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Introduction
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Quantum cosmology (QC):

● Canonical quantization of the universe 

Wheeler-DeWitt (WD) equationOH j i D 0

Prediction of the wave function : relies on WKB analysis

● There are several issues to be considered in QC:
problem time: how can we derive dynamics of the universe?
probability: conserved charge is not positive definite

how can we define probability?

boundary condition: how do we determine BC of WD eq.?

Quantum state of the universe is contained in

 the wave function of the universe  Œqç D hqj i
We expect to obtain origin and history of our universe 

by analyzing the wave function of the universe

treat the universe as a single quantum system

.q; �/
time

??



Boundary condition 
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Hartle-Hawking (HH): sum over compact Euclidean geometries

Vilenkin (V): wave function is purely outgoing at the infinity of superspace
path integral dominated by regular Euclidean classical solutions

● our universe has small value of cosmological constant

Our present universe: large scale structure, isotropy of CMB
● we expect our universe has experienced inflation with N � 60

 .q/ D
Z

ŒdNdqç exp.�SŒq; N ç/

P.�/ ⇠ exp

✓
1

⇤.�/

◆

P.�/ ⇠ exp

✓
� 1

⇤.�/

◆(V) prefers large values of cosmological constant

(HH) prefers small values of cosmological constant

The purpose of QC is to explain these features of our universe

tunneling type



Purpose of this research
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We want to say something about  boundary conditions of WD eq.

by imposing observational constraints

(HH) or (V) or others ?

● model: closed FRW universe with a massive scalar field with a  
   cosmological constant (toy cosmological model)

● constraint: sufficient number of e-foldings of inflation 

We investigate which type of BCs of the universe is preferable

N � 60
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Mini-superspace model
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Classical solutions
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Inflationary solution
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APPENDIX A: CLASSICAL SOLUTION

From the Hamiltonian (7), equations of motion for �; q are

1

N

✓
q2
� 0

N

◆0
C �2q� D 0; (A1)

1

N

✓
q0

N

◆0
D �4q

✓
� 0

N

◆2
C 2.1C �2�2/; (A2)

1

4

✓
q0

N

◆2
D q2

✓
� 0

N

◆2
� 1C q.1C �2�2/: (A3)

By taking cosmic time t as a time parameter and using the scale factor a D q1=2 and the original

constants, (A1) and (A3) become

R̊ C 3
✓ Pa
a
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P̊ Cm2˚ D 0; (A4)

✓ Pa
a
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C ⇤

3a2
D ⇤

3
C 4⇡G

3

� P̊ 2 Cm2˚2� ; (A5)

wherePD d
dt

.

Now we consider the solution of slow roll inflation driven by the mass term in this model. The

the slow roll condition is

j R̊ j .
✓ Pa
a

◆
j P̊ j; P̊ 2 . m2˚2;

⇤
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. 4⇡G

3
m2˚2; (A6)

and we also assume that the spatial curvature is negligible. Then the scalar field evolves as

˚ ⇡ ˚i � m

2
p
3⇡G

.t � ti/: (A7)

24

slow roll condition

A universe expands with acceleration Ra > 0
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˚2

inflaton potential

duration of inflation depends on initial values of �

e-foldings N D ln
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predicted by the wave function
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� P̊ 2 C m2˚2
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Hamiltonian constraint

scalar field eq.
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slow roll over damp slow roll damped oscillation
m2=⇤small m2=⇤large

The universe continues accelerated expansion forever

due to the cosmological constant in this model
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FIG. 4: Classical evolutions of the inflaton �.t/ and the scale factor a.t/ for � D 0:2 (upper panels) and

� D 3 (lower panels).

The upper panels of Fig. 4 shows a classical evolution of �=0.2 model in terms of cosmic time t .

