab,`. (133)

The ranges considered are (`min, `max) = (2, 20), (21, 200),
(201, 2500), and (2, 2500), where the last range describes the
total contribution to the observed CMB temperature variance.
Here ↵RR measures the adiabaticity of the temperature angular
power spectrum, a value of unity meaning “fully adiabatic initial
conditions.” Values less than unity mean that some of the ob-
served power comes from the isocurvature or correlation spec-
trum, while values larger than unity mean that some of the power
is “cancelled” by a negatively correlated isocurvature contribu-
tion. The relative non-adiabatic contribution can be expressed as
↵non-adi = 1 � ↵RR = ↵II + ↵RI.

11.2. Results for generally-correlated adiabatic and one
isocurvature mode (CDI, NDI, or NVI)

Results are reported as 2D and 1D marginalized posterior prob-
ability distributions. Numerical 95 % CL intervals or upper
bounds are tabulated in Table 15.

Figure 43 shows the Planck 68 % and 95 % CL contours for
various 2D combinations of the primordial adiabatic and isocur-
vature amplitude parameters at large scales (k1 = 0.002 Mpc�1)
and small scales (k2 = 0.100 Mpc�1), for (a) the generally-
correlated ADI+CDI, (b) ADI+NDI, and (c) ADI+NVI mod-
els. Overall, the results using Planck TT+lowP are consistent
with the nominal mission results in PCI13, but slightly tighter.
In the first panels of Figs. 43 (a), (b), and (c), we also show
the constraints on the curvature perturbation power in the pure
adiabatic case. Comparing the generally-correlated isocurvature
case to the pure adiabatic case with the same data combination

;uncorrelated 

CMB	  constraints; 

;correlated 
95%CL. 

Basically, 
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where we have defined x ≡ E/T and m̃ = m/T in the last equality.
In the relativistic limit, we have

n(eq) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ζ(3)

π2
g∗T

3 (BOSE)

3ζ(3)

π2
g∗T

3 (FERMI).

(30)

As we did in the previous section, we rewrite above set of equation by introducing the
new variables X, Y and Z:

dX

dN
=

Γ

H
eNY, (31)

dY

dN
= − Γ

H
Y, (32)

dZ

dN
= −λ e−3N

H

[
Z2 −

(
Z(eq)

)2]
, (33)

H2 =
1

3M2
pl

(
e−4NX + e−3NY

)
, (34)

where we have introduced the variable Z as

Z ≡ e3NnCDM. (35)

CDM isocurvature perturbation is defined by

SCDM ≡ 3(ζCDM − ζ), (36)

where ζCDM is defined by its number density, and, with Z variable, it is given by

ζCDM =
1

3
ln

(
Z(Nf , x⃗)

Z̄(Nf )

)
, (37)

By evaluating ζCDM at N = Nf on the hypersurface with δN = 0, then we obtain the
expression at linear order as

ζCDM =
1

3

∂ lnZ(Nf , x⃗)

∂ lnYi

δYi

Yi
. (38)

In Eq. (36), ζ is the final curvature perturbation generated from the curvaton, which
can be given by ζ = rs/3×Si

#1, and Si = δYi/Yi as shown in previous section. From this
expression, we get

SCDM/ζ = 3

[
1

rs

∂ lnZ(Nf , x⃗)

∂ lnYi
− 1

]
. (39)

#1In the previous section, we have also considered the case where the decay rate of the curvaton depends
on the temperature. However, here, for simplicity, we assume the temperature-independent decay rate
of the curvaton. In such case, the sudden decay formalism has been known to be valid for the adiabatic
curvature perturbation and it is given by Eq. (16) with α = 0.
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where we have defined x ≡ E/T and m̃ = m/T in the last equality.
In the relativistic limit, we have

n(eq) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ζ(3)

π2
g∗T

3 (BOSE)

3ζ(3)

π2
g∗T

3 (FERMI).

(30)

As we did in the previous section, we rewrite above set of equation by introducing the
new variables X, Y and Z:

dX

dN
=

Γ

H
eNY, (31)

dY

dN
= − Γ

H
Y, (32)

dZ

dN
= −λ e−3N

H

[
Z2 −

(
Z(eq)

)2]
, (33)

H2 =
1

3M2
pl

(
e−4NX + e−3NY

)
, (34)

where we have introduced the variable Z as

Z ≡ e3NnCDM. (35)

CDM isocurvature perturbation is defined by

SCDM ≡ 3(ζCDM − ζ), (36)

where ζCDM is defined by its number density, and, with Z variable, it is given by

ζCDM =
1

3
ln

(
Z(Nf , x⃗)

Z̄(Nf )

)
, (37)

By evaluating ζCDM at N = Nf on the hypersurface with δN = 0, then we obtain the
expression at linear order as

ζCDM =
1

3

∂ lnZ(Nf , x⃗)

∂ lnYi

δYi

Yi
. (38)

In Eq. (36), ζ is the final curvature perturbation generated from the curvaton, which
can be given by ζ = rs/3×Si

#1, and Si = δYi/Yi as shown in previous section. From this
expression, we get

SCDM/ζ = 3

[
1

rs

∂ lnZ(Nf , x⃗)

∂ lnYi
− 1

]
. (39)

#1In the previous section, we have also considered the case where the decay rate of the curvaton depends
on the temperature. However, here, for simplicity, we assume the temperature-independent decay rate
of the curvaton. In such case, the sudden decay formalism has been known to be valid for the adiabatic
curvature perturbation and it is given by Eq. (16) with α = 0.
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where we have defined x ≡ E/T and m̃ = m/T in the last equality.
In the relativistic limit, we have

n(eq) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ζ(3)

π2
g∗T

3 (BOSE)

3ζ(3)

π2
g∗T

3 (FERMI).

(30)

As we did in the previous section, we rewrite above set of equation by introducing the
new variables X, Y and Z:

dX

dN
=

Γ

H
eNY, (31)

dY

dN
= − Γ

H
Y, (32)

dZ

dN
= −λ e−3N

H

[
Z2 −

(
Z(eq)

)2]
, (33)

H2 =
1

3M2
pl

(
e−4NX + e−3NY

)
, (34)

where we have introduced the variable Z as

Z ≡ e3NnCDM. (35)

CDM isocurvature perturbation is defined by

SCDM ≡ 3(ζCDM − ζ), (36)

where ζCDM is defined by its number density, and, with Z variable, it is given by

ζCDM =
1

3
ln

(
Z(Nf , x⃗)

Z̄(Nf )

)
, (37)

By evaluating ζCDM at N = Nf on the hypersurface with δN = 0, then we obtain the
expression at linear order as

ζCDM =
1

3

∂ lnZ(Nf , x⃗)

∂ lnYi

δYi

Yi
. (38)

In Eq. (36), ζ is the final curvature perturbation generated from the curvaton, which
can be given by ζ = rs/3×Si

#1, and Si = δYi/Yi as shown in previous section. From this
expression, we get

SCDM/ζ = 3

[
1

rs

∂ lnZ(Nf , x⃗)

∂ lnYi
− 1

]
. (39)

#1In the previous section, we have also considered the case where the decay rate of the curvaton depends
on the temperature. However, here, for simplicity, we assume the temperature-independent decay rate
of the curvaton. In such case, the sudden decay formalism has been known to be valid for the adiabatic
curvature perturbation and it is given by Eq. (16) with α = 0.
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where we have defined x ≡ E/T and m̃ = m/T in the last equality.
In the relativistic limit, we have

n(eq) =

⎧
⎪⎪⎪⎨
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ζ(3)

π2
g∗T

3 (BOSE)

3ζ(3)

π2
g∗T

3 (FERMI).

