Stability of the Early Universe in Bigravity Theory

Jan., 20th, 2016@Kobe University

Katsuki Aoki,
Waseda University.

KA, K. Maeda, and R. Namba,
1. Introduction
2. Massless limit = GR?
3. Stability of the Early Universe in Bigravity
4. Summary
1. Introduction

2. Massless limit = GR?

3. Stability of the Early Universe in Bigravity

4. Summary
Why massive?

What is graviton?
- It should be spin-2 field.
- Massless field or Massive field? How many gravitons?

 GR describes a massless spin-2 field.

 Is there a theory with a massive spin-2 field?

 If there is, which theory describes our Universe?

Experimental constraint on Yukawa-type potential

\[m < 7.1 \times 10^{-23} \text{eV} \quad \text{(from the solar-system experiment)} \]

\[\Phi \propto \frac{1}{r} \rightarrow \Phi \propto \frac{1}{r} e^{-mr} \]
Why massive?

GR can describe our Universe if we introduce unknown matters.

Dark components hint us that GR should be modified at large scale.

If we add a mass to graviton, gravitational behaviours may be modified at scales larger than the Compton wavelength, but may **not** be modified at small scales.

\[\Phi \propto \frac{1}{r} \rightarrow \Phi \propto \frac{1}{r} e^{-mr} \]
How to give a mass to graviton?

To construct mass terms of tensor field, we need a reference metric (Here, $f_{\mu\nu}$ is non-dynamical metric).

\[
g_{\mu\nu}g^{\mu\nu} \quad g_{\mu\nu}f^{\mu\nu}
\]

not mass term \hspace{1cm} mass term

Mass term is given by an interaction between two tensors.

$\rightarrow \mathcal{U}(g, f)$

It breaks the gauge symmetry.

\rightarrow Massive gravity generally has 6 DoFs

\[
6 = 5 \text{ (massive spin-2)} + 1 \text{ (additional scalar)}
\]

We have to eliminate the ghost mode! Ghost mode!
Fierz-Pauli theory

→ The linear ghost-free massive gravity (Fierz and Pauli, 1939)

\[
S = \frac{1}{2\kappa^2} \int d^4x \left[\mathcal{L}_{EH}[h] - \frac{m^2}{4} (h_{\mu\nu} h^{\mu\nu} - h^2) \right]
\]

\[
(g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}, \quad f_{\mu\nu} = \eta_{\mu\nu})
\]

Special choice of mass term eliminates the ghost mode

This theory describes a linear massive spin-2 field on Minkowski spacetime.

What is non-linear extension of FP theory?
dRGT theory

→ The nonlinear ghost-free massive gravity
 (de Rham, Gabadadze, and Tolley, 2011)

\[S = \frac{1}{2\kappa^2 g} \int d^4x \sqrt{-g} R(g) - \frac{m^2}{\kappa^2 g} \int d^4x \sqrt{-g} \sum_{i=0}^{4} b_i \mathcal{U}_i(g, f) \]

\[\mathcal{U}_n(g, f) = -\frac{1}{n!(4-n)!} \epsilon^{\cdots} \epsilon^{\cdots} (\gamma^\mu_\nu)^n \]

\[\gamma^\mu_\alpha \gamma^\alpha_\nu = g^\mu_\alpha f_\alpha_\nu \]

Again, special choice of mass term eliminates the ghost mode.

Another choice of \(f_{\mu\nu} \) gives another theory.

How to determine \(f_{\mu\nu} \)?
One possibility is that $f_{\mu\nu}$ is also dynamical field. (Hassan, and Rosen, 2011)

\[
S = \frac{1}{2\kappa_g^2} \int d^4x \sqrt{-g} R(g) + \frac{1}{2\kappa_f^2} \int d^4x \sqrt{-f} \mathcal{R}(f)
- \frac{m^2}{\kappa^2} \int d^4x \sqrt{-g} \sum_{i=0}^{4} b_i \mathcal{U}_i(g, f) \quad \kappa^2 = \kappa_g^2 + \kappa_f^2
\]

\[
\mathcal{U}_n(g, f) = -\frac{1}{n!(4-n)!} \epsilon^{\cdots} \epsilon^{\cdots} (\gamma^\mu_\nu)^n
\]

\[
\gamma^\mu_\alpha \gamma^\alpha_\nu = g^{\mu\alpha} f_{\alpha\nu}
\]

$f_{\mu\nu}$ is determined by the equation of motion as well as $g_{\mu\nu}$.