The inflaton field � and its time derivative P� decay monotonically and inflation do not end (over

damped oscillation). Until tf ⇠ 200 (in the unit of the Planck time), inflation is driven by the

mass term potential and after that time, inflation is driven by the cosmological constant. The lower

panels of Fig. 4 shows � D 3 model. In this case, � decays and then oscillates with exponentially

damping at late time. The universe continues accelerated expansion after the slow roll due to the

cosmological constant. These two different behavior can be discriminated by the dimensionless

parameter �. For � < �⇤, the classical trajectory behaves like the upper panels (over damped).

For � > �⇤, the classical trajectory behaves as the lower panels (oscillation after slow roll). A

specific value of �⇤ determined by our simulation is �⇤ ⇡ 1:5.

Our simulation algorithm is as follows:

1. Prepare an initial surface q D qini in the Euclidean region of mini-superspace close to

14

The domination of the mass term ends at ˚f, which depends on the value of a dimensionless

parameter
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The e-foldings from ˚i to ˚f is
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and after this value, the scalar field oscillates around ˚ D 0. The e-foldings from ˚i to ˚f is
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The value of the scalar field at the Planck energy is defined by1

m2

2
˚2pl D m4pl; �pl D 4

3
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2K
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As �f < �pl, we have the following constraint for parameters in our model

� < 3 W 9

32
< K; (A15)

� > 3 W 9

32
<
�2

32
< K: (A16)

1 The Planck mass is defined by m2pl D 1
G .
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small mass
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Wheeler-DeWitt equation
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Two dimensional wave equation and can be solved with suitable BCs

H.q; pq; �; p�/ D 0

pa ! �i
@

@q
; p� ! �i

@

@�

As we cannot solve this equation analytically, we obtain the wave 

function numerically.

Hamiltonian constraint

where � is a dimensionless time parameter and N is a lapse function. We introduce a dimension-

less field variable � and its mass � as
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where we introduced a constant K ⌘ 9⇡
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. In our consideration, dynamical degree of

freedoms are the scale factor q.�/ and the inflaton field �.�/. We represent them using coordinates

of configuration space

qA D .q0; q1/ D .q;�/: (6)

This configuration space is called mini-superspace. To consider canonical quantization of the

model, we need the Hamiltonian. The total Hamiltonian of our mini-superspace model is given by
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We obtain the Hamiltonian constraint by taking variation of the lapse function N :

H D 0: (8)

Canonical quantization of the model is performed by replacing pA in the Hamiltonian constraint

by differential operator OpA
pA ! OpA D �i @

@qA
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and imposing operator version of the Hamiltonian constraint OH on a physical state  .qA/. It

yields the Wheeler-DeWitt equation
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where GAB D diag.�4; 1
q2 / is a metric of mini-superspace. The wave function  .qA/ on mini-

superspace is called the wave function of the universe. Actually, there is an operator ordering
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Structure of mini-superspace .q; �/

Lorentzian region: U.q; �/ > 0

q � 1  ⇠ eiS

Wave function has WKB form
“semi-classical” universe


�1

2
GAB@A@B C U.q;�/

�
 .q;�/ D 0

GAB D diag.�4;
1

q2
/

U.q; �/ D �1

2
C qV.�/

How can wave functions predict

classical trajectories (universe)?

scale factor matter field

WD equation (KG type eq.)

�

q
Lorentzian

Euclidean

classical trajectories

U.q; �/ D 0 Euclidean region: U.q; �/ < 0

“quantum” universe

q ⌧ 1  ⇠ e�SE

classically forbidden region
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de Sitter case V.�/ D const.
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(HH): superposition of expanding and

         contracting universes

 ⇠ eCq=2  ⇠ eiS C e�iS
q � 1

(V): purely outgoing wave

      tunneling type

 ⇠ e�q=2  ⇠ eiS

q � 1

Schroedinger eq. with zero energy



de Sitter case
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V.�/ D const.