(30)

As we did in the previous section, we rewrite above set of equation by introducing the
new variables X, Y and Z:

dX

dN
=

Γ

H
eNY, (31)

dY

dN
= − Γ

H
Y, (32)

dZ

dN
= −λ e−3N

H

[
Z2 −

(
Z(eq)

)2]
, (33)

H2 =
1

3M2
pl

(
e−4NX + e−3NY

)
, (34)

where we have introduced the variable Z as

Z ≡ e3NnCDM. (35)

CDM isocurvature perturbation is defined by

SCDM ≡ 3(ζCDM − ζ), (36)

where ζCDM is defined by its number density, and, with Z variable, it is given by

ζCDM =
1

3
ln

(
Z(Nf , x⃗)

Z̄(Nf )

)
, (37)

By evaluating ζCDM at N = Nf on the hypersurface with δN = 0, then we obtain the
expression at linear order as

ζCDM =
1

3

∂ lnZ(Nf , x⃗)

∂ lnYi

δYi

Yi
. (38)

In Eq. (36), ζ is the final curvature perturbation generated from the curvaton, which
can be given by ζ = rs/3×Si

#1, and Si = δYi/Yi as shown in previous section. From this
expression, we get

SCDM/ζ = 3

[
1

rs

∂ lnZ(Nf , x⃗)

∂ lnYi
− 1

]
. (39)

#1In the previous section, we have also considered the case where the decay rate of the curvaton depends
on the temperature. However, here, for simplicity, we assume the temperature-independent decay rate
of the curvaton. In such case, the sudden decay formalism has been known to be valid for the adiabatic
curvature perturbation and it is given by Eq. (16) with α = 0.
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where we have defined x ≡ E/T and m̃ = m/T in the last equality.
In the relativistic limit, we have

n(eq) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ζ(3)

π2
g∗T

3 (BOSE)

3ζ(3)

π2
g∗T

3 (FERMI).

(30)

As we did in the previous section, we rewrite above set of equation by introducing the
new variables X, Y and Z:

dX

dN
=

Γ

H
eNY, (31)

dY

dN
= − Γ

H
Y, (32)

dZ

dN
= −λ e−3N

H

[
Z2 −

(
Z(eq)

)2]
, (33)

H2 =
1

3M2
pl

(
e−4NX + e−3NY

)
, (34)

where we have introduced the variable Z as

Z ≡ e3NnCDM. (35)

CDM isocurvature perturbation is defined by

SCDM ≡ 3(ζCDM − ζ), (36)

where ζCDM is defined by its number density, and, with Z variable, it is given by

ζCDM =
1

3
ln

(
Z(Nf , x⃗)

Z̄(Nf )

)
, (37)

By evaluating ζCDM at N = Nf on the hypersurface with δN = 0, then we obtain the
expression at linear order as

ζCDM =
1

3

∂ lnZ(Nf , x⃗)

∂ lnYi

δYi

Yi
. (38)

In Eq. (36), ζ is the final curvature perturbation generated from the curvaton, which
can be given by ζ = rs/3×Si

#1, and Si = δYi/Yi as shown in previous section. From this
expression, we get

SCDM/ζ = 3

[
1

rs

∂ lnZ(Nf , x⃗)

∂ lnYi
− 1

]
. (39)

#1In the previous section, we have also considered the case where the decay rate of the curvaton depends
on the temperature. However, here, for simplicity, we assume the temperature-independent decay rate
of the curvaton. In such case, the sudden decay formalism has been known to be valid for the adiabatic
curvature perturbation and it is given by Eq. (16) with α = 0.
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where we have defined x ≡ E/T and m̃ = m/T in the last equality.
In the relativistic limit, we have

n(eq) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ζ(3)

π2
g∗T

3 (BOSE)

3ζ(3)

π2
g∗T

3 (FERMI).

(30)

As we did in the previous section, we rewrite above set of equation by introducing the
new variables X, Y and Z:

dX

dN
=

Γ

H
eNY, (31)

dY

dN
= − Γ

H
Y, (32)

dZ

dN
= −λ e−3N

H

[
Z2 −

(
Z(eq)

)2]
, (33)

H2 =
1

3M2
pl

(
e−4NX + e−3NY

)
, (34)

where we have introduced the variable Z as

Z ≡ e3NnCDM. (35)

CDM isocurvature perturbation is defined by

SCDM ≡ 3(ζCDM − ζ), (36)

where ζCDM is defined by its number density, and, with Z variable, it is given by

ζCDM =
1

3
ln

(
Z(Nf , x⃗)

Z̄(Nf )

)
, (37)

By evaluating ζCDM at N = Nf on the hypersurface with δN = 0, then we obtain the
expression at linear order as

ζCDM =
1

3

∂ lnZ(Nf , x⃗)

∂ lnYi

δYi

Yi
. (38)

In Eq. (36), ζ is the final curvature perturbation generated from the curvaton, which
can be given by ζ = rs/3×Si

#1, and Si = δYi/Yi as shown in previous section. From this
expression, we get

SCDM/ζ = 3

[
1

rs

∂ lnZ(Nf , x⃗)

∂ lnYi
− 1

]
. (39)

#1In the previous section, we have also considered the case where the decay rate of the curvaton depends
on the temperature. However, here, for simplicity, we assume the temperature-independent decay rate
of the curvaton. In such case, the sudden decay formalism has been known to be valid for the adiabatic
curvature perturbation and it is given by Eq. (16) with α = 0.
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•  Isocurvature	  perturbations	  could	  be	  a	  
powerful	  tool	  to	  see	  the	  early	  Universe.	  

•  Tight	  constraint	  obtained	  from	  current	  observations 

Other	  example,	  axion	  DM	  (Planck	  2015) 

and,	  Hayakawa,	  Harigaya,	  Kawasaki,	  SY	  (2014)	  
	  	  	  	  	  	  	  discusses	  a	  specific	  model,	  
	  	  	  	  	  	  	  so-‐called	  ``sneutrino	  curvaton	  scenario” 

è	  More	  precise	  discussion	  seems	  to	  be	  useful. 
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System; 

3 Sudden “decay” formalism for CDM isocurvature
fluctuations in the curvaton scenario

In the previous section, we have briefly revisited the sudden decay formalism for the
adiabatic curvature perturbation in the curvaton scenario.

Next, let us consider the case including CDM. In particular, we investigate how robust
the sudden decay formalism for the CDM isocurvature perturbations in the curvaton
scenario is.

