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Inflation from holography

 Inflation is now quite compelling. 

©esa

- Can we describe inflation holographically?

If YES, what’s the prediction? 

WMAP, PLANCK, ...

If NO, what’s the obstacle?
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- Planck scale excursion is marginally allowed.
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UV sensitivity of inflation

time
energy
・Perturbation with controlled radiative corrections

©esa

- High energy scale near Plank scale 

- Planck scale excursion is marginally allowed.



Outline of this talk

1. dS/CFT

2. Inflation/QFT

4. ζ correlators from boundary

3. Boundary QFT

skipped



Gauge/Gravity correspondence

Holographic principle suggests that a gravity theory should 
be related to a non-gravitational theory in one fewer dimension.

・Holographic principle ‘t Hooft(92), Susskind(95)

+ RG flow
d-dim gauge theory (d+1)-dim gravity theory

・Non-trivial duality Maldacena (97)

‘tHooft coupling λ λ=(r0/ls)4 Curvature scale r0

 Strong coupling

Boundary CFT Bulk gravity

 λ ≫1, r0 ≫ ls  Weak coupling
 Weak coupling  Strong coupling λ ≪1, r0 ≪ ls 



AdS/CFT as H-J formalism

Recall Hamiltonian-Jacobi formalism....
+ RG flow

d-dim gauge theory (d+1)-dim gravity theory

using equation of motion for (d+1)-dim theory

�S � Ldz
��z=z1

z=z2

z=z1

z=z2

(d+1)dim
trivial B.C.

holographic plane → CFT

see also... holographic renormalization
S. Haro et al.(00), Skenderis(02), ....



Geometry of AdS and dS
de Sitter (dS)Anti de Sitter (AdS)

Vacuum with Λ < 0 Vacuum with Λ > 0

in R2,3 (-,-, +, +, +) in R1,4  (-,+, +, +, +) SO(1,4)SO(2,3)
-X0 2-X1 2+Σ Xa2= - A2

a=2,3,4
-X0 2+X1 2+Σ Xa2= A2

a=2,3,4

z=0

z=-∞ z:const, R3
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η:const, R3
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Boundary
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dS/CFT
Strominger(01), Witten(01)

η=0

η=-∞

・CFT lives on the spacelike boundary
at the future infinity of dS.

・Wave function for bulk gravity ΨdS[g]=ZCFT

Maldacena(02)

Probability distribution PdS[g]= |ZCFT|2

Here, we focused on the simplest (but very special) QFT model with many nearly
marginal operators, namely the case where there is no operator mixing along the RG flow.
It would be very interesting to extend the analysis to the generic case. It would also be
interesting to present holographic versions of multi-field models that are already discussed
in the cosmology literature. We leave such studies for future work.
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A. Analytic continuation

We review in this appendix the analytic continuations needed using an example the case
of a massless scalar field in four (bulk) dimensions. This example was discussed in detail
in Ref. [7] so we will simply borrow the results from there. This appendix also serves
to illustrate that the analytic continuations in Ref. [7] and Ref. [39], despite apparent
differences, are equivalent.

The renormalised on-shell action for a massless scalar in EAdS is given by

SAdS ren = − 1
κ2

∫
d3k

2π3

1
2
R2

AdSk3φ0(−k)φ0(k)

= −
∫

d3k⟨O(k)O(−k)⟩φ0(−k)φ0(k) , (A.1)

where φ0 is value of φ at the conformal boundary of AdS and the source for the opera-
tor O. This is obtained by directly evaluating the on-shell action and using holographic
renormalisation [64] (see Eq. (5.4) of Ref. [7]). Here (as in the main text) we adopt the
“supergravity normalisation” where there is an overall factor of 1/κ2 in front of the action.
The 2-point function of dual operator is then given by

⟨O(k)O(−k)⟩ = − δ2SAdS ren

δφ0(k)δφ0(−k)
=

1
2

R2
AdS

κ2
k3 . (A.2)

A direct evaluation of the on-shell action in de Sitter (again normalised with an overall
1/κ2) yields [7]

Re(iSdS) =
1
κ2

∫
d3k

2π3

1
2
R2

dSk3φ0(−k)φ0(k) . (A.3)
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- Euclidean AdS
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Z ~ e-S

- dS

This is related to (A.1) by

RAdS = −iRdS . (A.4)

Then one can compute the bulk 2-point function using the wave function ψbulk[φ0] =
exp(iSdS) to obtain

⟨φ(k)φ(−k)⟩ = − 1
2Re⟨O(k)O(−k)⟩

∣∣∣
RAdS=−iRdS

=
κ2

R2
dS

1
k3

. (A.5)

In Ref. [39] the bulk in-in correlators were computed using the in-in formalism and
compared with the corresponding correlators in the dual QFT. In this section, the AdS
and dS radii were set to one and the following holographic formula was obtained

⟨φ(p)φ(−p)⟩ = − 1
2Im⟨O(−ip)O(ip)⟩

∣∣∣
κ2→−κ2

= κ2 1
Im(−ip)3

= κ2 1
p3

, (A.6)

which indeed agrees with Eq. (A.5) upon setting RdS = 1 there.
The apparent difference between the two prescriptions is due to fact that the three

dimensional correlator in Eq. (A.2) is on R3 with metric ds2 = R2
AdSdxidxi, while that in

Eq. (A.6) is on ds2 = dxidxi. This implies that p = RAdSk and under the continuation in
Eq. (A.4), p → −ip. This then converts the real part in Eq. (A.5) to the imaginary part
in Eq. (A.6). Once we set RdS = 1 the overall minus in the correlator due to the overall
factor of R2

dS in Eq. (A.2) is now accounted for by taking κ2 → −κ2.
In this example, the entire effect of the analytic continuation is to produce an overall

minus sign. In more general cases the action of the analytic continuation is more non-trivial
and produces additional signs, see Ref. [48] for an example. If one uses the conventions of
Ref. [7] one must keep explicitly the factors of RdS in order to do correctly the analytic
continuation. In the cases we discuss in this paper where we only compute the leading
order terms (in the deformation parameters) the effect of the analytic continuation is to
only produce an overall sign.