● General solutions of WD eq. in terms of Airy function

III. PROBABILITY FOR BOUNDARY CONDITIONS

When we have some restriction on our models of inflationary universe from observations, we

can investigate a probability which states preferable type of boundary conditions. It is possible to

express this probability using the Bayes’ theorem:

P.Bi jS/ D P.Bi/P.S jBi/P
k P.Bk/P.S jBk/

; (30)

whereP.Bi jS/ is a probability forBi under S happened. Here,Bi is some candidate of the bound-

ary condition of the wave function labeled by index i , and S means the universe with sufficient

inflation, namely, N � 60. Thus, P.Bi jS/ denotes the probability for Bi under the sufficiently

inflated universe. On the contrary, P.S jBi/ in the right hand side is the probability for sufficient

inflation with boundary condition Bi and is equivalent to Psuf defined in the previous section

P.S jBi/ D Psuf.Bi/ D P.N � 60 jBi/: (31)

As we do not have any information on the prior probability P.Bi/, we assume that it is uniformly

distributed. To represent different boundary conditions, we will introduce two parameters a; b in

(36). The probability for the parameters a; b is given by

P.a; bjS/ D P.S ja; b/R
da0db0P.S ja0; b0/

: (32)

When we solve the Wheeler-DeWitt equation, we have to impose some boundary condition

(in other words, initial condition) on the wave function. For this purpose, we use exact solutions

of the Wheeler-DeWitt equation which are obtained when the scalar field potential V.�/ is con-

stant. Based on the path integral representation of the wave function [9], for the constant scalar

field potential case, the wave function corresponding to the Hartle-Hawking and the Vilenkin type

boundary conditions are expressed as

 HH D  2 C  3;  V D  1 C i 3; (33)

where

 1 ⌘ .2V /�1=3Ai.z0/Ai.z/;  2 ⌘ .2V /�1=3Bi.z0/Ai.z/;  3 ⌘ .2V /�1=3Ai.z0/Bi.z/;

(34)

with

z D z.q/ D
✓
4V

K

◆�2=3
.1 � 2qV /; z0 D z.0/ D

✓
4V

K

◆�2=3
: (35)
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(wave functions as transition amplitude from               )q0 ! q

G.qjq0/ D c1Ai.z0/Ai.z/ C c2Bi.z0/Bi.z/ C c3.Ai.z0/Bi.z/ C Bi.z0/Ai.z//
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where
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z D z.q/ D
✓
4V

K
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.1 � 2qV /; z0 D z.0/ D

✓
4V

K

◆�2=3
: (35)
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For large values of the scale factor (classical region),  HH is superposition of expanding and con-

tracting universes with amplitude exp
�C K

6V

�
which prefers small values of the potential. On the

other hand,  V represents an expanding universe with amplitude exp
�� K

6V

�
which prefers large

values of the potential. We can express more general type of wave functions introducing two real

parameters a; b which represent boundary conditions of the wave function

 C D tan a.cos b  2 � i sin b  1/C  3; 0  a; b  ⇡=2: (36)

Introduced parameters a; b distinguish boundary conditions of the wave function (Table I and

Fig. 1).

wave function parameter .a; b/ asymptotic form for q � 1

 HH .⇡4 ; 0/ ⇠ exp
⇣
C K
6V

⌘
cosS0

 V .⇡4 ;
⇡
2 / ⇠ exp

⇣
� K
6V

⌘
exp.�iS0/

 1 .⇡2 ;
⇡
2 / ⇠ exp

⇣
� K
6V

⌘
cosS0

 2 .⇡2 ; 0/ ⇠ exp
⇣
C K
6V

⌘
cosS0

 3 .0; any values/ ⇠ � exp
⇣
� K
6V

⌘
sinS0

TABLE I: Typical wave functions and their parameters .a; b/ and asymptotic behaviors. The phase function

S0 is defined by S0 D K
6V .2qV � 1/3=2 � ⇡

4 .

a

b

⇡=2

⇡=2

⇡=40

 V

 HH

 1

 2

 3

FIG. 1: Parametrization .a; b/ of boundary conditions for  C .

