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Introduction I

* Planck data release in March 2013 & 2015

=» Precise information about the physics of the early Universe

e.g., constraint on single-field inflation models
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constraint on non-Gaussian models

KSW Binned Modal
SMICA

Local ................ 27+58 22+59 1.6 £ 6.0

Equilateral ............ 42 +75 -25+73 -20 + 77

Orthogonal ............ -25+39 17 + 41 14+ 42
Flattened model (Eq. number) Raw fyr Clean fir. Afw
Flatmodel (13) ................... 70 37 71
Non-Bunch-Davies (NBD) ........... 178 155 78
Single-field NBD1 flattened (14) ...... 31 19 13
Single-field NBD2 squeezed (14) ...... 0.8 0.2 0.4
Non-canonical NBD3 (15) ........... 13 9.6 9.7
Vectormodel L=1(19) ............ —18 -4.6 47
Vectormodel L=2(19) ............ 2.8 -0.4 2.9

arXiv:1303.5084

make us discuss a variety of models in more detail..



Introduction II

 Primordial non-Gaussianity (local type)

Komatsu and Spergel (2001), and a lots of ref.

¢ = c + AT (PG — (D)) + -+

jocal — 9 74+ 11.6 | os%CL

small local-type non-Gaussianity is consistent with single inflation.
e <1

But, of course, the models which could predict the large nG

are still viable and Planck result just gives tight constraint on
the parameters in such models.

Curvaton, modulated reheating, and so on.
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Introduction III

[ 1 Lyth and Wands, Moroi and Takahashi,
Curvaton SCeENario Engvist and Sloth (2002)

A mechanism of generating primordial adiabatic curvature perturbations
through the decay of a scalar field (curvaton) other than inflaton

energy 4

density | . radiation produced from inflaton; r curvature A

perturbation;

G

oscillating scalar field;

time 5 .
: > ;nne
H=1 H=T
background dynamics (O Pr = Po)
1; decay rate of curvaton
A 3P0
(constant in time in simple standard case) Fdoe 1=
3ps +4pr | g_r
m; mass of curvaton T'dec ) Po
(for quadratic oscillation) — neglecting the contribution

3 Po |H=m from the inflaton fluctuations




Introduction III

o Curvat()n Scenari() Lyth and Wands, Moroi and Takahashi,
Enqvist and Sloth (2002)

A mechanism of generating primordial adiabatic curvature perturbations
through the decay of a scalar field (curvaton) other than inflaton

energy 4

density | . radiation produced from inflaton; r curvature 4

perturbation;

G

oscillating scalar field;

;ime time
: >
H=TI H=T
background dynamics (or p, = po)

non-G aussianity? Planck constraint;
5 9 Dl

015 < /Gec 95% CL
fap = o

47& ec 3 0 Curvaton should decay after it becomes relatively
dominant component in the Universe.



Introduction IV

A motivation of the curvaton scenario..
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Introduction V

There are several works which discuss the curvaton

scenarios in more detail, in order to construct realistic
curvaton scenario.

Potential ? Enqvist and Nurmi (2005),
Engyvist et al.(2009, 2010),
Self-interacting curvaton, Enqvist, Lerner and Taanila (20m)...

Hill-top curvaton, ... Kawasaki et al. (2009),

Kawasaki et al.(2011,2013), ...

Initial condition ?

Demozzi et al.(2010), Enqgvist et al. (2012),

Stochastic approach, Nurmi et al.(2013), Lerner and Melville (2014), ...

Attractor behavior, ...

Decay pI'OCESS ? Engvist, Figueroa and Lerner (2012),

Engvist et al.(2013), ...
Resonant decay;, ..



Introduction VI

Among such detailed discussions, we focus on the fact
that the curvaton lives in thermal bath.