Bigravity contains a massive field as well as a massless field.
Non-linear bigravity theory (Hassan, Rosen, ’11)

It can explain the origin of dark matter or dark energy if

\[m \sim 10^{-33} \text{eV} \Rightarrow \text{DE} \quad \text{or} \quad m \gtrsim 10^{-27} \text{eV} \Rightarrow \text{DM} \]

\[
S = \frac{1}{2\kappa_g^2} \int d^4x \sqrt{-g} R(g) + \frac{1}{2\kappa_f^2} \int d^4x \sqrt{-f} \mathcal{R}(f)
- \frac{m^2}{\kappa^2} \int d^4x \sqrt{-g} \sum_{i=0}^{4} b_i \mathcal{U}_i(g, f) + S^{[m]}(g, f, \psi)
\]

Gives accelerating expansion

\[
\gamma^\mu_{\alpha} \gamma^{\alpha}_{\nu} = g^\mu_{\alpha} f_{\alpha\nu} \quad \mathcal{U}_n(g, f) = -\frac{1}{n!(4-n)!} \epsilon^{.... \epsilon (\gamma^\mu_\nu)^n}
\]

\[
S^{[m]} = S_{g}^{[m]}(g, \psi_g) + S_{f}^{[m]}(f, \psi_f)
\]

Physical matter \quad Dark matter (KA and K. Maeda, ’14)
1. Introduction

2. Massless limit = GR?

3. Stability of the early Universe in Bigravity

4. Summary
Massless limit = GR?

The mass term should be negligible beyond the mass scale. → GR should be recovered.

However, the linear massive gravity is not restored to GR even in massless limit.

On flat spacetime → vDVZ discontinuity

On FLRW spacetime → Higuchi ghost or gradient instability
Massless limit = GR?

The mass term should be negligible beyond the mass scale. → GR should be recovered.

However, the linear massive gravity is not restored to GR even in massless limit.

On flat spacetime → vDVZ discontinuity
→ It can be resolved by Vainshtein mechanism

On FLRW spacetime → Higuchi ghost or gradient instability
vDVZ discontinuity

Linear massive spin-2 field has a discontinuity

\[S = \frac{1}{2\kappa^2} \int d^4x \left[-\frac{1}{2} h^{\mu\nu} \epsilon_{\mu\nu}^{\alpha\beta} h_{\alpha\beta} - \frac{1}{4} m^2 (h_{\mu\nu} h^{\mu\nu} - h^2) + \kappa^2 h_{\mu\nu} T_{\mu\nu} \right] \]

Introducing Struckelberg fields

\[h_{\mu\nu} \rightarrow h_{\mu\nu} + \partial_\mu A_\nu + \partial_\nu A_\mu, \quad A_\mu \rightarrow A_\mu + \partial_\mu \phi \]

Canonical scaling and massless limit

\[\mathcal{L} = -\frac{1}{2} h^{\mu\nu} \epsilon_{\mu\nu}^{\alpha\beta} h_{\alpha\beta} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - (h^{\mu\nu} \partial_\mu \partial_\nu \phi - h \partial_\mu \partial^{\mu} \phi) + \kappa h^{\mu\nu} T_{\mu\nu} \]

Kinetic mixing

@Kobe University
vDVZ discontinuity

\[\mathcal{L} = -\frac{1}{2} h^{\mu\nu} \varepsilon^{\alpha\beta}_{\mu\nu} h_{\alpha\beta} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - (h^{\mu\nu} \partial_\mu \partial_\nu \phi - h \partial_\mu \partial^\mu \phi) + \kappa h^{\mu\nu} T_{\mu\nu} \]

Kinetic mixing

\[\tilde{h}_{\mu\nu} = h_{\mu\nu} - \phi \eta_{\mu\nu} \]

\[\mathcal{L} = -\frac{1}{2} \tilde{h}^{\mu\nu} \varepsilon^{\alpha\beta}_{\mu\nu} \tilde{h}_{\alpha\beta} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{3}{2} (\partial_\mu \phi)(\partial^\mu \phi) + \kappa \tilde{h}^{\mu\nu} T_{\mu\nu} + \kappa \phi T \]

Scalar mode cannot be decoupled even in massless limit!