3.1 Thermally decoupled case

As discussed in many papers (e.g., [6–10]), large CDM isocurvature perturbation would be
generated when CDM is created (or its number density freezes out) before the curvaton
decay and no CDM isocurvature perturbation remains when CDM is created after the
curvaton decay. Here we discuss this issue in detail by making use of the sudden decay
approximation.

The system of equations we need to solve is:

dρr
dt

+ 4Hρr = Γρσ, (24)

dρσ
dt

+ 3Hρσ = −Γρσ, (25)

dnCDM

dt
+ 3HnCDM = −λ

(
n2
CDM −

(
n(eq)
CDM

)2)
(26)

H2 =
1

3M2
pl

(ρr + ρσ + ρCDM) ≃
1

3M2
pl

(ρr + ρσ) , (27)

where Γ is the decay rate of the curvaton and λ represents the thermally-averaged anni-
hilation cross section of CDM, which, in fact, is written as λ = ⟨σv⟩ with σ and v being
the cross section and relative velocity, respectively. We assume that ρCDM is negligible
in the total energy density. For CDM, we consider the equation for the number density
nCDM and n(eq)

CDM is that with an equilibrium distribution function. When CDM particles

are non-relativistic, n(eq)
CDM is given by

n(eq)
CDM = g∗

(
mT

2π

)3/2

e−m/T , (28)

where m is the mass of a CDM particle and g∗ is the internal degrees of freedom. It should
be noted here that, when the temperature is high enough, CDM particles can be regarded
as relativistic particles. Therefore, to treat the system from the epoch when T ≫ m to
T ≪ m, we need to evaluate n(eq)

CDM using the general form:

n(eq) =
g∗
2π2

∫ ∞

m

√
E2 −m2

EdE

eE/T ± 1
=

g∗
2π2

T 3

∫ ∞

m̃

√
x2 − m̃2

xdx

ex ± 1
, (29)
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In the previous section, we have briefly revisited the sudden decay formalism for the
adiabatic curvature perturbation in the curvaton scenario.

Next, let us consider the case including CDM. In particular, we investigate how robust
the sudden decay formalism for the CDM isocurvature perturbations in the curvaton
scenario is.

3.1 Thermally decoupled case

As discussed in many papers (e.g., [6–10]), large CDM isocurvature perturbation would be
generated when CDM is created (or its number density freezes out) before the curvaton
decay and no CDM isocurvature perturbation remains when CDM is created after the
curvaton decay. Here we discuss this issue in detail by making use of the sudden decay
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dρr
dt
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where Γ is the decay rate of the curvaton and λ represents the thermally-averaged anni-
hilation cross section of CDM, which, in fact, is written as λ = ⟨σv⟩ with σ and v being
the cross section and relative velocity, respectively. We assume that ρCDM is negligible
in the total energy density. For CDM, we consider the equation for the number density
nCDM and n(eq)

CDM is that with an equilibrium distribution function. When CDM particles

are non-relativistic, n(eq)
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n(eq)
CDM = g∗

(
mT

2π
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e−m/T , (28)

where m is the mass of a CDM particle and g∗ is the internal degrees of freedom. It should
be noted here that, when the temperature is high enough, CDM particles can be regarded
as relativistic particles. Therefore, to treat the system from the epoch when T ≫ m to
T ≪ m, we need to evaluate n(eq)

CDM using the general form:

n(eq) =
g∗
2π2

∫ ∞

m

√
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EdE
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=
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2π2
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adiabatic curvature perturbation in the curvaton scenario.

Next, let us consider the case including CDM. In particular, we investigate how robust
the sudden decay formalism for the CDM isocurvature perturbations in the curvaton
scenario is.

3.1 Thermally decoupled case

As discussed in many papers (e.g., [6–10]), large CDM isocurvature perturbation would be
generated when CDM is created (or its number density freezes out) before the curvaton
decay and no CDM isocurvature perturbation remains when CDM is created after the
curvaton decay. Here we discuss this issue in detail by making use of the sudden decay
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hilation cross section of CDM, which, in fact, is written as λ = ⟨σv⟩ with σ and v being
the cross section and relative velocity, respectively. We assume that ρCDM is negligible
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2π
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where m is the mass of a CDM particle and g∗ is the internal degrees of freedom. It should
be noted here that, when the temperature is high enough, CDM particles can be regarded
as relativistic particles. Therefore, to treat the system from the epoch when T ≫ m to
T ≪ m, we need to evaluate n(eq)
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CDM;	  in	  thermal	  equilibrium	  in	  the	  early	  Universe	  (e.g.	  thermal	  WIMP) 

System; 

3 Sudden “decay” formalism for CDM isocurvature
fluctuations in the curvaton scenario

In the previous section, we have briefly revisited the sudden decay formalism for the
adiabatic curvature perturbation in the curvaton scenario.

Next, let us consider the case including CDM. In particular, we investigate how robust
the sudden decay formalism for the CDM isocurvature perturbations in the curvaton
scenario is.

3.1 Thermally decoupled case

As discussed in many papers (e.g., [6–10]), large CDM isocurvature perturbation would be
generated when CDM is created (or its number density freezes out) before the curvaton
decay and no CDM isocurvature perturbation remains when CDM is created after the
curvaton decay. Here we discuss this issue in detail by making use of the sudden decay
approximation.

The system of equations we need to solve is:

dρr
dt

+ 4Hρr = Γρσ, (24)

dρσ
dt

+ 3Hρσ = −Γρσ, (25)

dnCDM

dt
+ 3HnCDM = −λ

(
n2
CDM −

(
n(eq)
CDM

)2)
(26)

H2 =
1

3M2
pl

(ρr + ρσ + ρCDM) ≃
1

3M2
pl

(ρr + ρσ) , (27)

where Γ is the decay rate of the curvaton and λ represents the thermally-averaged anni-
hilation cross section of CDM, which, in fact, is written as λ = ⟨σv⟩ with σ and v being
the cross section and relative velocity, respectively. We assume that ρCDM is negligible
in the total energy density. For CDM, we consider the equation for the number density
nCDM and n(eq)

CDM is that with an equilibrium distribution function. When CDM particles

are non-relativistic, n(eq)
CDM is given by

n(eq)
CDM = g∗

(
mT

2π

)3/2

e−m/T , (28)

where m is the mass of a CDM particle and g∗ is the internal degrees of freedom. It should
be noted here that, when the temperature is high enough, CDM particles can be regarded
as relativistic particles. Therefore, to treat the system from the epoch when T ≫ m to
T ≪ m, we need to evaluate n(eq)

CDM using the general form:

n(eq) =
g∗
2π2

∫ ∞

m

√
E2 −m2

EdE

eE/T ± 1
=

g∗
2π2

T 3

∫ ∞

m̃

√
x2 − m̃2

xdx

ex ± 1
, (29)
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3 Sudden “decay” formalism for CDM isocurvature
fluctuations in the curvaton scenario

In the previous section, we have briefly revisited the sudden decay formalism for the
adiabatic curvature perturbation in the curvaton scenario.

Next, let us consider the case including CDM. In particular, we investigate how robust
the sudden decay formalism for the CDM isocurvature perturbations in the curvaton
scenario is.