We would like to revisit the primordial fluctuations;

 Curvature perturbations with temperature-dependent decay rate
* CDM isocurvature perturbations in curvaton scenario

By using sudden decay approximation and also numerical calculation



Curvature perturbations in the
curvaton scenario with
temperature-dependent decay rate

arXiv: 1407.5148



Curvaton in thermal bath { o

A, ¥
\

 Thermal eftects?

curvaton; oscillating scalar field in the radiation dominated Universe

=> It is expected that some thermal effects should exist.

e.g., ) )
L= — _ p
For background dynamics of the curvaton decay, Lins = yame 9Au ¢2’Y ¥
Lint = _MUX - )‘X§ )

e.g., temperature-dependent mass/decay rate

« modulation of the evolution of the curvaton energy density p, X a”>7
« life time of the curvaton (related to the decay rate)

There are several works
about the dynamics of oscillating scalar field in thermal bath;

Parwani (1992), J. Yokoyama (2004,2005), Engvist et al. (2011), Mukaida and Nakayama (2012),
Drewes and Kang (2013), Mukaida, Nakayama and Takimoto (2013,2014), Enqgvist, Lerner and Takahashi (2013)....

We focus on the effect of the temperature dependent decay rate on
the primordial curvature fluctuations in the curvaton scenario.



L(D/T©)

Temperature dependent decay rate

Through the dissipation, thermal mass blocking, ...
Drewes and Kang, 1305.0267
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Here, ¢ is curvaton, y; fields in thermal bath

Temperature dependence seems to be very model-dependent..




Simple toy model T,

3 0.
» Temperature dependent decay rate
C (T/my)" A,C; constant parameters
I(T) =T, | A+ _
14+C(T/my) M ;curvaton mass
Background dynamics My = 10~ Mp
10 T nv - Ov T B T 10 , i n :' 15 ' ' ' PO — 10_12mo'
rs = 0.1 ! rs = 0.1 ’
| | for the case with n = 0.
or | 1 ort 0 1 A=1land C=0
0.01 0.01 gz’r‘ B E
e for the case with n = 1.5

B N A=107% and C = 1073

T's <7 Tdec

0.1 0.1 F

N; e-folding number
as a time coordinate

0.01 001 }

0.001

0.001

ND;timeWhenF:H



* Let us consider the primordial curvature
perturbation in case with such
temperature-dependent decay rate.

* First we consider the analytic estimation by
using sudden decay approximation.



Enhancement of primordial

adiabatic fluctuations? I
 Additional curvature perturbations ??

In case with the temperature-dependent decay rate,

decay hypersurface # constant Hubble hypersurface

H=T H = const.

due to the existence of the iso-curvature fluctuations
Cf. modulated reheating

=>» Additional primordial fluctuations from the fluctuations
of the decay hypersurface??

cf. In the reheating era (inflaton decay), because of no iso-
curvature fluctuation, the enhancement does not occur..

ref. Armend’ariz-Pic’on; astro-ph/03123809,
Weinberg; astro-ph/0401313, 0405397



Delta N formalism

Starobinsky (1985), Sasaki and Stewart (1996), Sasaki and Tanaka (1998), ...

Curvature perturbation can be related with the fluctuation of the e-folding
number measured between initial time (flat hypersurface) and final time
(uniform energy density);

Naively,

ds’ = — dt* + a262<(5ijdxida:j

3 N(tpt,) = [ " Hdt
o2 (N+0N) i

; e-folding number

1 0p; | | wi=pi/pi

; equation of state of i-

"*bar”; background quantity

Curvature perturbation on uniform energy density of the i-component hypersurface



Delta N formalism

Starobinsky (1985), Sasaki and Stewart (1996), Sasaki and Tanaka (1998), ...

Curvature perturbation can be related with the fluctuation of the e-folding
number measured between initial time (flat hypersurface) and final time
(uniform energy density);

Naively,

ds’ = — dt* + a262<(5ijdxida:j

3 N(tpt,) = [ " Hdt

o2 (N+ON)

; e-folding number

W; Epi/ﬂi

; equation of state of i-

**bar”; background quantity

Energy density (including fluctuation component) of i-component



sudden decay approximation I

In the sudden decay approximation,
the curvaton instantaneously decays into radiation when H=I".