Finally, we note that the analytically continued correlators that enter the holographic
formulae of the power spectrum also have a meaning in the original QFT− without any
analytic continuation: they are related with the spectral density associated with the 2-point
function of the energy momentum tensor [48].

B. Inverting W (2)
ab

In this appendix, we derive the power spectra for the adiabatic and entropy perturbations
by computing the inverse matrix Ŵ (2)−1

ab (k). For simplicity, we consider the two field case
where the structure constant Cabc satisfies Eq. (3.17) and hence the RG equation becomes

– 21 –

Analytic cont. connects dual boundaries of dS and AdS



Challenges of dS/CFT

Dual boundary theories to dS are non-unitary. 

・Poor understanding on analytic continuation. 

・Holographic direction is time like.

・Lack of a concrete example.

Extendable to a non-perturbative example in 1/N?

Good property?

Λ → - Λ N → - N

First concrete example of dS/CFT
Anninos, Hartman, &Strominger(11)

Vasiliev gravity in dS4 Sp(N) CFT3 living at J  +



Outline of this talk

1. dS/CFT

2. Inflation/QFT

4. Conservation of ζ

3. Holographic inflation (Simplest setup)



Inflation

de Sitter space

(ex)mass

Deformed CFT

CFT on R3

4D hyperboloid:

in 5D flat spacetime

ds2
4 = {�µ�XµX� = H�2}

SO(1,4)

Breaking symmetry

・Poincare T.

・Dilatation
・Special C.T.

Breaking dS sym. Breaking conf. sym.

Cosmological const. Λ
      + inflaton φ

 CFT
   + φO



Inflation 
= dS + modulation

Standard lore of inflation
4D bulk

Given that....
- GR, V(φ)
- GR, V(φ), P(X=(∂φ)2)
- f(R), V(φ)

and so on

φ(t), <ζζ....ζ>, .....

local QFT weakly coupled to gravity



Inflation 
= dS + modulation

QFT 

Holographic inflation

CFT+1 deformation

Ψbulk[φ]  =   ZQFT [g]

4D bulk 3D boundary

deformation

Necessary building blocks 
- φ& g relation?

- t & µ relation?{
ZQFT =

Z
D� exp


�SCFT �

Z
gO[�] + · · ·

�



Conservation of ζ  
From cosmological perturbation

Single clock           ∂tζ  = O((k/aH)2)

・Energy conservation                    �µT 0
µ = 0

Wands et al.(00), Weinberg (03), Lyth et al(04), 
Langlois&Vernizzi(05),...

� �� + 2 z�

z � � � ⇥2� = 0

(ex) Single inflaton in Einstein gravity

・Holds at full non-linear order       



Inflation 
= dS + modulation

QFT 

Holographic inflation

CFT+1 deformation

Ψbulk[φ]  =   ZQFT [g]

4D bulk 3D boundary

ZQFT =
�

D� exp
�
�SCFT �

�
gO[�]

�

Conservation
of Pζ

- φ& g relation?

- t & µ relation?{ a(t) ∝ µC    C : const J.G.&Y.U.(14)

Field redefinition



Outline of this talk

1. dS/CFT

2. Inflation/QFT

4. Conservation of ζ

3. Holographic inflation (Simplest setup)

ZQFT =
�

D� exp
�
�SCFT �

�
gO[�]

�

skipped



What’s RG flow?
µp:Physical scale µ:Cutoff scale 

given that µp  <<  µ 1/µp

1/µ
(ex)  interaction      S = Π     Σ  φ(pi)

i =1,2,3,4 pi < µ

F phys(µp ; g(µ), µ)  = F phys(µp ; g (µ’ ), µ’ )Physical quantity

g: Physical constant

Rrenormalization group (RG) flow 



Boundary QFT

SQFT = SCFT + δS

µ : Renormalization scale

O : Boundary operator consists of χ
g : Dimensionless coupling 

Conformal perturbation theory

�S =
�

d3x gO[�]

3. Deformed conformal field theory

In this section, we describe the features of the d-dimensional field theory dual to the

(d + 1)-dimensional inflationary spacetime. For simplicity, we shall assume that d is odd

since in this case a conformal field theory (CFT) has no conformal anomaly. We consider

a local field theory where the the conformal symmetry is broken by the introduction of a

deformation operator:

SQFT[χ] = SCFT[χ] +

∫

dΩduO(x) . (3.1)

Here dΩd is the d-dimensional invariant volume and SCFT is the action at the UV or IR fixed

point (FP), which preserves the conformal symmetry, while u is a coupling accompanying

the deformation operator O. In this section, assuming the flat space, we solve the RG

flow. Then, the coupling constant u varies depending on the renormalization scale µ. The

µ dependence of u will be reinterpreted as the time dependence of the background scalar

field in the bulk.