Fierz-Pauli theory cannot be restored to Newtonian gravity due to the existence of scalar graviton mode.

→ The discontinuity can be resolved by non-linear interactions
Vainshtein mechanism (Vainshtein, 1972)

\[
\mathcal{L} = -\frac{3}{2} (\partial \phi)^2 - \frac{c_{NL}}{\Lambda^3} (\partial \phi)^2 \Box \phi + \cdots + \frac{c_n}{\Lambda^{3(n-1)}} h^{\mu \nu} X^{(n)}_{\mu \nu} + \cdots + \kappa \phi T
\]

\[
\Lambda^3 = (M_{pl} m^2)^{1/3}, \quad X^{(n)}_{\mu \nu} \sim (\partial \partial \phi)^n
\]

Splitting the source into a background \(T_0 \) and a perturbation \(\delta T \) and the scalar field into \(\phi = \pi_0 + \pi \)

\[
\mathcal{L}_{\text{scalar}} \sim -\frac{1}{2} Z^{\mu \nu} \partial_\mu \pi \partial_\nu \pi + \kappa \pi \delta T
\]

with \(Z \sim 1 + \frac{\partial \partial \pi_0}{\Lambda^3} + \cdots + \frac{M_{pl} R}{\Lambda^3} + \cdots \)

The effective coupling constant is given by \(\kappa_{\text{eff}} = \frac{\kappa}{\sqrt{Z}} \)

The interaction is suppressed in the nonlinear regime \((r \ll r_V) \)
High-energy regime of bigravity

The mass term should be negligible beyond the mass scale. → GR should be recovered.

However, the linear massive gravity is not restored to GR even in massless limit.

On flat spacetime → vDVZ discontinuity

→ It can be resolved by Vainshtein mechanism

On FLRW spacetime → Higuchi ghost or gradient instability

→ Instability can be stabilized by non-linear interactions

KA, K. Maeda, and R. Namba, 15
Massive spin-2 field on curved spacetime

Assumption:
we consider a linear massive spin-2 field on a GR solution. → There is only massless spin-2 field in the background.

*This is realized by perturbation around homothetic solution in bigravity

The action is given by linearized EH action with FP mass term

\[S = \frac{1}{2\kappa^2} \int d^4x \sqrt{-g} \left[\mathcal{L}_{EH}[h; \Lambda_g] - \frac{m^2}{4} (h_{\mu\nu} h^{\mu\nu} - h^2) \right] \]

To recover gauge symmetry, we introduce Stueckelberg fields

\[h_{\mu\nu} \rightarrow h_{\mu\nu} + 2 \tilde{\nabla}_{(\mu} A_{\nu)} + 2 \tilde{\nabla}_\mu \tilde{\nabla}_\nu \phi \]
Massive spin-2 field on curved spacetime

The decoupling limit \(\Lambda^3 = (M_{\text{Pl}} m^2)^{1/3} \)

\[
\mathcal{L} = - \left(\frac{3}{4} g^{\mu \nu} - \frac{M_{\text{Pl}}}{\Lambda^3} \bar{R}^{\mu \nu} \right) \partial_\mu \phi \partial_\nu \phi + \ldots
\]

→ Standard kinetic term if \(\bar{R} \ll m^2 \)

(FP theory on Minkowski is recovered → vDVZ discontinuity)

How about \(\bar{R} \gg m^2 \)?

= Massless limit on curved background
Massive spin-2 field on curved spacetime

The decoupling limit \((\Lambda^3 = (M_{\text{pl}} m^2)^{1/3}) \)

\[
\mathcal{L} = - \left(\frac{3}{4} g_{\mu \nu} - \frac{M_{\text{pl}}}{\Lambda^3} \bar{R}^{\mu \nu} \right) \partial_\mu \phi \partial_\nu \phi + \ldots
\]

The fifth force can be screened due to curvature coupling.