3.1 Thermally decoupled case

As discussed in many papers (e.g., [6–10]), large CDM isocurvature perturbation would be
generated when CDM is created (or its number density freezes out) before the curvaton
decay and no CDM isocurvature perturbation remains when CDM is created after the
curvaton decay. Here we discuss this issue in detail by making use of the sudden decay
approximation.

The system of equations we need to solve is:

dρr
dt

+ 4Hρr = Γρσ, (24)

dρσ
dt

+ 3Hρσ = −Γρσ, (25)

dnCDM

dt
+ 3HnCDM = −λ

(
n2
CDM −

(
n(eq)
CDM

)2)
(26)

H2 =
1

3M2
pl

(ρr + ρσ + ρCDM) ≃
1

3M2
pl

(ρr + ρσ) , (27)

where Γ is the decay rate of the curvaton and λ represents the thermally-averaged anni-
hilation cross section of CDM, which, in fact, is written as λ = ⟨σv⟩ with σ and v being
the cross section and relative velocity, respectively. We assume that ρCDM is negligible
in the total energy density. For CDM, we consider the equation for the number density
nCDM and n(eq)

CDM is that with an equilibrium distribution function. When CDM particles

are non-relativistic, n(eq)
CDM is given by

n(eq)
CDM = g∗

(
mT

2π

)3/2

e−m/T , (28)

where m is the mass of a CDM particle and g∗ is the internal degrees of freedom. It should
be noted here that, when the temperature is high enough, CDM particles can be regarded
as relativistic particles. Therefore, to treat the system from the epoch when T ≫ m to
T ≪ m, we need to evaluate n(eq)

CDM using the general form:

n(eq) =
g∗
2π2

∫ ∞

m

√
E2 −m2

EdE

eE/T ± 1
=

g∗
2π2

T 3

∫ ∞

m̃

√
x2 − m̃2

xdx

ex ± 1
, (29)
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3 Sudden “decay” formalism for CDM isocurvature
fluctuations in the curvaton scenario

In the previous section, we have briefly revisited the sudden decay formalism for the
adiabatic curvature perturbation in the curvaton scenario.

Next, let us consider the case including CDM. In particular, we investigate how robust
the sudden decay formalism for the CDM isocurvature perturbations in the curvaton
scenario is.

3.1 Thermally decoupled case

As discussed in many papers (e.g., [6–10]), large CDM isocurvature perturbation would be
generated when CDM is created (or its number density freezes out) before the curvaton
decay and no CDM isocurvature perturbation remains when CDM is created after the
curvaton decay. Here we discuss this issue in detail by making use of the sudden decay
approximation.

The system of equations we need to solve is:

dρr
dt

+ 4Hρr = Γρσ, (24)

dρσ
dt

+ 3Hρσ = −Γρσ, (25)

dnCDM

dt
+ 3HnCDM = −λ

(
n2
CDM −

(
n(eq)
CDM

)2)
(26)

H2 =
1

3M2
pl

(ρr + ρσ + ρCDM) ≃
1

3M2
pl

(ρr + ρσ) , (27)

where Γ is the decay rate of the curvaton and λ represents the thermally-averaged anni-
hilation cross section of CDM, which, in fact, is written as λ = ⟨σv⟩ with σ and v being
the cross section and relative velocity, respectively. We assume that ρCDM is negligible
in the total energy density. For CDM, we consider the equation for the number density
nCDM and n(eq)

CDM is that with an equilibrium distribution function. When CDM particles

are non-relativistic, n(eq)
CDM is given by

n(eq)
CDM = g∗

(
mT

2π

)3/2

e−m/T , (28)

where m is the mass of a CDM particle and g∗ is the internal degrees of freedom. It should
be noted here that, when the temperature is high enough, CDM particles can be regarded
as relativistic particles. Therefore, to treat the system from the epoch when T ≫ m to
T ≪ m, we need to evaluate n(eq)

CDM using the general form:

n(eq) =
g∗
2π2

∫ ∞

m

√
E2 −m2

EdE

eE/T ± 1
=

g∗
2π2

T 3

∫ ∞

m̃

√
x2 − m̃2

xdx

ex ± 1
, (29)
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Lyth	  and	  Wands,	  astro-‐ph/0306500,	  
and	  more… 
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and	  more… 

3 Sudden “decay” formalism for CDM isocurvature
fluctuations in the curvaton scenario

In the previous section, we have briefly revisited the sudden decay formalism for the
adiabatic curvature perturbation in the curvaton scenario.

Next, let us consider the case including CDM. In particular, we investigate how robust
the sudden decay formalism for the CDM isocurvature perturbations in the curvaton
scenario is.

3.1 Thermally decoupled case

As discussed in many papers (e.g., [6–10]), large CDM isocurvature perturbation would be
generated when CDM is created (or its number density freezes out) before the curvaton
decay and no CDM isocurvature perturbation remains when CDM is created after the
curvaton decay. Here we discuss this issue in detail by making use of the sudden decay
approximation.

The system of equations we need to solve is:

dρr
dt

+ 4Hρr = Γρσ, (24)

dρσ
dt

+ 3Hρσ = −Γρσ, (25)

dnCDM

dt
+ 3HnCDM = −λ

(
n2
CDM −

(
n(eq)
CDM

)2)
(26)

H2 =
1

3M2
pl

(ρr + ρσ + ρCDM) ≃
1

3M2
pl

(ρr + ρσ) , (27)

where Γ is the decay rate of the curvaton and λ represents the thermally-averaged anni-
hilation cross section of CDM, which, in fact, is written as λ = ⟨σv⟩ with σ and v being
the cross section and relative velocity, respectively. We assume that ρCDM is negligible
in the total energy density. For CDM, we consider the equation for the number density
nCDM and n(eq)

CDM is that with an equilibrium distribution function. When CDM particles

are non-relativistic, n(eq)
CDM is given by

n(eq)
CDM = g∗

(
mT

2π

)3/2

e−m/T , (28)

where m is the mass of a CDM particle and g∗ is the internal degrees of freedom. It should
be noted here that, when the temperature is high enough, CDM particles can be regarded
as relativistic particles. Therefore, to treat the system from the epoch when T ≫ m to
T ≪ m, we need to evaluate n(eq)

CDM using the general form:

n(eq) =
g∗
2π2

∫ ∞

m

√
E2 −m2

EdE

eE/T ± 1
=

g∗
2π2

T 3

∫ ∞

m̃

√
x2 − m̃2

xdx

ex ± 1
, (29)
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3 Sudden “decay” formalism for CDM isocurvature
fluctuations in the curvaton scenario

In the previous section, we have briefly revisited the sudden decay formalism for the
adiabatic curvature perturbation in the curvaton scenario.

Next, let us consider the case including CDM. In particular, we investigate how robust
the sudden decay formalism for the CDM isocurvature perturbations in the curvaton
scenario is.

3.1 Thermally decoupled case

As discussed in many papers (e.g., [6–10]), large CDM isocurvature perturbation would be
generated when CDM is created (or its number density freezes out) before the curvaton
decay and no CDM isocurvature perturbation remains when CDM is created after the
curvaton decay. Here we discuss this issue in detail by making use of the sudden decay
approximation.