3.1 Formulas

Before we solve the RG flow, we summarize the formulas for the CFT in the flat Rd. The

conformal invariance determines the two-point function and the three point function as

⟨O(x)O(y)⟩CFT =
c

|x− y|2∆
, (3.2)

and

⟨O(x)O(y)O(z)⟩CFT =
C

|x− y|∆|y − z|∆|z − x|∆
, (3.3)

with the constant parameters c and C. Here, ∆ is the scaling dimension of the operator

O. The operator product expansion (OPE) is then given by

O(x)O(y) =
c

|x− y|2∆
+

C

c

O(x)

|x− y|∆
+ · · · (3.4)

for |x − y| → 0 [32]. In Eq. (3.4), we abbreviated the non-singular terms in the limit

|x− y| → 0.

3.2 RG equation

Following Ref. [33], we study the RG flow for the local deformed CFT with the action (3.1).

The generating functional is given by

ZQFT =

∫

Dχ exp

(

−SCFT −

∫

ddxuO(x)

)

. (3.5)

First we consider the correlation functions with the UV cutoff scale µ0, which are given by

⟨O(x1) · · ·O(xn)⟩µ0

=
1

ZQFT

∫

DχO(x1) · · ·O(xn) exp

(

−SCFT −

∫

ddxu0O(x)

)

, (3.6)
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g(0 ≦　<< 1)

(~ Slow-roll expansion)
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- Correlators for CFT



Beta function & FP

Figure 1: The evolution of the dimensionless constant g(µ) for λ = 1/50, 1/2,−1/2,−1/50.

Using the dimensionless coupling constant g(µ), we introduce the beta function as

β(µ) ≡
dg(µ)

d lnµ
. (3.15)

Inserting Eq. (3.13) into Eq. (3.15), we obtain the RG equation as

β(µ) = λ g(µ) +
C̃

2
g2(µ) +O(g3) . (3.16)

The second term stems from the quantum corrections, which leads to the deviation from

the classical scaling. This analysis is valid for small g, in which case the RG flow can

be solved perturbatively. Note that the beta function does not include the UV cutoff µ0

explicitly, so we can send it to infinity.

3.3 Solving RG flow

In the previous subsection, we obtained the RG equation (3.16). Next, solving the RG

equation, we examine the evolution of g(µ) more explicitly. In the following, assuming

that the dimensionless coupling constant g(µ) is kept small totally along the RG flow, we

neglect the terms with O(g3) in Eq. (3.16). Assuming the presence of the IR and UV FPs,

we request that in the vicinity of the UV FP, the operator should be a relevant one and in

the vicinity of the IR FP, should be an irrelevant one. Without loss of generality, we can

assume g > 0.

Equation (3.16) reveals that only when

λ

C̃
< 0 , (3.17)

the RG flow has two FPs at g(µ) = 0 and g(µ) = −2λ/C̃. In this case, the RG equation

(3.16) can be solved as

g(µ) =
2

1 +
(

µ
p

)λ

(

µ

p

)λ

g(p) , (3.18)
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β function

C̃ � C

c

Figure 1: The evolution of the dimensionless constant g(µ) for λ = 1/50, 1/2,−1/2,−1/50.
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Classical scaling Quantum corrections 

Klebanov et al.(11)

  - Fixed point (FP)  β=0

For          < 0C̃/� Two FPs    g=0,   �2�/C̃

For          ≧ 0C̃/� One FP    g=0,   

λ=Δ - 3



Solving RG flow
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Figure 1: The evolution of the dimensionless constant g(µ) for λ = 1/50, 1/2,−1/2,−1/50.
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we request that in the vicinity of the UV FP, the operator should be a relevant one and in

the vicinity of the IR FP, should be an irrelevant one. Without loss of generality, we can

assume g > 0.

Equation (3.16) reveals that only when

λ

C̃
< 0 , (3.17)

the RG flow has two FPs at g(µ) = 0 and g(µ) = −2λ/C̃. In this case, the RG equation

(3.16) can be solved as

g(µ) =
2

1 +
(

µ
p

)λ

(

µ

p

)λ

g(p) , (3.18)
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with

g(p) ≡ −
λ

C̃
, (3.19)

where a pivot scale p is introduced as an integration constant. In the case with λ < 0, the

coupling constant g(µ) flows from 0 in the UV to 2g(p) in the IR. On the other hand, in

the case with λ > 0, the coupling constant g(µ) flows from 2g(p) in the UV to 0 in the IR.

4. Deriving the ζ correlators

In this section, we consider the boundary QFT in the presence of the curvature perturbation

ζ, playing the role of an external source. Then, using the generating functional for the

deformed conformal field theory, we will derive the relation between the vertex function

W (n)(x1, · · · , xn) and the correlation functions of the boundary operator O in flat space.

4.1 Gauge conditions

In cosmological perturbation theory, the freedom to choose coordinates is usually referred

to as gauge freedom. This corresponds to a choice of the time slicing, and with the choice of

spatial coordinates on each slice. In the holographic description, we may think of a constant

time slice as a holographic plane in which the QFT lives, while different times correspond

to different values of the renormalization scale. Correlators of the gauge invariant variable

ζ should be independent of the gauge choice (see also the discussion in Ref. [12]).

As the dictionary which relates the bulk and the boundary, in this paper, we assume

that the coupling constant g is related to the inflaton as

g(µ, x) = φ(t(µ), x) , (4.1)

where we set Mpl = 1. Since we assumed that the renormalization scale µ in the boundary

is associated with the time coordinate t in the bulk, we wrote the time coordinate of φ as

t(µ). Equation (4.1) does not provide any restriction on the bulk dynamics, since we are

not specifying the form of the kinetic term for φ, or its potential. One may be interested in

using more general function g[φ] instead of the linear one (4.1), but this can be understood

simply as a change of variable which should not change the physics1.