Solving the wave function and calculating probability Psuf for each values of .a; b/, we can evalu-

ate the probability for the parameters .a; b/ using the relation (32).
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Solving the wave function and calculating probability Psuf for each values of .a; b/, we can evalu-

ate the probability for the parameters .a; b/ using the relation (32).
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(HH) and (V) can be represented using three functions (solutions)

IV. NUMERICAL SIMULATION OF THE WAVE FUNCTION

A. Boundary conditions and probability

We solve the Wheeler-DeWitt equation (10) numerically to obtain the probability of boundary

conditions. We prepare the initial surface q D qini in the Euclidean region of mini-superspace and

impose the following boundary condition for the wave function  .q;�/

 .qini;�/ D  C .qini;�/; @q .qini;�/ D @q C .qini;�/: (37)

As C defined by (36) is specified by two parameters a; b, this boundary condition is also specified

by these two parameters. We call  C the boundary wave function. For models with constant scalar

field potential, this boundary condition of course reproduces the exact solution  C .

In the Lorentzian region of mini-superspace with sufficiently large value of �, the Wheeler-

DeWitt equation (10) has the following asymptotic form

4

K2

@2

@q2
� 1C 2qV.�/

�
 .q;�/ ⇡ 0; (38)

and the exact solution of this equation is given by

 1 D ˛1.�/Ai.z/C ˇ1.�/Bi.z/; z.q;�/ D
✓
4V.�/

K

◆�2=3
.1 � 2qV.�//: (39)

Using the asymptotic form of the Airy function,  1 can be expressed as superposition of two

WKB modes corresponding to the expanding mode and the collapsing mode

 1.q;�/ ⇡ CC.�/e�iS0.q;�/ C C�.�/eiS0.q;�/; (40)

where S0 is the phase function given by

S0.q;�/ D K

6V.�/
.2V .�/q � 1/3=2 � ⇡

4
: (41)

By fitting the numerically obtained wave function  num with  1, we determine the prefactor of

the WKB mode of the wave function  num. Let us denote real and imaginary part of the wave

function  num for a fixed value of � as

. num.q//R D expŒ�IR.q/ç cosSR.q/; . num.q//I D expŒ�II .q/ç cosSI .q/: (42)

From . num/R;I , it is possible to determine locations qi of local maximum points of the wave

function and their values  i . Thus, we obtain a set of data Œqi ; i ç.
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We parametrize solutions including (HH) and (V) using two real parameters
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Solving the wave function and calculating probability Psuf for each values of .a; b/, we can evalu-

ate the probability for the parameters .a; b/ using the relation (32).
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III. PROBABILITY FOR BOUNDARY CONDITIONS

When we have some restriction on our models of inflationary universe from observations, we

can investigate a probability which states preferable type of boundary conditions. It is possible to

express this probability using the Bayes’ theorem:

P.Bi jS/ D P.Bi/P.S jBi/P
k P.Bk/P.S jBk/

; (30)

whereP.Bi jS/ is a probability forBi under S happened. Here,Bi is some candidate of the bound-

ary condition of the wave function labeled by index i , and S means the universe with sufficient

inflation, namely, N � 60. Thus, P.Bi jS/ denotes the probability for Bi under the sufficiently

inflated universe. On the contrary, P.S jBi/ in the right hand side is the probability for sufficient

inflation with boundary condition Bi and is equivalent to Psuf defined in the previous section

P.S jBi/ D Psuf.Bi/ D P.N � 60 jBi/: (31)

As we do not have any information on the prior probability P.Bi/, we assume that it is uniformly

distributed. To represent different boundary conditions, we will introduce two parameters a; b in

(36). The probability for the parameters a; b is given by

P.a; bjS/ D P.S ja; b/R
da0db0P.S ja0; b0/

: (32)

When we solve the Wheeler-DeWitt equation, we have to impose some boundary condition