ﬁr€4(cv~—5N) 4 15063(Ca—5N) — pPtotal ;just before decay

o) 4(C7*(total)_5N) —

Pr(total)€ Ptotal ;just after decay

2 2 2 12 .
Drotal = SMZ H? = 3MZ,T? ;at the decay
"*bar” means the background quantity

Introducing curvaton iso-curvature fluctuation as

S =3 (C o — C 7") ; const. in time before curvaton decay in sudden decay approx.



sudden decay approximation I

In the sudden decay approximation,
the curvaton instantaneously decays into radiation when H=I".

ﬁr€4(c7~—5N) 4 15063(Ca—5N) — pPtotal ;just before decay

— 4(

Pr(total)€ Cr(totan) =ON) Ptotal ;just after decay

Drotal = SMP H? = 3ME? ;at the decay

"*bar” means the background quantity
Introducing curvaton iso-curvature fluctuation as

S =3 (C o — C T) ; const. in time before curvaton decay in sudden decay approx.

— SZ — B(Ca,i — Cinf) we use (, = (inf before curvaton decay
_ 200;  d0;

5 52 related to the fluctuation of the curvaton
i i




sudden decay approximation II

» Standard case = decay/dissipation rate; I" = constant case;

uniform total energy density hypersurface
= decay hypersufrace (H=I" hypersurface)

* Then we have
T'dec o 3Po
Ctota,l Clnf -+ 3 S Mdec - 3po +4pr | g_r

and non-linearity parameter fNL is

0 _ é _ §7a doc Large fNL can be realized

4rdec 3 6 for the small r_dec.

INL =



sudden decay approximation III

« Thermal effect & decay/dissipation rate; I' = I'(T) can fluctuate;

[' depends on the temperature, i.e., only radiation component.
On the other hand, total energy density is determined by the radiation
component and curvaton component.

decay hypersurface # constant Hubble hypersurface
H=T H = const.

* Then we have cf. modulated decay

S T'dec S. T'dec oI of the curvaton,
Ctotal _ Cmf Bl (2 . with another field
3 6 I |,_ | |
H=T Langlois and Takahashi (2013)
and 1n our setting, Assadullahi et al. (2013)
Enomoto et al. (2013)
oI'  OlnI’ 6T OInl
— = X T X (Gr = ON) 1/4
I 8 h'l T T (9 ln T T Py’ ; temperature

(" *self-modulated” decay of the curvaton) cf. Mukaida et al. (2014)



sudden decay approximation IV

* Finally we obtain,

T'dec T'dec oI’
Ctotal — Cinf | Sz — .
3 6 T |,
or ~ OInT —Tdec/3 S
T _ah’lTxl—<Tdﬁ_‘_l) oInT ~ i
H=T 6 2) 0InT

and also, the non-linearity parameter is given by

1T 5 1—
+DT) 3G

5 1
(2

o3 |




sudden decay approximation IV

* Finally we obtain,

T'dec T"dec oI’
Ctotal — Cinf | Sz T .
3 6 T |,_.
5F 0 h.l F _r(‘]pr/g

Ulgr 9InT <_1_(rd_§c+%)$

and also, the non-linearity parameter is given by

; 5 1— 117 5 1—
AN LA

n
For example, [' oc T’ OlnI

olnT forn = 1.5, rqec — 1, where I :=
=n

OlnT Diverge?? = Tdec




However,...

How about in numerical calculation??



Numerical study by delta N I

» r-parameter related with entropy production rate

o \ —1 4/3 ...
rs(q) =1— (1 + %1) with ¢ := (%> —1 S ’ initial entropy

I(T) =Ty {A + %] Ts T dec S f total entropy after the
complete curvaton decay
(C - Cinf)/si
12 m, = 10710 Mp
10] F0 — 10_12m0
- for the case with n = 1.5
" A =105 and C = 103

magenta; sudden decay formula

green; numerical result

black dashed; 7 /3

> sudden decay approximation
- does not work well..