In the following, we compute the correlators of ζ, using two gauges. In one gauge, we

choose the holographic plane by requiring

δu(t, x) = δg(t, x) = δφ(t, x) = 0 , (4.2)

and the spatial coordinates by requiring that the spatial metric should be in the form:

hij = a2(t)e2R(t,x)δij , (4.3)

1In fact, we can show explicitly that the power spectrum of ζ is independent of the functional form of

the local relation g(µ, x) = g[φ(t(µ), x)] (assuming that it is invertible).
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Here, we note that the n-point function of ζ is described solely in terms of the vertex

functions W (m) with m ≤ n. For instance, as is shown in Ref. [18], the power spectrum of

ζ is given by

⟨ζ(x1)ζ(x2)⟩conn = W (2)−1(x1, x2) , (5.2)

with the inverse matrix of W (2)(x1, x2), and the bi-spectrum is given by

⟨ζ(x1)ζ(x2)ζ(x3)⟩conn = −

∫ 3
∏

i=1

ddyiW
(2)−1(xi ,yi)W

(3)(y1, y2, y3) . (5.3)

To make the power spectrum of ζ conserved, the vertex function W (2) should be indepen-

dent of µ. Given that the power spectrum is conserved, to further make the bi-spectrum of

ζ conserved, the vertex function W (3) should be also independent of µ. Thus, to make all

the m-point functions of ζ with m ≤ n conserved, the vertex functions W (m) with m ≤ n

should be totally independent of µ. Therefore, in the following, we study the µ dependence

of the vertex function W (n).

In this subsection, we study whether the correlators of ζ become µ independent or not

under the following two assumptions:

• The gauge invariant variables ζ and δgf are locally related schematically as

ζ(x) = ζ[δgf (x)] . (5.4)

• The dual boundary theory can be renormalized by using the wave function renormal-

ization Z(µ) as

Z−n/2(µ)⟨O(x1) · · · O(xn)⟩µ = Z−n/2(µ0)⟨O(x1) · · · O(xn)⟩µ0 . (5.5)

The first assumption will hold generally at large scales (see for instance Eq. (4.8)), unless a

non-local operator, which typically gives rise to the singular pole in the limit k → 0, shows

up in the relation between ζ and δgf .

In Sec. 4.3, using Eq. (5.4), we derived the vertex functionW (n) as in Eq. (4.23). First,

we consider the power spectrum, given by the inverse matrix of

W (2)(x1, x2) = −2Re
[

B2
1(µ)⟨O(x1)O(x2)⟩µ

]

. (5.6)

Inserting Eq. (5.5) into Eq. (5.6), we find that to make W (2) independent of µ, the wave

function renormalization Z(µ) should satisfy

d

dµ

[

B1(µ)
√

Z(µ)
]

= 0 . (5.7)

Next, we consider the bi-spectrum of ζ, expressed by W (2)−1 and

W (3)(x1, x2, x3)

= −2Re
[

B3
1(µ)⟨O(x1)O(x2)O(x3)⟩µ

+B2(µ)B1(µ) {δ(x1 − x2)⟨O(x2)O(x3)⟩µ + (cyclic perms)}
]

. (5.8)
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integrating out k>µ, changing µ, using OPE

When the condition (5.7) is fulfilled, the first term in the right-hand side of Eq. (5.8)

becomes µ independent. In addition, to make the terms in the third line of Eq. (5.8)

independent of µ, B2(µ) should be given as

B2(µ) = s2B1(µ) (5.9)

with a constant parameter s2. Note that using Eq. (4.25), we can express the parameter

s2 as

s2 = −
d

d lna
lnB1 . (5.10)

Repeating a similar argument, we find that only if the condition (5.7) is satisfied andBm(µ)

with m ≤ n is given as

Bm(µ) = smB1(µ) (5.11)

with a constant parameter sm, the vertex function W (n) becomes independent of µ, imply-

ing the conservation of ζ.

Next, we examine whether the conditions (5.7) and (5.11) can be fulfilled, solving the

RG flow explicitly. In Appendix A, following Ref. [27], we computed the renormalized

correlators of O and then the wave function renormalization is given as

√

Z(µ) = µ−λ

[

1 +
(µ

p

)λ
]2

= 4p−λ β(p)

β(µ)
. (5.12)

(The wave function renormalization is discussed from a different perspective in Ref. [51].)

On the second equality, we noted that using Eqs. (3.15) and (3.18), the beta function is

given as

β(µ) =
4

[

1 +
(

µ
p

)λ]2

(

µ

p

)λ

β(p) =
λ

1 +
(

µ
p

)λ
g(µ) , (5.13)

with

β(p) ≡
λ

2
g(p) . (5.14)

Using Eq. (5.12), we find that the condition (5.7) implies

B1(µ) = Cβ(µ) , (5.15)

where C is a constant parameter. When we use the relation (4.8) derived by performing

the gauge transformation, the µ dependent functions B1 and B2 are given as in Eqs. (4.24)

and (4.25). Using Eqs. (3.15), (4.24), and (5.15), we find that the renormalization scale µ

should be related to the time coordinate in cosmology as

ln(µ/µ0) = C ln(a/a0) , (5.16)
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where R is the curvature perturbation. In this paper, the tensor perturbation will be

completely neglected. As in the standard CPT, we refer to this gauge as the uniform field

gauge. By definition, the curvature perturbation in the uniform field gauge gives the gauge

invariant perturbation ζ, i.e.,

ζ(t, x) = R(t, x)
∣

∣

δg=0
. (4.4)

In the other gauge, we choose the slicing and the spatial coordinates, requesting

R(t, x) = 0 (4.5)

and

hij = a2(t)δij , (4.6)

respectively. We refer to this gauge as the flat gauge. In the flat gauge, the scalar per-

turbation is described solely by the fluctuation of the coupling constant δg(t, x). In the

following, we denote the fluctuation δg(t, x) in the gauge R(t, x) = 0 as

δgf (t, x) ≡ δg(t, x)
∣

∣

R=0
= δφ(t, x)

∣

∣

R=0
, (4.7)

which is also gauge invariant.

