Probability of boundary condition in quantum cosmology

Yasusada Nambu Nagoya University, Japan

> arXiv:1603.08172 H. Suenobu and YN

2016/7/13@神戸大学宇宙論研究室

Introduction

Quantum cosmology (QC):

treat the universe as a single quantum system

Canonical quantization of the universe

 $\hat{H}|\Psi\rangle = 0$ Wheeler-DeWitt (WD) equation

Quantum state of the universe is contained in the wave function of the universe $\Psi[q] = \langle q | \Psi \rangle$

We expect to obtain origin and history of our universe by analyzing the wave function of the universe

 There are several issues to be considered in QC: problem time: how can we derive dynamics of the universe? probability: conserved charge is not positive definite how can we define probability? Prediction of the wave function : relies on WKB analysis

boundary condition: how do we determine BC of WD eq.?

Boundary condition

Hartle-Hawking (HH): sum over compact Euclidean geometries

 $\Psi(q) = \int [dNdq] \exp(-S[q, N])$

path integral dominated by regular Euclidean classical solutions

Vilenkin (V): wave function is purely outgoing at the infinity of superspace tunneling type

(HH) prefers small values of cosmological constant $P(\phi) \sim \exp\left(\frac{1}{\Lambda(\phi)}\right)$ (V) prefers large values of cosmological constant $P(\phi) \sim \exp\left(-\frac{1}{\Lambda(\phi)}\right)$

Our present universe: large scale structure, isotropy of CMB

- we expect our universe has experienced inflation with $\mathcal{N} \ge 60$
- our universe has small value of cosmological constant

The purpose of QC is to explain these features of our universe

Purpose of this research

We want to say something about boundary conditions of WD eq. by imposing observational constraints

(HH) or (V) or others ?

- model: closed FRW universe with a massive scalar field with a cosmological constant (toy cosmological model)
- constraint: sufficient number of e-foldings of inflation

 $\mathcal{N} \ge 60$

We investigate which type of BCs of the universe is preferable

Contents

Mini-superspace model

model and definition of probability

Probability of boundary conditions our analysis

5

Summary

Mini-superspace model

Mini-superspace model

A closed FRW universe + massive scalar, cosmological constant

action

$$S = \frac{1}{16\pi G} \int d^4 x \sqrt{-g} \left(R - 2\Lambda \right) - \frac{1}{2} \int d^4 x \sqrt{-g} \left[(\partial_\mu \Phi)^2 + m^2 \Phi^2 \right]$$

metric

$$ds^2 = \frac{3}{\Lambda} \left(-\frac{N^2}{q} d\lambda^2 + q d\Omega_3^2 \right)$$
 mini-superspace (q, ϕ)

Hamiltonian

$$H_T = \frac{KN}{2} \left[\frac{1}{K^2} \left(-4p_q^2 + \frac{p_\phi^2}{q^2} \right) - 1 + q(1 + \mu^2 \phi^2) \right] = NH$$

dimensionless parameters

$$\phi = \left(\frac{4\pi G}{3}\right)^{1/2} \phi \qquad \mu = \left(\frac{3}{\Lambda}\right)^{1/2} m \qquad K = \frac{9\pi}{2G\Lambda}$$

7

Classical solutions

Hamiltonian constraint $\left(\frac{\dot{a}}{a}\right)^2 + \frac{\Lambda}{3a^2} = \frac{\Lambda}{3} + \frac{4\pi G}{3} \left(\dot{\Phi}^2 + m^2 \Phi^2\right)$

scalar field eq.

$$\ddot{\Phi} + 3\left(\frac{\dot{a}}{a}\right)\dot{\Phi} + m^2\Phi = 0$$

Inflationary solution

slow roll condition

$$|\ddot{\Phi}| \lesssim \left(\frac{\dot{a}}{a}\right) |\dot{\Phi}|, \quad \dot{\Phi}^2 \lesssim m^2 \Phi^2, \quad \frac{\Lambda}{3} \lesssim \frac{4\pi G}{3} m^2 \Phi^2$$

• A universe expands with acceleration $\ddot{a} > 0$

duration of inflation depends on initial values of ϕ

e-foldings
$$\mathcal{N} = \ln \left(\frac{a_{\rm f}}{a_{\rm i}}\right) \leftarrow \text{predicted by the wave function}_{\text{of the universe}}$$

inflaton potential

 $\frac{\Lambda}{2\pi G} + \frac{m^2}{2} \Phi^2$

The universe continues accelerated expansion forever due to the cosmological constant in this model