0'6;* Changing O corresponds to

- changing T'g

04+

, - thermal effect is not so large
02+

__——

ool small deviation
0.2 04 0.6 0.8 1.0 appear around r~1 ?




Numerical study by delta N II

« n-dependence C(T/mo)"
I'NT)=T1¢g | A
(T) o[ T e
(€ — Cinf)/Si fNL
05— 0e—_—_
o= () e no= () -
04 F n—=1-— ',-":‘ 81 n=1—
- 6 L n—15
0.3 1 4l n=18----- |
0.2 fNL(ana)
2 n
01t ol
o L 2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.1 02 0.3 04 0.5 0.6 0.7 0.8 09 1

T Ty

In sudden decay approximation, it could be possible to realize the large enhancement!
However, we cannot see such effect in the numerical calculations..



Discussion

» Validity of sudden decay approximation
* Focus on the evo. of the curvaton iso-curv.



Perturbation equation

d¢ S dS
. S — = S
dN 723’ dN Ts S,
o/ 3-29 )\ (42 [ 30,
%= () () ()
7. o= __9 4(1 —g) — (4 —39)%,

2(1—g) 3—2g

3 — 2g ? o}
b <4<1 - (4—3g>ﬂa) 2= S g

X

S.
¢ = (g + [ ANF(N) 2,
g(N) =T /(T + H) / 3

0 = pu Fon) = TWesp [ [ an 75001




Evolution of the iso-curvature
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S/S;

0.10 | 0.10

0.05 0.05 |

0.02 0.02 |

In curvaton scenario, for relatively large r_s case,
The iso-curvature perturbations have been already suppressed at the decay!!



Evolution of the iso-curvature

2.00

2.00

1.00 1.00

0.50 0.50

0.20 | 0.20 r

S/S;

0.10 0.10

S/S;
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Sudden decay formula in case with temperature dependent decay rate,

T'dec T'dec oI’
Ctotal — Cinf | Sz —
3 6 T |, .
or ~ OInT 9 —Tdec/3 « S
I H:F—alnT 1‘(%"‘%)% Z

We assumed that the isocurvature perturbations remain constant =» not correct!!



Summary 1

* Thermal effect really appears in primordial
curvature perturbations?

By using simple sudden decay approximation, large thermal effect seems to
appear.

But, in the numerical result obtained by using delta N formalism, such large
effect does not appear.
=» Sudden decay approximation is not always valid!

Temperature dependence of the decay rate seems not to give large effects
in the adiabatic curvature perturbations. (but small deviations appear..)



* New questions;
Sudden decay approximation is good or not?

« How about the estimation for the CDM isocurvature
perturbations?

Kitajima, Langlois, Tahakashi, SY in prep.



CDM isocurvature perturbations

CMB temperature anisotropies

Planck 2015
and E-polarization

Scpm = 3(CCDM — C), " o PR

3
10 F — = -

—— —

2
. 10 L
CMB constraints; — — —pure ADI

S]\z 1 pure CDI y =
ﬁiso(k) _ Pff(k) . % 100 pure NDI
PCC (k) + ij(k) T = CDM > 10 pure NVI
10"
B iso < ().033 ;uncorrelated 107}
10° : : :
/BiSO < 0 . 04 ;correlated " Multipl?e (0) N
95%CL.
Basically, ADI; adiabE}tic pert.
CDI; CDM isocurvature pert.
S NDI; neutrino density iso-.
CDM < C NVI; neutrino velocity iso-.