In the standard cosmological perturbation theory, performing the gauge transforma-

tion, we find that the curvature perturbation in the uniform field gauge, ζ, is related to

the fluctuation of the inflaton in the flat gauge δgf as (see e.g. [12, 34])

ζ = −
H

φ̇
δgf +

ε2
4

(

H

φ̇

)2

δg2f + · · · . (4.8)

Here we abbreviated the sub-leading terms at large scales, as well as higher orders in δgf ,

and we used the horizon flow functions, defined as

εn ≡
1

εn−1

d

d ln a
εn−1 (4.9)

for n ≥ 1, with

ε1 ≡
1

2

φ̇2

H2
. (4.10)

Notice that for the scalar field with the non-canonical kinetic term, our ε1 does not coincide

with the standard definition of the horizon flow functions, given by ε1 = −Ḣ/H2.

4.2 Renormalization and counterterms

To derive finite correlation functions, we need to perform renormalization. The studies

based on the holographic renormalization provide the necessary counterterms and renor-

malized action in the bulk (see, for instance, Refs. [35, 36, 37, 38, 39]). Meanwhile, to derive

the renormalized correlation functions based on the boundary computation, we need to in-

troduce the counterterms and determine the renormalized action in the boundary theory.

One may expect that the introduction of the counterterms will alter the boundary theory

through the contributions of the following three different types:
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�2 �
d ln �2

d ln aVertex function

Using the wave function ψbulk[ζ], the probability density function P [ζ] is given by

P [ζ] = |ψbulk[ζ]|
2 = |A|2 e−2Re[WQFT[ζ]] . (2.6)

Once we have the partition function P [ζ], we can calculate the n-point functions for ζ on

the boundary as

⟨ζ(x1)ζ(x2) · · · ζ(xn)⟩ =

∫

Dζ P [ζ] ζ(x1)ζ(x2) · · · ζ(xn) . (2.7)

Here and hereafter, we abbreviate the argument t = t(µ) if not necessary. The explicit form

of the integration measureDζ is left unspecified for the time being. This information is not

contained in the boundary QFT, since the curvature perturbation ζ is the external field in

that context and hence some additional input may be necessary. Changes in the measure

can be usually represented by local terms in the integrand, which can be incorporated in a

redefinition ofWQFT. (See also the discussion in Ref. [18].) We determine the normalization

constant A, by adopting the normalization condition:
∫

Dζ P [ζ] = 1 . (2.8)

Eliminating the background contribution WQFT[ζ = 0] by the redefinition of A, the

partition function P [ζ] is given by

P [ζ] = |A|2e−δW [ζ] , (2.9)

where we defined

δW [ζ] ≡ 2Re [WQFT[ζ]−WQFT[ζ = 0]] . (2.10)

We expand δW [ζ] as

δW [ζ] =
n
∑

n=1

1

n!

∫

ddx1 · · ·

∫

ddxnW
(n)(x1, · · · , xn)ζ(x1) · · · ζ(xn) , (2.11)

where

W (n)(x1, · · · , xn) ≡ 2Re

⎡

⎣

δnWQFT[ζ]

δζ(x1) · · · δζ(xn)

∣

∣

∣

∣

∣

ζ=0

⎤

⎦ . (2.12)

Once we obtain W (n)(x1, · · · , xn), we can give the n-point functions, following the Feyn-

man rules [18]. In particular, the two-point function for ζ(x) is given by

⟨ζ(x1)ζ(x2)⟩ = W (2)−1(x1, x2) , (2.13)

where W (2)−1(x1, x2) denotes the inverse matrix of W (2)(x1, x2), which satisfies
∫

ddx′W (2)(x1, x
′)W (2)−1(x′, x2) = δ(x1 − x2) . (2.14)

In this paper, we consider only the tree-level diagrams, neglecting contributions from loop

diagrams, which are suppressed in the large N limit [18]. In Ref. [18], it was shown

that the power spectrum and the bi-spectrum computed by using the vertex function

W (n)(x1, · · · , xn) agree with the ones obtained in Ref. [27] by using the holographic renor-

malization method.
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Conservation of ζ
Here, we note that the n-point function of ζ is described solely in terms of the vertex

functions W (m) with m ≤ n. For instance, as is shown in Ref. [18], the power spectrum of

ζ is given by

⟨ζ(x1)ζ(x2)⟩conn = W (2)−1(x1, x2) , (5.2)

with the inverse matrix of W (2)(x1, x2), and the bi-spectrum is given by

⟨ζ(x1)ζ(x2)ζ(x3)⟩conn = −

∫ 3
∏

i=1

ddyiW
(2)−1(xi ,yi)W

(3)(y1, y2, y3) . (5.3)

To make the power spectrum of ζ conserved, the vertex function W (2) should be indepen-

dent of µ. Given that the power spectrum is conserved, to further make the bi-spectrum of

ζ conserved, the vertex function W (3) should be also independent of µ. Thus, to make all

the m-point functions of ζ with m ≤ n conserved, the vertex functions W (m) with m ≤ n

should be totally independent of µ. Therefore, in the following, we study the µ dependence

of the vertex function W (n).