(in other words, initial condition) on the wave function. For this purpose, we use exact solutions

of the Wheeler-DeWitt equation which are obtained when the scalar field potential V.�/ is con-

stant. Based on the path integral representation of the wave function [9], for the constant scalar

field potential case, the wave function corresponding to the Hartle-Hawking and the Vilenkin type

boundary conditions are expressed as

 HH D  2 C  3;  V D  1 C i 3; (33)

where

 1 ⌘ .2V /�1=3Ai.z0/Ai.z/;  2 ⌘ .2V /�1=3Bi.z0/Ai.z/;  3 ⌘ .2V /�1=3Ai.z0/Bi.z/;

(34)

with

z D z.q/ D
✓
4V

K

◆�2=3
.1 � 2qV /; z0 D z.0/ D

✓
4V

K

◆�2=3
: (35)
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Solving the wave function and calculating probability Psuf for each values of .a; b/, we can evalu-

ate the probability for the parameters .a; b/ using the relation (32).
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We  specify BCs of WD eq. for non-constant potential case

using this parametrization  
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Solving the wave function and calculating probability Psuf for each values of .a; b/, we can evalu-

ate the probability for the parameters .a; b/ using the relation (32).
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ambiguity in the quantization procedure. However, in our analysis, we choose the ordering which

yields the equation (10) for later convenience.

The wave function  is expressed by the path integral with respect to qA and N :

 .qA/ D
Z

DNDqA eiSŒN.�/;q
A.�/ç; SŒN.�/; qA.�/ç D

Z 1

0

d�LŒN.t/; qA.t/ç: (12)

Here, qA ⌘ qA.1/ is a boundary value of qA on the final spacelike hypersurface � D 1. The

path integral representation of the wave function satisfies Eq. (10) [3]. In our approach to the

quantum cosmology, we mainly focus on solving (10) as a differential equation but the path inte-

gral representation plays an important roll in characterizing the boundary condition for the wave

function.

B. Semi-classical approximation and probability

1. WKB wave function

To extract predictions for the classical universe from the wave function, it must be expressed as

the semi-classical form, which means the wave function behaves as the WKB solution of Eq. (10).

We perform the WKB expansion of the wave function. We make an ansatz of the wave function as

 .qA/ D C.qA/e� 1
„I.q

A/: (13)

For convergence of the path integral representation of the wave function, the contour of the path

integral must be analytically continued in the complex plane. Thus, I; C would generally become

complex functions. We write I as I D IR � iS where IR; S are real functions. We call IR.qA/ as

a pre-factor and S.qA/ as a phase of the wave function.

Inserting (13) into the Wheeler-DeWitt equation (11), we obtain a set of semi-classical equa-

tions for I; C :

O.„0/ W � 1

2K2
.rI /2 C U.qA/ D 0; (14)

O.„1/ W 2rI � rC C Cr2I D 0; (15)

where .rI /2 D GAB@AI@BI; .rI / � .rC/ D GAB@AI@BC;r2I D GAB@A@BI . Now, we

consider a condition of the wave function providing predictions for the classical universe. In the

classical regime, the phase of the wave function must satisfies the Hamilton-Jacobi equation. This
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 .qA/ D C.qA/e� 1
„I.q

A/: (13)

For convergence of the path integral representation of the wave function, the contour of the path

integral must be analytically continued in the complex plane. Thus, I; C would generally become

complex functions. We write I as I D IR � iS where IR; S are real functions. We call IR.qA/ as

a pre-factor and S.qA/ as a phase of the wave function.