CDM i1socurv. in curvaton scenario I

SCDM = S(CCDM — C)a

Final diabatic curvature perturbations in curvaton scenario;

I'dec : 87, =3 Ca,z' — Cinf
C: Cinf | S; ( | )

3 :intrinsic curvaton fluctuations

CDM; in thermal equilibrium in the early Universe (e.g. thermal WIMP)

1 I |||||||| T TTTTT T TTIT
: 0.1
Naively, 10-2
. 10-3
* Decoupling before curvaton decay 197 increasing
10-6 <ogv>
CcpM = Cint > 107 Y-
10-9 |
T'dec 1011 \-J___
— _ . _ l - N
Scpm = —3 3 S; ~ —3C ruled out ! 10-12 S R —
10—14 | IIIIIII| | IIIIIII| Ll
. . . 1 10" 10% 103
if Clnf 1S neghglble Ref. The early Universe, Kolb & Turner m /T time



CDM i1socurv. in curvaton scenario I

SCDM = S(CCDM — C)a

Final diabatic curvature perturbations in curvaton scenario;

I'dec : 87, =3 Ca,z' — Cinf
C: Cinf | S; ( | )

3 :intrinsic curvaton fluctuations

CDM; in thermal equilibrium in the early Universe (e.g. thermal WIMP)

. 1 I |||||||| T T TTTT T TTTT
Naively, 91
. 10-2
* Decoupling after curvaton decay 197 increasing
10:3 <ov>
Ccom = ¢ gl o
10-9 |
1010 —
L 10—11
ScpMm = 0 10-: Y, N
10—14 | IIIIIII| 1 IIIIIII| L1l

1 101 10 103
urner m /T time

Ref. The early Universe, Kolb &

—



CDM i1socurv. 1n curvaton scenario Il

SCDM = S(CCDM — C)a

Final diabatic curvature perturbations in curvaton scenario;

I'dec 87,:3 0,2 — Sin
C Cmf‘l‘ d —35; (C C f)

3 :intrinsic curvaton fluctuations

CDM; generated directly from the curvaton decay

Naively, Ccpm = C o, From the observational constraint,
0.98 < Tdec
> ScpMm = (1 — Tdec)S’i
| > Sy~ 1.2
—7q
> Scpm/¢ =3 —
Tdec

if Cinf is negligible



* Isocurvature perturbations could be a
powertful tool to see the early Universe.

Other example, axion DM (Planck 2015)

and, Hayakawa, Harigaya, Kawasaki, SY (2014)
discusses a specific model,
so-called ' “sneutrino curvaton scenario”

* Tight constraint obtained from current observations

=» More precise discussion seems to be useful.



Sudden freeze out approx. I

Lyth and Wands, astro-ph/0306500,
and more...

* Let us focus on the case,
CDM; in thermal equilibrium in the early Universe (e.g. thermal WIMP)

System;
Radiation;
Curvaton;
CDM;

Friedmann eq.;

3/2
(eq) __ ml’ / —m/T
nCDM =d —27'[' e :

dp,
4Hp, = T'p,,
dt + P P for non-rela.
dp,
T, 3H o — _F o
7i + P P
dn . 2
72 1 1

— (/0?“ + Po T pCDM) = (p?“ + pa) ;
3M§1 3M§1

A = (ov) ; thermally-averaged cross section



Sudden freeze out approx. I

Lyth and Wands, astro-ph/0306500,
and more...

* Let us focus on the case,
CDM; in thermal equilibrium in the early Universe (e.g. thermal WIMP)

System;
Radiation;
Curvaton;
CDM;

Friedmann eq.;

3/2
(eq) __ ml’ / —m/T
nCDM =d —27'(' e :

dp,
4Hp, =T o
dt + P P for non-rela.
dp,
T, 3H o — _F o
p + P P
dn . 2
72 1 1

— (/07" + Po T PCDM) = (pr + pa) ;
3M§1 3M§1

A = (ov) ; thermally-averaged cross section



Sudden freeze out approx. II

Lyth and Wands, astro-ph/0306500,
and more...

e evolution of n CDM

dn o 2
;fM +3Hncpy = — )\ (néDM — (né%&) )

. . e o
Large RHS; NEDM ™ nng%)M <«—— Criterion;