In this subsection, we study whether the correlators of ζ become µ independent or not

under the following two assumptions:

• The gauge invariant variables ζ and δgf are locally related schematically as

ζ(x) = ζ[δgf (x)] . (5.4)

• The dual boundary theory can be renormalized by using the wave function renormal-

ization Z(µ) as

Z−n/2(µ)⟨O(x1) · · · O(xn)⟩µ = Z−n/2(µ0)⟨O(x1) · · · O(xn)⟩µ0 . (5.5)

The first assumption will hold generally at large scales (see for instance Eq. (4.8)), unless a

non-local operator, which typically gives rise to the singular pole in the limit k → 0, shows

up in the relation between ζ and δgf .

In Sec. 4.3, using Eq. (5.4), we derived the vertex functionW (n) as in Eq. (4.23). First,

we consider the power spectrum, given by the inverse matrix of

W (2)(x1, x2) = −2Re
[

B2
1(µ)⟨O(x1)O(x2)⟩µ

]

. (5.6)

Inserting Eq. (5.5) into Eq. (5.6), we find that to make W (2) independent of µ, the wave

function renormalization Z(µ) should satisfy

d

dµ

[

B1(µ)
√

Z(µ)
]

= 0 . (5.7)

Next, we consider the bi-spectrum of ζ, expressed by W (2)−1 and

W (3)(x1, x2, x3)

= −2Re
[

B3
1(µ)⟨O(x1)O(x2)O(x3)⟩µ

+B2(µ)B1(µ) {δ(x1 − x2)⟨O(x2)O(x3)⟩µ + (cyclic perms)}
]

. (5.8)
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Power spectrum
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we consider the power spectrum, given by the inverse matrix of
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]
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Inserting Eq. (5.5) into Eq. (5.6), we find that to make W (2) independent of µ, the wave

function renormalization Z(µ) should satisfy

d

dµ

[
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√

Z(µ)
]

= 0 . (5.7)

Next, we consider the bi-spectrum of ζ, expressed by W (2)−1 and

W (3)(x1, x2, x3)

= −2Re
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B3
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Conservation

The vertex function W (n) with n ≥ 3 can be obtained similarly and we find that W (n) is

given in the form

W (n)(x1, · · · , xn)

= −2Re
[

Bn
1 ⟨O(x1) · · · O(xn)⟩µ

+B2B
n−2
1 {δ(x1 − x2)⟨O(x2) · · · O(xn)⟩µ + (cyclic perms)}+ · · ·

+

[n/2]
∑

m=1

BmBn−m
{

δ(x1 − x2) · · · δ(xm−1 − xm)δ(xm+1 − xm+2) · · · δ(xn−1 − xn)

× ⟨O(xm)O(xm+1)⟩µ + (cyclic perms)
}

]

, (4.23)

where [x] denotes the Gauss’s floor function. Here, the delta functions appeared by taking

the derivative of B(x) with respect to ζ(x), for instance, as

δB(x1)

δζ(x2)

∣

∣

∣

∣

ζ=0

= δ(x1 − x2)B2(µ) .

In Eq. (4.23), we again eliminated the ultralocal term, using the contribution from the n-th

term in Ssource[ζ]. Once the relation between δφ and ζ is given, using Eq. (4.23), we can

express the vertex function W (n) by Bn and the correlators of O in the flat space. Namely,

when we use the relation (4.8), we can express Bn as

B1 =
φ̇

H
=

dφ

d ln a
, (4.24)

B2 = −
φ̇

H

ε2
2

= −
dB1

d lna
= −

d2φ

d lna2
. (4.25)

Thus, the relation between the vertex functionW (n) and the correlators of O is specified by

invoking the relation between ζ and δgf , derived by performing the gauge transformation

in the cosmological perturbation theory. In Appendix B, we seek for an alternative way

to relate W (n) to the correlators of O. The ambiguity discussed in Appendix B.2 can be

eliminated by using the relation (4.8).

5. Conservation of the curvature perturbation ζ

In this section, after we overview the discussion about the conservation of the curvature

perturbation ζ based on the standard CPT, we address the conservation of the curvature

perturbation from holography.

5.1 Conservation in the standard cosmological perturbation theory

In cosmological perturbation theory (CPT) the conservation of the curvature perturbation

ζ holds in the large scale limit for the adiabatic time evolution, when the matter content

is dominated by a single species [40, 41, 42, 43, 44]. This is useful, for instance, in order

to evolve the predicted distribution function for ζ through the process of reheating, the
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Gauge transformation

RG flow

When the condition (5.7) is fulfilled, the first term in the right-hand side of Eq. (5.8)

becomes µ independent. In addition, to make the terms in the third line of Eq. (5.8)

independent of µ, B2(µ) should be given as

B2(µ) = s2B1(µ) (5.9)

with a constant parameter s2. Note that using Eq. (4.25), we can express the parameter

s2 as

s2 = −
d

d lna
lnB1 . (5.10)

Repeating a similar argument, we find that only if the condition (5.7) is satisfied andBm(µ)

with m ≤ n is given as

Bm(µ) = smB1(µ) (5.11)

with a constant parameter sm, the vertex function W (n) becomes independent of µ, imply-

ing the conservation of ζ.