Wheeler-DeWitt equation

Hamiltonian constraint

$$H(q, p_q, \phi, p_{\phi}) = 0$$

$$p_a \to -i\frac{\partial}{\partial q}, \quad p_{\phi} \to -i\frac{\partial}{\partial \phi}$$

$$\left[\frac{1}{2K^2}\left(4\frac{\partial^2}{\partial q^2} - \frac{1}{q^2}\frac{\partial^2}{\partial \phi^2}\right) - \frac{1}{2} + qV(\phi)\right]\Psi(q, \phi) = 0$$

$$V(\phi) \equiv \frac{1}{2} + \frac{\mu^2}{2}\phi^2 \qquad K = \frac{9\pi}{2G\Lambda} \qquad \mu = \left(\frac{3}{\Lambda}\right)^{1/2}m$$

As we cannot solve this equation analytically, we obtain the wave function numerically.

Two dimensional wave equation and can be solved with suitable BCs

Structure of mini-superspace (q, ϕ)

scale factor matter field

WD equation (KG type eq.)

$$\begin{bmatrix} -\frac{1}{2}G^{AB}\partial_A\partial_B + U(q,\phi) \end{bmatrix} \Psi(q,\phi) = 0 \qquad \qquad G^{AB} = \operatorname{diag}(-4,\frac{1}{q^2}) \\ U(q,\phi) = -\frac{1}{2} + qV(\phi)$$

How can wave functions predict classical trajectories (universe)?

Wave function has WKB form

"semi-classical" universe

Euclidean region: $U(q, \phi) < 0$ classically forbidden region

$$q \ll 1 \qquad \Psi \sim e^{-S_E}$$

"quantum" universe

de Sitter case $V(\phi) = \text{const.}$

$$\left(-8\frac{d^2}{dq^2} + 1 - 2qV\right)\Psi(q) = 0$$
potential

Schroedinger eq. with zero energy

(HH): superposition of expanding and contracting universes

 $\Psi \sim e^{+q/2}$

 $q \gg 1$ $\Psi \sim e^{iS} + e^{-iS}$

12

 $q \gg 1$ $\Psi \sim e^{iS}$

(V): purely outgoing wave tunneling type

 $\Psi \sim e^{-q/2}$

de Sitter case $V(\phi) = \text{const.}$

Halliwell, Louko 1989

General solutions of WD eq. in terms of Airy function

 $G(q|q_0) = c_1 \operatorname{Ai}(z_0) \operatorname{Ai}(z) + c_2 \operatorname{Bi}(z_0) \operatorname{Bi}(z) + c_3 (\operatorname{Ai}(z_0) \operatorname{Bi}(z) + \operatorname{Bi}(z_0) \operatorname{Ai}(z))$

(wave functions as transition amplitude from $q_0 \rightarrow q$)

$$z = z(q) = \left(\frac{4V}{K}\right)^{-2/3} (1 - 2qV), \quad z_0 = z(0) = \left(\frac{4V}{K}\right)^{-2/3}$$

typical wave functions

$$\begin{split} \Psi_{\rm HH} &= \Psi_2 + \Psi_3 \\ \Psi_{\rm V} &= \Psi_1 + i\Psi_3 \end{split} \sim \exp\left(+\frac{K}{6V}\right)\cos S_0 \\ &\sim \exp\left(-\frac{K}{6V}\right)\exp(-iS_0) \\ S_0(q,\phi) &= \frac{K}{6V(\phi)}\left(2V(\phi)q - 1\right)^{3/2} - \frac{\pi}{4} \end{split}$$

 $\Psi_1 \equiv (2V)^{-1/3} \operatorname{Ai}(z_0) \operatorname{Ai}(z)$ $\Psi_2 \equiv (2V)^{-1/3} \operatorname{Bi}(z_0) \operatorname{Ai}(z)$ $\Psi_3 \equiv (2V)^{-1/3} \operatorname{Ai}(z_0) \operatorname{Bi}(z)$

(HH) and (V) can be represented using three functions (solutions)