The system of equations we need to solve is:

dρr
dt

+ 4Hρr = Γρσ, (24)

dρσ
dt

+ 3Hρσ = −Γρσ, (25)

dnCDM

dt
+ 3HnCDM = −λ

(
n2
CDM −

(
n(eq)
CDM

)2)
(26)

H2 =
1

3M2
pl

(ρr + ρσ + ρCDM) ≃
1

3M2
pl

(ρr + ρσ) , (27)

where Γ is the decay rate of the curvaton and λ represents the thermally-averaged anni-
hilation cross section of CDM, which, in fact, is written as λ = ⟨σv⟩ with σ and v being
the cross section and relative velocity, respectively. We assume that ρCDM is negligible
in the total energy density. For CDM, we consider the equation for the number density
nCDM and n(eq)

CDM is that with an equilibrium distribution function. When CDM particles

are non-relativistic, n(eq)
CDM is given by

n(eq)
CDM = g∗

(
mT

2π

)3/2

e−m/T , (28)

where m is the mass of a CDM particle and g∗ is the internal degrees of freedom. It should
be noted here that, when the temperature is high enough, CDM particles can be regarded
as relativistic particles. Therefore, to treat the system from the epoch when T ≫ m to
T ≪ m, we need to evaluate n(eq)

CDM using the general form:

n(eq) =
g∗
2π2

∫ ∞

m

√
E2 −m2

EdE

eE/T ± 1
=

g∗
2π2

T 3

∫ ∞

m̃

√
x2 − m̃2

xdx

ex ± 1
, (29)
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Sudden	  freeze	  out	  approx.	  III 
•  Sudden	  decay	  approx.	  

•  Sudden	  freeze-‐out	  approx. 

Lyth	  and	  Wands,	  astro-‐ph/0306500,	  
and	  more… 

è	  Adiabatic	  curvature	  perturbations	  in	  curvaton	  scenario 

è Matter	  isocurvature	  perturbations	  for	  thermal	  relics	  

è Effective	  ``annihilation	  rate”	  depends	  on	  temperature	  !!	  
è Naively,	  by	  taking	  into	  account	  this	  ``modulation	  of	  freeze-‐out	  hypersurface”	  
	  	  	  	  	  seriously,	  isocurvature	  perturbations	  would	  be	  reduced..	  	  

è	  In	  case	  with	  temperature	  dependent	  decay	  rate,	  it	  seems	  not	  to	  be	  good… 

Sudden	  freeze-‐out	  is	  good	  or	  not? 



CDM	  isocurv.	  in	  curvaton	  scenario	  I 

where we have defined x ≡ E/T and m̃ = m/T in the last equality.
In the relativistic limit, we have

n(eq) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ζ(3)

π2
g∗T

3 (BOSE)

3ζ(3)

π2
g∗T

3 (FERMI).

(30)

As we did in the previous section, we rewrite above set of equation by introducing the
new variables X, Y and Z:

dX

dN
=

Γ

H
eNY, (31)

dY

dN
= − Γ

H
Y, (32)

dZ

dN
= −λ e−3N

H

[
Z2 −

(
Z(eq)

)2]
, (33)

H2 =
1

3M2
pl

(
e−4NX + e−3NY

)
, (34)

where we have introduced the variable Z as

Z ≡ e3NnCDM. (35)

CDM isocurvature perturbation is defined by

SCDM ≡ 3(ζCDM − ζ), (36)

where ζCDM is defined by its number density, and, with Z variable, it is given by

ζCDM =
1

3
ln

(
Z(Nf , x⃗)

Z̄(Nf )

)
, (37)

By evaluating ζCDM at N = Nf on the hypersurface with δN = 0, then we obtain the
expression at linear order as

ζCDM =
1

3

∂ lnZ(Nf , x⃗)

∂ lnYi

δYi

Yi
. (38)

In Eq. (36), ζ is the final curvature perturbation generated from the curvaton, which
can be given by ζ = rs/3×Si

#1, and Si = δYi/Yi as shown in previous section. From this
expression, we get

SCDM/ζ = 3

[
1

rs

∂ lnZ(Nf , x⃗)

∂ lnYi
− 1

]
. (39)

#1In the previous section, we have also considered the case where the decay rate of the curvaton depends
on the temperature. However, here, for simplicity, we assume the temperature-independent decay rate
of the curvaton. In such case, the sudden decay formalism has been known to be valid for the adiabatic
curvature perturbation and it is given by Eq. (16) with α = 0.
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Final	  adiabatic	  curvature	  perturbations	  in	  curvaton	  scenario; 

;intrinsic	  curvaton	  fluctuations 

where we have defined x ≡ E/T and m̃ = m/T in the last equality.
In the relativistic limit, we have

n(eq) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ζ(3)

π2
g∗T

3 (BOSE)

3ζ(3)

π2
g∗T

3 (FERMI).

(30)

As we did in the previous section, we rewrite above set of equation by introducing the
new variables X, Y and Z:

dX

dN
=

Γ

H
eNY, (31)

dY

dN
= − Γ

H
Y, (32)

dZ

dN
= −λ e−3N

H

[
Z2 −

(
Z(eq)

)2]
, (33)

H2 =
1

3M2
pl

(
e−4NX + e−3NY

)
, (34)

where we have introduced the variable Z as

Z ≡ e3NnCDM. (35)

CDM isocurvature perturbation is defined by

SCDM ≡ 3(ζCDM − ζ), (36)

where ζCDM is defined by its number density, and, with Z variable, it is given by

ζCDM =
1

3
ln

(
Z(Nf , x⃗)

Z̄(Nf )

)
, (37)

By evaluating ζCDM at N = Nf on the hypersurface with δN = 0, then we obtain the
expression at linear order as

ζCDM =
1

3

∂ lnZ(Nf , x⃗)

∂ lnYi

δYi

Yi
. (38)

In Eq. (36), ζ is the final curvature perturbation generated from the curvaton, which
can be given by ζ = rs/3×Si

#1, and Si = δYi/Yi as shown in previous section. From this
expression, we get

SCDM/ζ = 3

[
1

rs

∂ lnZ(Nf , x⃗)

∂ lnYi
− 1

]
. (39)

#1In the previous section, we have also considered the case where the decay rate of the curvaton depends
on the temperature. However, here, for simplicity, we assume the temperature-independent decay rate
of the curvaton. In such case, the sudden decay formalism has been known to be valid for the adiabatic
curvature perturbation and it is given by Eq. (16) with α = 0.
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CDM;	  in	  thermal	  equilibrium	  in	  the	  early	  Universe	  (e.g.	  thermal	  WIMP) 

Ref.	  The	  early	  Universe,	  Kolb	  &	  Turner 

•  Decoupling	  before	  curvaton	  decay 
Naively, 

if	  	  	  	  	  	  	  	  	  	  	  	  	  is	  negligible	   

ruled	  out	  ! 



Precise	  expression 
Kitajima,	  Langlois,	  Takahashi,	  SY	  in	  prep. 

Basically	  derivation	  is	  the	  same	  as	  in	  the	  previous	  discussion. 