Next, we examine whether the conditions (5.7) and (5.11) can be fulfilled, solving the

RG flow explicitly. In Appendix A, following Ref. [27], we computed the renormalized

correlators of O and then the wave function renormalization is given as

√

Z(µ) = µ−λ

[

1 +
(µ

p

)λ
]2

= 4p−λ β(p)

β(µ)
. (5.12)

(The wave function renormalization is discussed from a different perspective in Ref. [51].)

On the second equality, we noted that using Eqs. (3.15) and (3.18), the beta function is

given as

β(µ) =
4

[

1 +
(

µ
p

)λ]2

(

µ

p

)λ

β(p) =
λ

1 +
(

µ
p

)λ
g(µ) , (5.13)

with

β(p) ≡
λ

2
g(p) . (5.14)

Using Eq. (5.12), we find that the condition (5.7) implies

B1(µ) = Cβ(µ) , (5.15)

where C is a constant parameter. When we use the relation (4.8) derived by performing

the gauge transformation, the µ dependent functions B1 and B2 are given as in Eqs. (4.24)

and (4.25). Using Eqs. (3.15), (4.24), and (5.15), we find that the renormalization scale µ

should be related to the time coordinate in cosmology as

ln(µ/µ0) = C ln(a/a0) , (5.16)
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Identification between t & µ C: const
C=1+O(ε)

B1(µ) = �⌅�⇤

⌅⇥

����
�=0

J.G.&Y.U.(14)



Conserved Power spectrum

cf Agrees with the result of Bzowski+(12) in μ → ∞
Remarks

1.Amplitude

2. Spectral index

Strominger(01)
Maldacena(02)

1
c�2

� 1
⇥

�
H

Mpl

�2� =
dg

d lnµ
� d(⇥/Mpl)

d ln a
=
�

2⇤

For  k>> fp         ns-1=2|λ|     
For  k<< fp         ns-1=-2|λ|

Blue-tilted
Red-tilted

c � (Mpl/HdS)2

Fourier mode Ŵ (2)(k), which is given by

W (2)(x1, x2) =
∫

d3k

(2π)3
eik·(x1−x2) Ŵ (2)(k) (5.22)

where we used k ≡ |k|, the power spectrum of the curvature perturbation is given by

⟨ζ(k1)ζ(k2)⟩conn = (2π)3δ(k1 + k2)P (k1) (5.23)

with

P (k) =
1

Ŵ (2)(k)
. (5.24)

Expanding the r-dependent part of W (2)(x1, x2) as

1
r2(3+λ0)[1 + (fpr)−λ0 ]4

=
∞∑

m=0

(m + 3)!
3! m!

{−(fp)−λ0}mr−6−λ0(m+2)

(where we used the formula (A.26)) and using the formula

1
|x|w = 23−wπ

3
2
Γ(3−w

2 )
Γ(w

2 )

∫
d3k

(2π)3
kw−3e−ik·x , (5.25)

which is valid for w ̸= 3, we can explicitly compute the Fourier mode Ŵ (2)(k) and the
power spectrum P (k). We can obtain the power spectrum P (k) as

P (k) = − 3
8π

1
cβ2(p)

1
k3

(
k

p

)−2λ0
[
1 +

(
k

fp

)λ0
]4

{1 + O(λ0)} , (5.26)

where the beta function at the pivot scale p is given by

β(p) = − λ2
0

2C̃
= −λ2

0

8π

c

C
. (5.27)

This result agrees with the one obtained in Ref. [7], where the primoridal spectrum in the
limit µ → ∞ was computed. This agreement can be naturally expected, since here we
focused on the case the curvature perturbation becomes independent of µ. As is pointed
out in Ref. [7], for k ≪ fp the primordial spectrum becomes red tileted one with the
spectral index ns − 1 ≃ 2λ0 and for k ≫ fp, it becomes blue tilted with ns − 1 ≃ −2λ0.

Note that the central charge c is introduced as the amplitude of the correlator of O

for the “CFT” with the cutoff µ0. In the context of dS/CFT, Strominger determined the
central charge by computing the trace of the boundary energy momentum tensor [1, 2]
with the result

c ∼ −(MplRdS)2, (5.28)

where RdS is the de Sitter radius. The minus sign relative to the result in Ref. [1] is
necessary, because in his notation, the energy-momentum tensor is defined by taking the
derivative of the bulk action Sbulk with respect to the boundary metric. This differs from the
notation we are using here by a factor of i, since in the semiclassical limit WQFT ∼ −iSbulk

(see Eq. (2.6)).
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Evolution of “inflaton”

IR ~ Early time
µ ~a

λ <0

λ >0
2 

p

g(µ)
g(p) 1 

0 

~ φ

UV ~ Late time

φ

V(φ)
N.B. ns - 1=-6ε+2η



Conservation of bi-spectrum

Here, we note that the n-point function of ζ is described solely in terms of the vertex

functions W (m) with m ≤ n. For instance, as is shown in Ref. [18], the power spectrum of

ζ is given by

⟨ζ(x1)ζ(x2)⟩conn = W (2)−1(x1, x2) , (5.2)

with the inverse matrix of W (2)(x1, x2), and the bi-spectrum is given by

⟨ζ(x1)ζ(x2)ζ(x3)⟩conn = −

∫ 3
∏

i=1

ddyiW
(2)−1(xi ,yi)W

(3)(y1, y2, y3) . (5.3)

To make the power spectrum of ζ conserved, the vertex function W (2) should be indepen-

dent of µ. Given that the power spectrum is conserved, to further make the bi-spectrum of

ζ conserved, the vertex function W (3) should be also independent of µ. Thus, to make all

the m-point functions of ζ with m ≤ n conserved, the vertex functions W (m) with m ≤ n

should be totally independent of µ. Therefore, in the following, we study the µ dependence

of the vertex function W (n).