H = Tepy i= nSY A

* Large LHS; -3
ncpM X @ -—
1 E
3/2 0% E
=0 (B) e EE N
I * ' _5 i mcreasing
H = FCDM 2m 10 f
= 1070 F V4
: time of freeze-out (eq) 3 1070 ¢ -
) (ncpm ¢ 1) igiié 1 T
— €q for relativistic m << T 10-18 : e \_—“
ncopM (t) — Ncpwm (tfr) o 12)1 1l)_2 10°
nCDM m/T time——=
for © > Tg ; sudden freeze-out Y= S




Sudden freeze out approx. III

Lyth and Wands, astro-ph/0306500,
and more...

* Sudden decay approx.

=» Adiabatic curvature perturbations in curvaton scenario

=» In case with temperature dependent decay rate, it seems not to be good...

* Sudden freeze-out approx.

=» Matter isocurvature perturbations for thermal relics

H = Tepm = néiu(T)A

=» Effective " annihilation rate” depends on temperature !!
=» Naively, by taking into account this ' *modulation of freeze-out hypersurface”
seriously, isocurvature perturbations would be reduced..

Sudden freeze-out is good or not?



CDM i1socurv. in curvaton scenario I

SCDM = S(CCDM — C)a

Final adiabatic curvature perturbations in curvaton scenario;

T'dec 5 =3 Ca,z' — Cinf
C: Cinf | S; ( )

3 :intrinsic curvaton fluctuations

CDM; j ermal equilibrium in the ear iverse (e.g. thermal WIMP)
4 1 I |||||||| T TTTTT I TTTIT
ively, N
. 10-3
* Decoupling before curvaton decay 197 increasing
L 10-6 <ov>
CcpM = Cinf » 107 b
10-9 |
rdeCS 3 I ' %8:1? \_J___
= — -~ — ruleg/out ! -12 N B
SCDM 3 3 Z C igzii | IIllllllYeI |||||II| L L1l

1 10! 102 103
urner m /T tme

inf 1is negligible . The early Universe, Kolb &

—



Precise expression

Kitajima, Langlois, Takahashi, SY in prep.

Basically derivation is the same as in the previous discussion.

* Freeze-out before curvaton decay;

Lyth and Wands (2003)

QU,fr

m

Scom/¢ =3 [
T'dec

(

Tfr

3

2

1

E

—1
QA fr — 2) + Qa,fr ]

Cinf is neglected

For QJ,fr < Tdec > SCDM/C ~ —3

27ﬂdec:

Qo e
For m/Tfr ~20 = Scom/¢(~3 ( fr 1)

( to obtain QCDMh2 =0.115 )

Not so suppressed..

* Freeze-out after curvaton decay;

Scpm =0

(9 In FCDM
OlnT

_m n 3
Ty 2
due to the modulation

of freeze-out hypersurface

QA fr =

H=I'"cpwm

o
Qa,fr = 3]\;%1

H=I'cpm

sigma; curvaton



How about in numerical calculation??



Numerical study (by delta N) I

e (eq) 3/2_—m/T
non-relativistic case n¢py o 7%/ ™™

30p o peremceme o s, 03 | Ts 4 Tdec
2.5/ °,* 01
: . ]
N 20) L5061 m/T ~ 20
E 15‘ Q:‘ ]
7] 5
' 1.0¢ ¢ 1 Negq; equality time
0.5/ ..:‘, Po = Pr
; *8]
00 . . . .. . ®]
-12 -10 -8 -6 -4 -2 0
Nfr_Ndec A
< >

f.o. before curvaton decay | f.o. after ...

Basic behavior is almost consistent
with analytic expression. Kitajima, Langlois, Takahashi, SY in prep.