We parametrize solutions including (HH) and (V) using two real parameters

$\Psi_C = \tan a (\cos b \Psi)$	$v_2 - i \sin b v_2$	$\Psi_1)+\Psi_3,$	$0 \le a, b \le \pi/2$						
$\Psi_1 \equiv (2V)^{-1/3} \operatorname{Ai}(z_0) \operatorname{Ai}(z)$									
h	$\Psi_2 \equiv (2V)^{-1/3} \operatorname{Bi}(z_0) \operatorname{Ai}(z)$								
$\Psi_{\rm V} \qquad \Psi_1 \qquad \qquad \Psi_3 \equiv (2V)^{-1/3} {\rm Ai}(z_0) {\rm Bi}(z)$									
$\Psi_{\rm HH} \qquad \Psi_2 \\ \pi/4 \qquad \pi/2 \qquad a$	wave function	parameter (a, b)	asymptotic form for $q \gg 1$						
	$\Psi_{ m HH}$	$(\frac{\pi}{4},0)$	$\sim \exp\left(+\frac{K}{6V}\right)\cos S_0$						
	$\Psi_{ m V}$	$\left(\frac{\pi}{4},\frac{\pi}{2}\right)$	$\sim \exp\left(-\frac{K}{6V}\right)\exp(-iS_0)$						
	Ψ_1	$\left(\frac{\pi}{2},\frac{\pi}{2}\right)$	$\sim \exp\left(-\frac{K}{6V}\right)\cos S_0$						
space of BCs	Ψ_2	$(\frac{\pi}{2},0)$	$\sim \exp\left(+\frac{K}{6V}\right)\cos S_0$						
	Ψ_3	(0, any values)	$\sim -\exp\left(-\frac{K}{6V}\right)\sin S_0$						

We specify BCs of WD eq. for non-constant potential case using this parametrization 14

 $\pi/2$

 Ψ_3

WKB analysis and probability

Hartle, Hawking and Hertog 2008

$$\left[-\frac{1}{2}G^{AB}\partial_A\partial_B + U(q,\phi)\right]\Psi(q,\phi) = 0$$

WKB anzatz

$$\begin{split} \Psi(q^A) &= C(q^A) e^{-\frac{1}{\hbar}I(q^A)} & \text{phase function is complex in general} \\ I &= I_R - iS \\ O(\hbar^0): & -\frac{1}{2K^2} (\nabla I)^2 + U(q^A) = 0, \\ O(\hbar^1): & 2\nabla I \cdot \nabla C + C\nabla^2 I = 0, \\ \end{split}$$

If the condition holds

we obtain the Hamilton-Jacobi equation

$$\frac{\nabla I_R|^2}{|\nabla S|^2} \ll 1 \qquad \qquad \frac{1}{2K^2} (\nabla S)^2 + U = 0. \qquad p_A = \frac{\partial S}{\partial q_A}$$

15

"classicality" condition

WKB wave function

$$\Psi(q^{A}) = \sum_{i = \text{saddle}} C^{(i)}(q^{A}) e^{-I_{R}^{(i)}(q^{A})} e^{iS^{(i)}(q^{A})}$$

Conserved current of WD eq.

$$\mathcal{J}_A = \frac{i}{2} (\Psi^* \nabla_A \Psi - \Psi \nabla_A \Psi^*), \quad \nabla \cdot \mathcal{J}_A = 0.$$

For WKB wave function,

$$J_A^{(i)} \equiv -|C^{(i)}|^2 \exp(-2I_R^{(i)}) \nabla_A S^{(i)} \qquad \nabla \cdot J^{(i)} = 0.$$

We consider a hypersurface Σ_c on which the classicality condition is satisfied. Define probability measure for expanding universes on Σ_c by

Conditional probability for sufficient e-foldings of inflation

$$P_{\text{suf}} \equiv P(\mathcal{N} \ge 60) = \frac{\int_{\phi_{\text{suf}}}^{\phi_{\text{pl}}} d\phi \,\mathcal{P}(\phi)}{\int_{\phi_{\text{min}}}^{\phi_{\text{pl}}} d\phi \,\mathcal{P}(\phi)} \stackrel{\bullet}{\leftarrow} \text{ prob. of inflation with } \mathcal{N} > 60$$

 ϕ_{\min} : end of inflation driven by scalar field

Probability of boundary conditions

Probability of boundary conditions

For a wave function with a specific BC, it is possible to obtain probability of sufficient inflation