In this subsection, we study whether the correlators of ζ become µ independent or not

under the following two assumptions:

• The gauge invariant variables ζ and δgf are locally related schematically as

ζ(x) = ζ[δgf (x)] . (5.4)

• The dual boundary theory can be renormalized by using the wave function renormal-

ization Z(µ) as

Z−n/2(µ)⟨O(x1) · · · O(xn)⟩µ = Z−n/2(µ0)⟨O(x1) · · · O(xn)⟩µ0 . (5.5)

The first assumption will hold generally at large scales (see for instance Eq. (4.8)), unless a

non-local operator, which typically gives rise to the singular pole in the limit k → 0, shows

up in the relation between ζ and δgf .

In Sec. 4.3, using Eq. (5.4), we derived the vertex functionW (n) as in Eq. (4.23). First,

we consider the power spectrum, given by the inverse matrix of

W (2)(x1, x2) = −2Re
[

B2
1(µ)⟨O(x1)O(x2)⟩µ

]

. (5.6)

Inserting Eq. (5.5) into Eq. (5.6), we find that to make W (2) independent of µ, the wave

function renormalization Z(µ) should satisfy

d

dµ

[

B1(µ)
√

Z(µ)
]

= 0 . (5.7)

Next, we consider the bi-spectrum of ζ, expressed by W (2)−1 and

W (3)(x1, x2, x3)

= −2Re
[

B3
1(µ)⟨O(x1)O(x2)O(x3)⟩µ

+B2(µ)B1(µ) {δ(x1 − x2)⟨O(x2)O(x3)⟩µ + (cyclic perms)}
]

. (5.8)
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Conservation requires
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If the correlators of O are given by 
p
Z(µ) / 1/�(µ)

d ln�

d lnµ
= const. "2 =

d ln "1
d ln a

= const.cosmologically

Figure 1: The diagram of the bi-spectrum

4.2 The bi-spectrum

Next, we calculate the non-Gaussian spectrums of the primordial curvature perturbation
ζ(x). The bi-spectrum for ζ(x) is expressed by the cubic interaction W (3)(x1, x2, x3) as

⟨ζ(x1)ζ(x2)ζ(x3)⟩conn = −
∫ 3∏

i=1

d3yi W
(2)−1(xi , yi) W (3)(y1, y2, y3) , (4.14)

where using Eqs. (2.20) and (3.11), we obtain

W (3)(x1, x2, x3) = −2Re
[
(λu)3⟨O(x1)O(x2)O(x3)⟩u

− λ3u2{δ(x1 − x2)⟨O(x2)O(x3)⟩u + (2 cyclic perms)}
]
.

(4.15)

In Eq. (4.14), we noted that W (3)(x1, x2, x3) is symmetric under an exchange of the argu-
ments x1, x2, and x3. The expression of Eq. (4.14) can be diagrammatically understood
as in Fig. 1. Performing the Fourier transformation, the bi-spectrum for ζ(k) is given by

⟨ζ(k1)ζ(k2)ζ(k3)⟩conn = (2π)3δ(k1 + k2 + k3) B (k1, k2, k3) (4.16)

with

B (k1, k2, k3) = − Ŵ (3) (k1, k2, k3)
Ŵ (2)(k1)Ŵ (2)(k2)Ŵ (2)(k3)

= −Ŵ (3) (k1, k2, k3)
3∏

i=1

P (ki) , (4.17)

where Ŵ (3) (k1, k2, k3) is defined as

(2π)3δ(k1 + k2 + k3)Ŵ (3) (k1, k2, k3) ≡
3∏

i=1

∫
d3xi e

−iki·xiW (3)(x1, x2, x3) . (4.18)

The bi-spectrum (4.16) agrees with the one obtained in Ref. [18] by using the holographic
renormalization group method.
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�d�(µ)

d lnµ
�(µ)�(y1 � y2)hO(y2)O(y3)iµ � (2 perms)

�

W (3)(y1, y2, y3) = �2Re


�3(µ)hO(y1)O(y2)O(y3)i



Be more careful….

- RG solution does not apply to coincidence limit (CDL).
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- We need regularization to compute CDL.
N.B. In CFT, symmetry argument does not specify the CDL. 

multi-trace operators
+

Z
d

d
xgnOn(x)?SQFT = SCFT +

Z
d

d
xgO(x)

AdS/CFT
- Wilsonian RG, Bulk → Bdry QFT with multi-trace op.

Heemskerk&Polchinski(10), Faulkner, Liu, & Rangamani(11)

- Bdry QFT with multi-trace op. → GR (+ Λ) 
S.S.Lee(13)



Conclusion

Holographic description of inflation scenario

・ We computed the primordial spectrum holographically,
and the result may apply to strong/weak gravity regimes 

・ The conservation of ζ power spectrum determines

(large N, arbitrary ‘tHooft coupling).

t & µ relation as a(t) ∝ µC.        

・ A subtle issue on the conservation of bi-spectrum <ζζζ> 

Yet, if we determine the CSL such that the consistency 
relation is fulfilled, the bispectrum is conserved.