However, the curvature coupling produces the instability

e.g. \(ds^2 = a^2 (-d\eta^2 + \delta_{ij} dx^i dx^j) \)

\[
\bar{R}^{\mu \nu} \bar{\nabla}_\mu \phi \bar{\nabla}_\nu \phi = \frac{3H^2}{2a^2} (1 + 3w) \left((\partial_\eta \phi)^2 - \frac{w - 1}{1 + 3w} (\partial_i \phi)^2 \right)
\]

Ghost in \(w < -1/3 \)

Gradient instability in \(-1/3 < w < 1 \)
For simplicity, we assume background solution is homothetic

\[S_2 = \frac{1}{\kappa^2_+} \int d^4 x \sqrt{-\bar{g}} \mathcal{L}_{\text{EH}}[h^+; \Lambda_g] \]
\[+ \frac{1}{\kappa^2_-} \int d^4 x \sqrt{-\bar{g}} \left[\mathcal{L}_{\text{EH}}[h^-; \Lambda_g] + \mathcal{L}_{\text{FP}}[h^-; m^2_{\text{eff}}] \right], \]

The perturbations can be decomposed into a massless mode \(h^+ \) and a massive mode \(h^- \).

The massive mode is given by FP theory on a GR solution!

\[\rightarrow \] Massive mode has an instability as in FP theory.

\[\rightarrow \] Cosmology in bigravity is also unstable in \(m_{\text{eff}} \ll H \)

(c.f., for general solution, Comelli et al. ‘12, ‘14, De Felice et al. ‘14)
Instability of massive spin-2 field

✓ Higuchi ghost (Higuchi, 1972, Grisa and Sorbo, 2010)
 de Sitter background (or the accelerating universe) with $m/H \to 0$.
 ▸ Scalar graviton has ghost instability

✓ Gradient instability (Grisa and Sorbo, 2010)
 the decelerating universe ($-1/3 < w < 1$) with $m/H \to 0$.
 ▸ Scalar graviton has gradient instability

Why? Massive field should be massless in $m/H \to 0$.
Condensation of scalar field?

Linear instability \rightarrow field should be non-linear
Is there a stable point?

Tachyon instability

Simple example

$$V(\phi) = (\phi^2 - v^2)^2$$

Scalar field is stable if $\langle \phi \rangle = v$

Although the solution $\phi = 0$ is unstable, the system is stable.

How about the case of ghost or gradient instability?
Higuchi ghost condensation?

Ghost (and gradient) instability can be stabilized by non-linear kinetic terms.

Non-zero $\langle \dot{\phi} \rangle$ can stabilize in the ghost condensation (Arkani-Hamed, et al., 2004)

Ghost (gradient) instability can be stabilized by non-linear kinetic terms.

There can be homogeneous solution in ghost condensation. However, general homogeneous solution is unstable. → Inhomogeneity of scalar graviton? We cannot obtain FLRW?
Although the scalar mode has an inhomogeneity, the spacetime can be homogenous by screening mechanism.

Is there a stable (approximative) FLRW solution with inhomogeneous scalar graviton?
3. Stability of the Early Universe in Bigravity
We must take into account non-linear effects. However, full non-linear analysis is quite difficult.

Strategy

The interaction between tensor mode and scalar mode is suppressed by the screening

→ We must retain non-linearities of scalar graviton, but non-linearities of other fields could be ignored.

Scalar graviton arises from Stueckelberg fields.

We only consider non-linear effects of Stueckelberg fields.
Set up

What is Stueckelberg field in bigravity?

→ Stueckelberg fields is introduced to recover gauge symmetry.

\[ds_g^2 = g_{\mu\nu} dx_g^\mu dx_g^\nu, \quad ds_f^2 = f_{\mu\nu} dx_g^\mu dx_g^\nu = f_{ab} dx_f^a dx_f^b \]

\[x_f^a = x_f^a(x_g^\mu) \leftarrow \text{Physical dof, since we have only one diffeo.} \]

We assume spacetime deviations are small \((g, f \simeq \text{FLRW})\) but coordinate deviations are not small. \((x_f \not\simeq x_g)\)

→ Two spacetime are almost homogeneous and isotropic, but two foliations do not coincide!