 $P_{\text{suf}} = P(S|B_i)$ result cause

On the other hand,

probability of BC under the condition of sufficient inflation is

 $P(B_i|S) = \frac{P(B_i)P(S|B_i)}{\sum_k P(B_k)P(S|B_k)}$

Bayes' theorem

 $\begin{array}{ll} P(S|B_i) & \text{probability of sufficient inflation under a specific BC} \\ P(B_k) & \text{prior probability: assume uniformly distributed} \\ & \text{cause} & (\text{principle of insufficient reason}) \end{array}$

We represented $\{B_i\}$ using two parameters a, b

Probability of boundary condition under restriction of sufficient inflation

$$P(a,b|S) = \frac{P(S|a,b)}{\int da'db' P(S|a',b')}$$

Numerical analysis of the wave function

We solved the WD equation numerically and obtained wave functions for 9x9 BCs

H.Suenobu & YN

arXiv:1603.08172

2000x200 grids in mini-superspace 5-step Adams-Bashforth method

Boundary condition for WD equation: exact solution for constant potential parameter *a*, *b*

 $\Psi(q_{\rm ini},\phi) = \Psi_C(q_{\rm ini},\phi), \quad \partial_q \Psi(q_{\rm ini},\phi) = \partial_q \Psi_C(q_{\rm ini},\phi)$

$\Psi(\phi,q)$ (HH) $\mu = 0.2$ $\operatorname{Im}[\Psi(\phi,q)]$ (V)

slice at $\phi = 10$

slice at $\phi = 10$

21

$\Psi(\phi,q)$ (HH)

slice at $\phi = 10$

slice at $\phi = 10$

22

Extraction of probability from wave functions

(0) Obtain wave function with (a,b)

(1) Specify a classicality surface

$$S_0(q,\phi) = \frac{K}{6V(\phi)} \left(2V(\phi)q - 1\right)^{3/2} - \frac{\pi}{4}$$

- (2) On the classicality surface, we obtain probability measure of inflaton field from the wave function.
 initial value of classical equation
- (3) Then, integrate classical eq. motion to obtain e-foldings for scalar field driven inflation and obtain probability for e-foldings.

duration of slow roll inflation

Probability of inflaton field (unnormalized) on the classicality surface for various BCs

- The wave function with (HH) prefers small values of potential
- The behavior of the wave function with (V) depends on the value of

 $\mu \propto m/\Lambda^{1/2}$

small μ prefers large values of potential large μ prefers small values of potential

slow roll inflation never end slow roll inflation ends at $\Phi_{\rm f} \approx \frac{1}{2\sqrt{3\pi G}}$

Probability of boundary conditions P(a, b)

b

 $\pi/2$

 $\Psi_{\rm V}$

 Ψ_1

- $\Psi_{
 m V}$ is superior to $\Psi_{
 m HH}$ for large e-foldings of inflation
- Location and spread of peak depends on mass parameter μ P(a,b) can discriminate value of μ

Probability of model parameter ion
$$\mu_{N>60} \wedge \Lambda^{1/2}$$

$$P(S|\mu) = \int db P_{\mu}(S|p) P(bp) \Phi_{suf} \qquad \phi$$

$$P(\mu|S) = \frac{P(S|\mu)P(\mu)}{\int d\mu P(S|\mu)P(\mu)} = \frac{\int db P_{\mu}(S|b)}{\int d\mu db P_{\mu}(S|b)}$$

 $P_{\mu}(S|B_i)$

wave function mass	Ψ_1	Ψ_2	Ψ_3	$\Psi_{ m HH}$	$\Psi_{ m V}$
$\mu = 0.2$	0.604	0.0512	0.627	0.0561	0.621
$\mu = 3$	2.40×10^{-5}	1.60×10^{-10}	1.72×10^{-7}	1.61×10^{-10}	6.74×10^{-7}

26

$$P(\mu = 0.2|S) = 0.999987$$
$$P(\mu = 3|S) = 0.000013$$

For a fixed value of mass, large cosmological constant is preferred

probability for large field value is enhanced $P_{\mu}(S|B_i)$ with large mass is enhanced

small cosmological constant is expected

Summary

Summary

- One purpose of quantum cosmology is to predict inflationary universe.
- Introducing parametrization in BC space of the wave function, we evaluated probability of BC under the condition of sufficient e-foldings of inflation. The probability sharply depends of the value of parameters in the model.
- prediction on model parameters
- treatment of oscillatory phase $\$ large μ case

superposition of WKB wave functions

technically difficult to decompose each WKB components

Baysian update?

 $P(B_i|S)$: posterior probability $P(B_k)$: prior probability

宇宙の生成実験 mult

multiverse?