By solving the set of equations (31)–(34), we can obtain Z at the final time Nf and
then SCDM can be determined.

3.1.1 Case for the CDM freeze-out before curvaton decay

First, let us consider the case for the CDM freeze-out before curvaton decay. If we assume
a sudden freeze-out where the number density nCDM freezes out at N = Nfr where Nfr is
defined as the number of e-folds when the following equality holds:

H = λnCDM = Λ (40)

where we have defined Λ ≡ ⟨σv⟩nCDM which represents the annihilation rate.
In this approximation, Z becomes constant after N = Nfr, hence the final value of

Z(Nf ) is given by that evaluated at N = Nfr, i.e., Z(Nf ) = Z(Nfr). Therefore, to evaluate
ζCDM, we just need to calculate the derivative of Z at N = Nfr. For this purpose, in case
where the number density nCDM freezes out before the curvaton decay, we can use Eq. (40),
which is explicitly written as

e−4NfrXi + e−3NfrYi = 3M2
plΛ

2. (41)

By differentiating the above equation with respect to Yi, we obtain

∂Nfr

∂ lnYi
= − Ωσ,fr

2(αΛ,fr − 2) + Ωσ,fr
, (42)

where Ωσ,fr is the density parameter for the curvaton at the time of freeze-out and αΛ,fr

is defined as

αΛ,fr =
d lnΛ

d lnT

∣∣∣∣
fr

. (43)

If we assume that ⟨σv⟩ is constant (for s-wave annihilation) and n(eq)
CDM is given by Eq. (28)

(non-relativistic particles), we have

∂ lnZfr

∂ lnYi
=

(
3

2
− m

Tfr

)
∂Nfr

∂ lnYi
, (44)

where we have defined Zfr = Z(Nfr) and used the relation Tfr = Tie−Nfr with Ti being the
initial temperature. By substituting Eqs. (42) and (44) into Eq. (39), we obtain

S/ζ = 3

[
Ωσ,fr

rs

(
m

Tfr
− 3

2

)
1

2(αΛ,fr − 2) + Ωσ,fr
− 1

]
, (45)

which is exactly the same as the one given in [8].
In a usual WIMP case, one has m/Tfr ∼ 20. When m/Tfr is larger than unity, we can

approximate as

αΛ,fr ≈
m

Tfr
> 1 , (46)
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Lyth	  and	  Wands	  (2003) 

due	  to	  the	  modulation	  	  
of	  freeze-‐out	  hypersurface 

sigma;	  curvaton 

•  Freeze-‐out	  before	  curvaton	  decay;	  

•  Freeze-‐out	  after	  curvaton	  decay; 

For	   

is	  neglected 

è 

For è 

(	  to	  obtain	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  )	   
Not	  so	  suppressed.. 



How	  about	  	  in	  numerical	  calculation?? 



Numerical	  study	  (by	  delta	  N)	  I 
non-relativistic case

Figure 4: The residual CDM isocurvature perturbations as function of the time of CDM
freeze out measured from the time of curvaton decay. The different color dots are for the
different rs. Neq represents a time at ρσ(Neq) = ρr(Neq), that is, a time when the curvaton
energy density starts to dominate the Universe.

m/T=20

thick —> p-wave
thin  —> s-wave

Figure 5: The residual CDM isocurvature perturbations as function of the time of CDM
freeze out measured from the time of curvaton decay, for rs = 0.1, 0.3, 0.6, 0.9 and 0.999
and we take mCDM/Tfr ∼ 20.
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Kitajima,	  Langlois,	  Takahashi,	  SY	  in	  prep. 

f.o.	  before	  curvaton	  decay f.o.	  after	  … 

Neq;	  equality	  time 

Basic	  behavior	  is	  almost	  consistent	  
with	  analytic	  expression. 



Numerical	  study	  (by	  delta	  N)	  II 

Kitajima,	  Langlois,	  Takahashi,	  SY	  in	  prep. 

By solving the set of equations (31)–(34), we can obtain Z at the final time Nf and
then SCDM can be determined.

3.1.1 Case for the CDM freeze-out before curvaton decay

First, let us consider the case for the CDM freeze-out before curvaton decay. If we assume
a sudden freeze-out where the number density nCDM freezes out at N = Nfr where Nfr is
defined as the number of e-folds when the following equality holds:

H = λnCDM = Λ (40)

where we have defined Λ ≡ ⟨σv⟩nCDM which represents the annihilation rate.
In this approximation, Z becomes constant after N = Nfr, hence the final value of

Z(Nf ) is given by that evaluated at N = Nfr, i.e., Z(Nf ) = Z(Nfr). Therefore, to evaluate
ζCDM, we just need to calculate the derivative of Z at N = Nfr. For this purpose, in case
where the number density nCDM freezes out before the curvaton decay, we can use Eq. (40),
which is explicitly written as

e−4NfrXi + e−3NfrYi = 3M2
plΛ

2. (41)

By differentiating the above equation with respect to Yi, we obtain

∂Nfr

∂ lnYi
= − Ωσ,fr

2(αΛ,fr − 2) + Ωσ,fr
, (42)

where Ωσ,fr is the density parameter for the curvaton at the time of freeze-out and αΛ,fr

is defined as

αΛ,fr =
d lnΛ

d lnT

∣∣∣∣
fr

. (43)

If we assume that ⟨σv⟩ is constant (for s-wave annihilation) and n(eq)
CDM is given by Eq. (28)

(non-relativistic particles), we have

∂ lnZfr

∂ lnYi
=

(
3

2
− m

Tfr

)
∂Nfr

∂ lnYi
, (44)

where we have defined Zfr = Z(Nfr) and used the relation Tfr = Tie−Nfr with Ti being the
initial temperature. By substituting Eqs. (42) and (44) into Eq. (39), we obtain

S/ζ = 3

[
Ωσ,fr

rs

(
m

Tfr
− 3

2

)
1

2(αΛ,fr − 2) + Ωσ,fr
− 1

]
, (45)

which is exactly the same as the one given in [8].
In a usual WIMP case, one has m/Tfr ∼ 20. When m/Tfr is larger than unity, we can

approximate as

αΛ,fr ≈
m

Tfr
> 1 , (46)

9

analytic

numerical

Figure 3: The residual CDM isocurvature perturbations as function of Ωσ,fr in the case
with CDM freeze out before curvaton decay, for rs = 0.1, 0.3, 0.6, 0.9 and 0.999 and we
take mCDM/Tfr ∼ 20. The black dashed line corresponds to the analytic expression (45)
and the red points are numerical results.
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with CDM freeze out before curvaton decay, for rs = 0.1, 0.3, 0.6, 0.9 and 0.999 and we
take mCDM/Tfr ∼ 20. The black dashed line corresponds to the analytic expression (45)
and the red points are numerical results.
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Discussion	  I 
•  For	  CDM	  isocurvature	   

Sudden	  freeze-‐out	  formalism	  seems	  to	  be	  valid. 