We restrict analysis to spherically symmetric configuration.
Stability of the early Universe in bigravity

The background spacetimes:

\[d\tilde{s}_g^2 = a^2(\eta)(-d\eta^2 + dr^2 + r^2d\Omega^2), \]
\[d\tilde{s}_f^2 = K^2a^2(\eta)(-d\eta^2 + dr^2 + r^2d\Omega^2). \]

We consider spherically symmetric configurations:

\[ds_g^2 = a^2(\eta) \left[-e^{2\Phi_g}d\eta^2 + e^{2\Psi_g}dr^2 + r^2d\Omega^2 \right], \]
\[ds_f^2 = K^2a^2(\eta_f) \left[-e^{2\Phi_f}d\eta_f^2 + e^{2\Psi_f}dr_f^2 + r_f^2d\Omega^2 \right], \]
\[\eta_f = \eta_f(\eta, r), \quad r_f = r_f(\eta, r), \]

Small perturbation around homogenous and isotropic “spacetimes” \(\rightarrow \Phi_{g/f}, \Psi_{g/f} \ll 1 \)

However, it does not mean \(\eta_f \approx \eta, r_f \approx r \)
Stability of the early Universe in bigravity

We are interested in scalar graviton → Spherically symmetric configurations

For bigravity, there are 6 independent variables

\[6 = 2 \left(g_{\mu\nu} \right) + 2 \left(f_{\mu\nu} \right) + 2 \left(\text{Stueckelberg fields} \right) \]

The background spacetimes:

We consider spherically symmetric configurations:

\[ds_g^2 = a^2(\eta) \left[-e^{2\Phi_g} d\eta^2 + e^{2\Psi_g} dr^2 + r^2 d\Omega^2 \right], \]

\[ds_f^2 = K^2 a^2(\eta_f) \left[-e^{2\Phi_f} d\eta_f^2 + e^{2\Psi_f} dr_f^2 + r_f^2 d\Omega^2 \right], \]

\[\eta_f = \eta_f(\eta, r), \quad r_f = r_f(\eta, r), \]

Small perturbation around homogenous and isotropic "spacetimes" → \(\Phi_{g/f}, \Psi_{g/f} \ll 1 \)

However, it does not mean \(\eta_f \approx \eta, r_f \approx r \)
Stability of the early Universe in bigravity

The background spacetimes:
\[d\tilde{s}_g^2 = a^2(\eta)(-d\eta^2 + dr^2 + r^2d\Omega^2), \]
\[d\tilde{s}_f^2 = K^2a^2(\eta)(-d\eta^2 + dr^2 + r^2d\Omega^2). \]

We consider spherically symmetric configurations:
\[ds_g^2 = a^2(\eta)\left[-e^{2\Phi_g}d\eta^2 + e^{2\Psi_g}dr^2 + r^2d\Omega^2\right], \]
\[ds_f^2 = K^2a^2(\eta_f)\left[-e^{2\Phi_f}d\eta_f^2 + e^{2\Psi_f}dr_f^2 + r_f^2d\Omega^2\right], \]
\[\eta_f = \eta_f(\eta, r), \quad r_f = r_f(\eta, r), \]

Small perturbation around homogenous and isotropic “spacetimes” \(\rightarrow \Phi_{g/f}, \Psi_{g/f} \ll 1 \)

However, it does not mean \(\eta_f \approx \eta, r_f \approx r \)
Strategy

✓ Assume $\Phi_{g/f}, \Psi_{g/f} \ll 1$, but do not assume $\nu, \mu \ll 1$
✓ Consider only sub-horizon scale.
✓ Decompose all variables into adiabatic modes and oscillation modes.

$$X = X^{\text{ad}} + X^{\text{osc}}$$

with

$$|\partial_\eta X^{\text{ad}}| \sim |\partial_r X^{\text{ad}}|, \quad |\partial_\eta X^{\text{osc}}| \sim |\partial_r X^{\text{osc}}|.$$
Stability in pure graviton case

We concentrate on the early stage of the Universe \(m_{\text{eff}} \ll H \). We solve the equations up to \(\epsilon^2 \).

If there is no matter perturbation

\[
\Phi_{g/f} \sim (a r m_{\text{eff}})^2 \approx 0, \quad \Psi_{g/f} \sim (a r m_{\text{eff}})^2 \approx 0
\]

Pure scalar graviton solution:

\[
\eta_f \approx \eta - \frac{1}{2} H a r^2 (2 \mu_0 + \mu_0^2) + \delta \eta, \quad r_f \approx (1 + \mu_0) r + \delta r
\]

where \(\mu_0 = 0 \) or \(O(1) \)

\[
\delta \eta = - \frac{\partial \eta \pi}{a^2} + \frac{\mu_0 a r H}{1 + \mu_0} \frac{\partial r \pi}{a^2}, \quad \delta r = \frac{\partial r \pi + \mu_0 a r H \partial \eta \pi}{a^2 (1 + \mu_0)}
\]
Stability in pure graviton case