Numerical study (by delta N) II

3—————o——o———o——-o——-g———'——-.-..;__\ 3:’---0--‘--“"""" “““ | LT R ’
R [ M N
[ o ] [ R
S 2 N 2: N
= = L ]
S S 10 ]
S 1f w 1r
1 1 L
0r oL
3————.——————7——" ———————— B rs = 0.3 7 Ts = 0'6
analytic D re ]
s -1 ‘ ‘ ‘ -1 ‘ ‘ ‘
21 . LN 104 0.001 0.010 0.100 1 10~ 0.001 0.010 0.100 1
A numerical =
E Qa,frlrs Q‘-,’f,-/l’s
[$] 1 L
(7]
1
of 7s=0.1 3o —me-—g~m e R o--0-~-¢
mcepm/Te = 20 MRS T
\ N
-1 s w ‘ [ LN [ j
10 0001 0010  0.100 v 2 N 2 \‘
= =
Qg 4l 8 8
ofrlls UI? 1+ UIL,) 1L
0r oL
re =0.9 rs = 0.999
-1 - - - -1 . . .
10~ 0.001 0.010  0.100 1 10~ 0.001 0.010  0.100 1
Qa,frlrs Qa,fr/rs
Qoge (M 3 1 |

Black dashed ;

Scom/¢ =3

T'dec Tfr

2

2006 —2) + Qo

Kitajima, Langlois, Takahashi, SY in prep.




Discussion |

e For CDM isocurvature

Sudden freeze-out formalism seems to be valid.
Small change of Hubble

ol I'cpom el

L)
L
L]
L]
L]
e 1.x107% ¢ .
L]
1070 . I \
L]
. 1.x107%0 - 8
L

H
T
N N
does not give large modification.. in contrast with temperature-dependent

decay rate of curvaton



Discussion 11

e For CDM isocurvature

* Freeze-out before curvaton decay;

Qa fr m 3 1
S =3 |2 =3 -
C'DNI/C= [Tdec (Tfr 2) 2(@/\7& — 2) -+ Qa,fr

This seems to be correct.
Even if the modulation of the freeze-out hypersurface is taken into account,
CDM isocurvature perturbations are still large in this case. .

e Freeze-out after curvaton decay;

Scpm =0



Summary 2

 Revisiting CDM (thermal relics) isocurvature
perturbations in curvaton scenario.

e Sudden freeze-out approximation seems to be good for
such case.

Qafr m 3 1
S =3 |2 =3 -
CDl\/I/C= [Tdec (Tfr 2) Z(QA,fr — 2) + Qa,fr

The simplest case in this scenario is already ruled out..

If we include the fluctuations of the inflaton, we can rescue this scenario.
And from the observational constraint, we can obtain implications for the parameters.



Summary 1

* Thermal effect really appears in primordial
curvature perturbations?

By using simple sudden decay approximation, large thermal effect seems to
appear.

But, in the numerical result obtained by using delta N formalism, such large
effect does not appear.
=» Sudden decay approximation is not always valid!

Temperature dependence of the decay rate seems not to give large effects
in the adiabatic curvature perturbations. (but small deviations appear..)



Other issues

* Axion case with temperature dependent mass
m oc TP

=» Modulation of the time of starting oscillation

* Any other interesting examples??



Hot relics

By sudden freeze-out approx.,

e (eq) 3
relativistic case Mepy X 1

Before 3 0.3

IS — _3 | **
cpm/( o ol
= |
S |
after D1l
Scom =0 |
Or

10 8 -6 -4 -2 0 2
Sudden decay seems not to be good.. Ns—Ngec

But for large r_s,
"*before/after decay” doesn’t matter.. ' *before/after dominated” is important..



appendix



Numerical analysis by delta N I

° I' = constant

N -, |
L | |
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black dashed; 7 /3 black dashed: = _ 2 2T
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blue box; numerically evaluated 7°ec

' _ 0.924 1oy ., o JH
red triangle; Gupta et al. (2004) fitting formula 7(®) =1- 1+ 55-p) with p = | 8o/ = .

green circle; entropy production rate

0 \ -1 4/3
(we newly introduce. r (o) =1— (1 i | vith o — | 2L 1
briefly explain this later.) rs(a) L R S;
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