N 

H 

does	  not	  give	  large	  modification.. in	  contrast	  with	  temperature-‐dependent	  
decay	  rate	  of	  curvaton 

H 

Small	  change	  of	  Hubble	  	  
è	  large	  change	  of	  e-‐folds 



Discussion	  II 
•  For	  CDM	  isocurvature	   

By solving the set of equations (31)–(34), we can obtain Z at the final time Nf and
then SCDM can be determined.

3.1.1 Case for the CDM freeze-out before curvaton decay

First, let us consider the case for the CDM freeze-out before curvaton decay. If we assume
a sudden freeze-out where the number density nCDM freezes out at N = Nfr where Nfr is
defined as the number of e-folds when the following equality holds:

H = λnCDM = Λ (40)

where we have defined Λ ≡ ⟨σv⟩nCDM which represents the annihilation rate.
In this approximation, Z becomes constant after N = Nfr, hence the final value of

Z(Nf ) is given by that evaluated at N = Nfr, i.e., Z(Nf ) = Z(Nfr). Therefore, to evaluate
ζCDM, we just need to calculate the derivative of Z at N = Nfr. For this purpose, in case
where the number density nCDM freezes out before the curvaton decay, we can use Eq. (40),
which is explicitly written as

e−4NfrXi + e−3NfrYi = 3M2
plΛ

2. (41)

By differentiating the above equation with respect to Yi, we obtain

∂Nfr

∂ lnYi
= − Ωσ,fr

2(αΛ,fr − 2) + Ωσ,fr
, (42)

where Ωσ,fr is the density parameter for the curvaton at the time of freeze-out and αΛ,fr

is defined as

αΛ,fr =
d lnΛ

d lnT

∣∣∣∣
fr

. (43)

If we assume that ⟨σv⟩ is constant (for s-wave annihilation) and n(eq)
CDM is given by Eq. (28)

(non-relativistic particles), we have

∂ lnZfr

∂ lnYi
=

(
3

2
− m

Tfr

)
∂Nfr

∂ lnYi
, (44)

where we have defined Zfr = Z(Nfr) and used the relation Tfr = Tie−Nfr with Ti being the
initial temperature. By substituting Eqs. (42) and (44) into Eq. (39), we obtain

S/ζ = 3

[
Ωσ,fr

rs

(
m

Tfr
− 3

2

)
1

2(αΛ,fr − 2) + Ωσ,fr
− 1

]
, (45)

which is exactly the same as the one given in [8].
In a usual WIMP case, one has m/Tfr ∼ 20. When m/Tfr is larger than unity, we can

approximate as

αΛ,fr ≈
m

Tfr
> 1 , (46)
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•  Freeze-‐out	  before	  curvaton	  decay;	  

	  

•  Freeze-‐out	  after	  curvaton	  decay; 

This	  seems	  to	  be	  correct.	  
Even	  if	  the	  modulation	  of	  the	  freeze-‐out	  hypersurface	  is	  taken	  into	  account,	  
CDM	  isocurvature	  perturbations	  are	  still	  large	  in	  this	  case.	  . 



Summary	  2 
•  Revisiting	  CDM	  (thermal	  relics)	  isocurvature	  
perturbations	  in	  curvaton	  scenario.	  

•  Sudden	  freeze-‐out	  approximation	  seems	  to	  be	  good	  for	  
such	  case. 

By solving the set of equations (31)–(34), we can obtain Z at the final time Nf and
then SCDM can be determined.

3.1.1 Case for the CDM freeze-out before curvaton decay

First, let us consider the case for the CDM freeze-out before curvaton decay. If we assume
a sudden freeze-out where the number density nCDM freezes out at N = Nfr where Nfr is
defined as the number of e-folds when the following equality holds:

H = λnCDM = Λ (40)

where we have defined Λ ≡ ⟨σv⟩nCDM which represents the annihilation rate.
In this approximation, Z becomes constant after N = Nfr, hence the final value of

Z(Nf ) is given by that evaluated at N = Nfr, i.e., Z(Nf ) = Z(Nfr). Therefore, to evaluate
ζCDM, we just need to calculate the derivative of Z at N = Nfr. For this purpose, in case
where the number density nCDM freezes out before the curvaton decay, we can use Eq. (40),
which is explicitly written as

e−4NfrXi + e−3NfrYi = 3M2
plΛ

2. (41)

By differentiating the above equation with respect to Yi, we obtain

∂Nfr

∂ lnYi
= − Ωσ,fr

2(αΛ,fr − 2) + Ωσ,fr
, (42)

where Ωσ,fr is the density parameter for the curvaton at the time of freeze-out and αΛ,fr

is defined as

αΛ,fr =
d lnΛ

d lnT

∣∣∣∣
fr

. (43)

If we assume that ⟨σv⟩ is constant (for s-wave annihilation) and n(eq)
CDM is given by Eq. (28)

(non-relativistic particles), we have

∂ lnZfr

∂ lnYi
=

(
3

2
− m

Tfr

)
∂Nfr

∂ lnYi
, (44)

where we have defined Zfr = Z(Nfr) and used the relation Tfr = Tie−Nfr with Ti being the
initial temperature. By substituting Eqs. (42) and (44) into Eq. (39), we obtain

S/ζ = 3

[
Ωσ,fr

rs

(
m

Tfr
− 3

2

)
1

2(αΛ,fr − 2) + Ωσ,fr
− 1

]
, (45)

which is exactly the same as the one given in [8].
In a usual WIMP case, one has m/Tfr ∼ 20. When m/Tfr is larger than unity, we can

approximate as

αΛ,fr ≈
m

Tfr
> 1 , (46)

9

The	  simplest	  case	  in	  this	  scenario	  is	  already	  ruled	  out.. 

If	  we	  include	  the	  fluctuations	  of	  the	  inflaton,	  we	  can	  rescue	  this	  scenario.	  
And	  from	  the	  observational	  constraint,	  we	  can	  obtain	  implications	  for	  the	  parameters. 



	  Summary	  1 
•  Thermal	  effect	  really	  appears	  in	  primordial	  
curvature	  perturbations? 

By	  using	  simple	  sudden	  decay	  approximation,	  large	  thermal	  effect	  seems	  to	  
appear. 

But,	  in	  the	  numerical	  result	  obtained	  by	  using	  delta	  N	  formalism,	  such	  large	  
effect	  does	  not	  appear.	  	  
è	  Sudden	  decay	  approximation	  is	  not	  always	  valid!	  
	  
	   
Temperature	  dependence	  of	  the	  decay	  rate	  seems	  not	  to	  give	  large	  effects	  
in	  the	  adiabatic	  curvature	  perturbations.	  (but	  small	  deviations	  appear..)	  	   



Other	  issues	   
•  Axion	  case	  with	  temperature	  dependent	  mass	  

•  Any	  other	  interesting	  examples??	   