Pure scalar graviton solution: \((\mu_0 = 0 \text{ or } \mathcal{O}(1))\)

\[
\eta_f \approx \eta - \frac{1}{2} H ar^2 (2\mu_0 + \mu_0^2) + \delta \eta, \quad r_f \approx (1 + \mu_0) r + \delta r
\]

\[
\delta \eta = -\frac{\partial_{\eta} \pi}{a^2} + \frac{\mu_0 a r H \partial_r \pi}{1 + \mu_0} \frac{1}{a^2}, \quad \delta r = \frac{\partial_r \pi + \mu_0 a r H \partial_{\eta} \pi}{a^2 (1 + \mu_0)}
\]

Quadratic action: \(\pi\) is the scalar graviton mode

\[
S_2 = \frac{m_{\text{eff}}^2}{\kappa_{-}^2} \int d\Omega \int d\eta dr (ar H)^2 \mathcal{K}_S \left[(\partial_{\eta} \pi)^2 - c_S^2 (\partial_r \pi)^2 \right]
\]

\[\checkmark \quad \mu_0 = 0 \Rightarrow \text{Ghost or gradient instability appears for } w < 1\]

\[\checkmark \quad \mu_0 \sim 1 \Rightarrow \text{Stability depends on the background dynamics as well as the coupling constants}\]

\[b_2^2 - b_1 b_3 > 0, \quad b_2 < 0 \Rightarrow \mathcal{K}_S \geq 0, \quad c_S^2 > 0 \quad \text{for } w < 1 \quad (m_{\text{eff}}^2 > 0)\]
Stability in pure graviton case

As a result, we find a stable cosmological solution as

\[ds_g^2 \simeq a^2(\eta) \left[-d\eta^2 + dr^2 + r^2 d\Omega^2 \right], \]

\[ds_f^2 \simeq K^2 a^2(\eta_f) \left[-d\eta_f^2 + dr_f^2 + r_f^2 d\Omega^2 \right], \]

\[\eta_f \approx \eta - \frac{1}{2} Har^2(2\mu_0 + \mu_0^2) + \delta \eta, \quad r_f \approx (1 + \mu_0)r + \delta r \]

Although two spacetimes are homogeneous and isotropic, two foliations are related by the non-linear coordinate transformation.

Cosmological evolution is same as the homothetic background.

When \(w > 1 \rightarrow \mu_0 = 0 \) is stable (linear Stueckelberg field)

When \(w < 1 \rightarrow \mu_0 \sim 1 \) is stable (non-linear Stueckelberg field)
Including matter perturbations

When there are matter perturbations

$$\Phi_g \sim \Phi_{GR} + (ar m_{\text{eff}})^2,$$
$$\Psi_g \sim \Psi_{GR} + (ar m_{\text{eff}})^2$$

$$\Phi_{GR}, \Psi_{GR} \sim (ar H)^2 \times \tilde{\delta}_g$$ for $$\mu \sim 1$$

The fifth force is screened in

$$\tilde{\delta}_g := \frac{\int 4\pi r^2 \delta_g dr}{\int 4\pi r^2 dr} \gg \frac{m_{\text{eff}}^2}{H^2} \rightarrow 0$$ in the early Universe

$$\Leftrightarrow r \ll r_V := \left(\frac{G\delta M}{m_{\text{eff}}^2}\right)^{1/3} \quad G\delta M := G \int 4\pi r^2 \delta \rho_g dr$$

$$\rightarrow$$ Vainshtein mechanism on a cosmological background
The result is a generalization of the Vainshtein mechanism.

Conventional Vainshtein mechanism (on Minkowski):
→ Non-linear terms are necessary to screen the fifth force in the case with matter perturbation.

Cosmological Vainshtein mechanism (on FLRW):
→ Non-linear terms are necessary to stabilize the fluctuation even in the case without matter perturbation.
Cosmological Vainshtein mechanism

= Ghost condensate + Vainshtein mechanism

\[\mathcal{L}_{\text{eff}} = -\frac{3}{4} (\partial \phi)^2 + \frac{c_{\text{NL}}}{\Lambda^3} (\partial \phi)^2 \Box \phi + \cdots \]

\[+ \frac{\bar{R}^{\mu\nu}}{2m_{\text{eff}}^2} \partial_\mu \phi \partial_\nu \phi + \frac{\tilde{c}_{\text{NL}}}{\Lambda^3} \frac{\bar{R}^{\mu\nu\rho\sigma}}{m_{\text{eff}}^2} \partial_\mu \phi \partial_\rho \phi \partial_\nu \partial_\sigma \phi + \cdots + \kappa \phi \delta T \]

When \(R_0 \gg m_{\text{eff}}^2 \), \(R_0 \sim R_{\mu\nu} \)

\[\kappa_{\text{eff}} = \frac{m}{\sqrt{R_0}} \kappa \ll \kappa \]

Fifth force can be screened even at linear order.

However, third term produces an instability

e.g., \(\bar{R}^{\mu\nu} \nabla_\mu \phi \nabla_\nu \phi = + \Lambda_g (\partial \phi)^2 \rightarrow \text{Higuchi ghost} \)
Cosmological Vainshtein mechanism

\[\mathcal{L}_{\text{eff}} = -\frac{3}{4}(\partial \phi)^2 + \frac{c_{\text{NL}}}{\Lambda^3} (\partial \phi)^2 \Box \phi + \cdots \]

\[+ \frac{\bar{R}^{\mu \nu}}{2m_{\text{eff}}^2} \partial_{\mu} \phi \partial_{\nu} \phi + \frac{\tilde{c}_{\text{NL}}}{\Lambda^3} \frac{\bar{R}^{\mu \nu \rho \sigma}}{m_{\text{eff}}^2} \partial_{\mu} \phi \partial_{\rho} \phi \partial_{\nu} \partial_{\sigma} \phi + \cdots + \kappa \phi \delta T \]

Non-zero expectation value \(\langle \pi_0^{'} \rangle \) can stabilize the fluctuation.

(=spatial derivative)

c.f. Non-zero \(\langle \pi_0 \rangle \) can stabilize in the ghost condensation (Arkani-Hamed, et al., 2004)

\[\phi = \pi_0 + \pi \quad \text{oscillation mode} \]

\[\text{adiahabatic mode} \]

Although the scalar mode has an inhomogeneity, the spacetime is homogenous due to the screening mechanism.
1. Introduction
2. Massless limit = GR ?
3. Stability of the Early Universe in Bigravity

4. Summary
Summary and Discussion

Bigravity is attractive related to dark matter and dark energy. We show that Higuchi ghost and the gradient instability can be resolved by the nonlinear self-interactions of the scalar graviton in bigravity theory.

This result suggests following cosmic history:

- GR phase
- Bigravity phase

\[m_{\text{eff}}^{-1} \quad H^{-1} \]

The early stage \((m_{\text{eff}} \ll H) \rightarrow \text{GR with nonlinear Stueckelberg}\)

The late stage \((m_{\text{eff}} \gg H) \rightarrow \text{FP with linear Stueckelberg}\)
Summary and Discussion

The early stage \((m_{\text{eff}} \ll H) \rightarrow \text{GR with nonlinear Stueckelberg}\)

The late stage \((m_{\text{eff}} \gg H) \rightarrow \text{FP with linear Stueckelberg}\)

Is it realized that GR transits to FP as the universe expands?

We also find that the transition is not realized with Hubble time scale unless \(w > 1/3\).

\(\rightarrow\) The transition should be **instantaneous** if it is possible.

We do not conclude the cosmology is completely viable yet.

However, the parameter space \((b_2^2 - b_1 b_3 > 0, b_2 < 0)\) is a necessary condition to obtain the viable cosmology.
Summary and Discussion

The cosmological Vainshtein mechanism is stable.

Stability of Vainshtein mechanism on flat spacetime?

\[\mathcal{L}_{\text{eff}} = -\frac{m^2}{\sqrt{\beta_3}} \frac{M_{\text{pl}}^2 G M}{r^3} \left[2(\partial_r \phi)^2 - \frac{(D_i \phi)^2}{r^2} \right] + \ldots \]

Gradient instability

*Vector graviton is not pathological.

\((\partial_t \phi)^2\) does not appear at leading order.

\(\rightarrow\) strong coupling

Unstable? or Perturbed approach breaks down?

Boundedness in nonlinear system?