3.2 Case with oscillating scalar field as CDM

Here, let us consider another class of CDM which is an oscillating scalar field such as
axion. Such CDM component can induce uncorrelated isocurvature fluctuations from its
intrinsic fluctuations, however, even if there is no such intrinsic fluctuations, correlated
isocurvature perturbation can be generated in the curvaton model. Denoting a scalar
field giving CDM as χ and assuming that the potential of χ is given by a simple form
V (χ) = (1/2)m2χ2, its equation of motion is written as

χ̈+ 3Hχ̇+m2χ = 0. (54)

and its energy density is given by

ρχ =
1

2
m2χ2. (55)

As in the previous section, we define the new variable W as

W (N) ≡ e3Nρχ. (56)

Since the energy density of χ scales as ρχ ∝ a−3 ∝ e−3N after χ begins to oscillate, W
takes a constant value during when χ is oscillating. Then, the curvature perturbation for
CDM ζCDM is given as the same manner as Eq. (38), by replacing Z with W and explicitly
written as

ζCDM =
1

3

∂ lnW (Nf , x⃗)

∂Yi
δYi. (57)

Here the final time can be taken at anytime after χ begins to oscillate.
Although we can evaluate ζCDM by following the equations of motion numerically,

here we calculate it by adopting the sudden “beginning of oscillation” approximation. We
define the time of the beginning of oscillation by which the following relation holds:

H(Nosc) = m(Nosc) (58)

where Nosc denotes the number of e-folds at the time of the beginning of its oscillation.
Since W is constant after χ begins to oscillate as mentioned above, we evaluate ζCDM at
the time of N = Nosc.

To include the case where the mass depends on the cosmic temperature as in the case
for axion, we assume

m ∝ T−β. (59)

For the case of the axion, β = 3.7 [8]. Taking this temperature dependence into account

11

è	  Modulation	  of	  the	  time	  of	  starting	  oscillation 



Hot	  relics 

decay rate of the curvaton Γ, initial field value of the curvaton, σini, and the interaction
rate of the CDM, λ, which is assumed to be constant here. The mass of the CDM is
not so important for the calculation of the isocurvature perturbation, and hence we do
not specify the mass of the CDM in the numerical calculation. However, not that we
implicitly assume the relativistic limit, that is, mCDM/Tfr ! 3, in calculation. Here, we
fix mσ and Γ and by changing σini we vary a parameter rs. We also vary a time of CDM
freeze out by changing the value of λ.

relativistic case

Figure 6: The residual CDM isocurvature perturbations as function of the time of CDM
freeze out measured from the time of curvaton decay. The different color lines are for
the different rs. Neq represents a time at ρσ(Neq) = ρr(Neq), that is, a time when the
curvaton energy density starts to dominate the Universe.

In Fig. 6, we plot the ratio between the CDM isocurvature perturbations and the
adiabatic curvature perturbations as a function of the time of CDM freeze out measured
from the time of curvaton decay. We evaluate the time of CDM freeze out as H(Nfr) =

λn(eq)
CDM(Nfr) and the time of curvaton decay as H(Ndec) = Γ. The different color lines are

for the different rs. Neq represents a time at ρσ(Neq) = ρr(Neq), that is, a time when the
curvaton energy density starts to dominate the Universe. In this figure, we find that in
both limits: freeze out before curvaton decay, Nfr ≪ Ndec, and freeze out after curvaton
decay, Nfr ≫ Ndec, the theoretical prediction and the numerical result are consistent. Also
we find that for relatively large rs (rs ≃ 1), where the curvaton starts to dominate the
Universe before decay, the CDM isocurvature perturbations becomes zero even in the case
with Nfr < Ndec. We guess that this feature is due to the existence of the dilute gas from
the curvaton before Ndec, which we ignore in the sudden decay approximation.

In Fig. 7, we compare the result for the non-relativistic case with that for the rela-
tivistic one for rs = 0.1, 0.3, 0.6, 0.9 and 0.999. we can see that in the relativistic case
SCDM come faster close to zero.
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Before	  
	  
	  
	  
	  
after	   

By	  sudden	  freeze-‐out	  approx., 

But	  for	  large	  r_s,	  
``before/after	  decay’’	  doesn’t	  matter..	  ``before/after	  dominated’’	  is	  important.. 

Sudden	  decay	  seems	  not	  to	  be	  good.. 
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Numerical	  analysis	  by	  delta	  N	  I 
•  Appropriate	  parameter;	  r 
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Figure 4: The r dependence of (ζ − ζr)/S (left), fNL (right) and gNL (lower). The black
dashed line corresponds to the standard analytic formula of (ζ − ζr)/S = r (left), fNL =
5
4r − 5

3 − 5r
6 (right) and gNL = 25

54

(
−9

r + 1
2 + 10r + 3r2

)
(lower) , the blue squared point

is for numerically evaluated (ζ − ζr)/S (fNL, gNL) as a function of r being numerically
evaluated r = 3Ωσ/(4 − Ωσ) at H = Γ0, the red triangle point is for numerical (ζ − ζr)/S
(fNL, gNL) as a function of r being rMWU(p) and the green circle point is for numerical
(ζ − ζr)/S (fNL, gNL) as a function of r being rnet(q).
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(
−9

r + 1
2 + 10r + 3r2

)
(lower) , the blue squared point

is for numerically evaluated (ζ − ζr)/S (fNL, gNL) as a function of r being numerically
evaluated r = 3Ωσ/(4 − Ωσ) at H = Γ0, the red triangle point is for numerical (ζ − ζr)/S
(fNL, gNL) as a function of r being rMWU(p) and the green circle point is for numerical
(ζ − ζr)/S (fNL, gNL) as a function of r being rnet(q).
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black	  dashed;	   black	  dashed;	   
blue	  box;	  numerically	  evaluated	  	   

red	  triangle;	  Gupta	  et	  al.	  (2004)	  fitting	  formula	   
green	  circle;	  entropy	  production	  rate 

(we	  newly	  introduce.	  
	  briefly	  explain	  this	  later.) 



Evolution	  of	  transfer	  func.	  I 
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Figure 7: Plots of F(N) as a function of the e-folding number N − ND with ND corre-
sponding to the decay time which is defined as the epoch satisfying H = Γ for the cases
with n = 0 (blue dotted), 1.5 (red solid) and −5 (green dashed). We show the plots for
the several values of rs: rs = 0.1 (top left), 0.6 (top right), 0.99 (bottom left) and 0.9999
(bottom right).
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Figure 8: Plots of F(N) as a function of the e-folding number N − Ndom with Ncom

corresponding to the time when the curvaton begins to dominate the energy density of
the Universe. More specifically, Ndom is defined as the time at which Ωσ = 1/2 is realized.
Here we show the cases with rs = 0.99 (left) and 0.9999 (right).
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Evolution	  of	  transfer	  func.	  II 
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Figure 7: Plots of F(N) as a function of the e-folding number N − ND with ND corre-
sponding to the decay time which is defined as the epoch satisfying H = Γ for the cases
with n = 0 (blue dotted), 1.5 (red solid) and −5 (green dashed). We show the plots for
the several values of rs: rs = 0.1 (top left), 0.6 (top right), 0.99 (bottom left) and 0.9999
(bottom right).
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Figure 8: Plots of F(N) as a function of the e-folding number N − Ndom with Ncom

corresponding to the time when the curvaton begins to dominate the energy density of
the Universe. More specifically, Ndom is defined as the time at which Ωσ = 1/2 is realized.
Here we show the cases with rs = 0.99 (left) and 0.9999 (right).
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