Inserting (13) into the Wheeler-DeWitt equation (11), we obtain a set of semi-classical equa-

tions for I; C :

O.„0/ W � 1

2K2
.rI /2 C U.qA/ D 0; (14)

O.„1/ W 2rI � rC C Cr2I D 0; (15)

where .rI /2 D GAB@AI@BI; .rI / � .rC/ D GAB@AI@BC;r2I D GAB@A@BI . Now, we

consider a condition of the wave function providing predictions for the classical universe. In the

classical regime, the phase of the wave function must satisfies the Hamilton-Jacobi equation. This

5

implies that the equation (14) must correspond to the Hamilton-Jacobi equation in the classical

regime. Namely,

�1
2
.rIR/2 C irIR � rS C 1

2
.rS/2 CK2U D 0 (16)

should reduce to the classical Hamiltona-Jacobi equation

1

2K2
.rS/2 C U D 0: (17)

Thus IR and S should satisfy the condition

jrIRj2
jrS j2 ⌧ 1: (18)

This is called the “classicality” condition [7]. To predict the evolution of classical universes from

the wave function, I; S and C must satisfy (14)-(18) and we expect that the probability can be

obtained in the region of mini-superspace where the classicality condition is satisfied.

In the path integral representation of the wave function, there are more than one saddle point

of the action in general. Thus, the semi-classical wave function is given by superposition of WKB

components associated with different saddle points:

 .qA/ D
X

iDsaddle

C .i/.qA/e�I .i/
R .qA/eiS

.i/.qA/: (19)

It is possible to obtain a desirable probability measure for the classical universe using this expres-

sion of the WKB wave function.

2. Conserved current and probability

Now let us consider how to define probability from the wave function. Introducing probability

from the wave function of the universe is not straightforward because the probability measure is not

positive definite in present case. However, existence of the conserved current in mini-superspace

with the classicality condition make it possible to introduce a suitable probability measure and

we can define the conditional probability giving predictions for observables [7]. For the wave

function  satisfying the Wheeler-DeWitt equation, we have the following conserved current in

mini-superspace

JA D i

2
. ⇤rA �  rA ⇤/; r � JA D 0: (20)
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Conserved current of WD eq.

For WKB wave function,

In the classical region where the wave function has the WKB form, we can obtain the positive

definite probability measure from JA. For each WKB components of the wave function (19), we

define

J .i/A ⌘ �jC .i/j2 exp.�2I .i/R /rAS .i/: (21)

They are conserved independently in the classical region r � J .i/ D 0. From the Hamilton-Jacobi

equation, we can assign the canonical momentum in the classical region

p.i/A D rAS .i/ D
@S .i/

@qA
: (22)

Here, we focus only on the components with p.i/q D @qS
.i/ < 0. From dq.i/

d�
/ �p.i/q > 0,

these components correspond to expanding universes. Thus, we can introduce a conserved current

corresponding to the expanding universe as

JC
A ⌘ �

X

p.i/
q <0

jC .i/j2 exp.�2I .i/R /rAS .i/: (23)

Let us consider a surface˙c in mini-superspace which is spacelike with respect to the metric GAB

and has unit normal nA. We require the classicality condition (18) is satisfied on this surface. Then

the relative probability P .˙c/ of classical histories passing through this surface is the component

of the conserved current (23) along the normal if it is positive. In leading order in „, this is

P .˙c/ ⌘ JC � n D �
X

p.i/
q <0

jC .i/j2 exp.�2I .i/R /rnS .i/; (24)

where rn means differentiation along the normal vector nA. As a point on ˙c is specified by

the value of the scalar field, P .�/ ⌘ P .˙c.�// provides the probability for the inflaton field to

realize a value � on ˙c .

3. Conditional probability for observables

We can derive a probability for observables from the probability measure P .�/. It can be given

as the conditional probability [10]

P.s0js1/ D
R
s0
J � d˙cR

s1
J � d˙c ; (25)

where s1 is a subset of the hypersurface ˙c defined by some theoretical constraints and s0 is

a subset of s1 defined by restricting s1 using observational constraints. By using the relation
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Conditional probability for sufficient e-foldings of inflation

(22), we can obtain classical trajectories starting from ˙c . Namely, the probability measure on

˙c with the classicality condition gives probability distribution for initial data .pq; q; p�;�/ for

the classical equation of motion. In our analysis, the number of e-foldings N is adopted as an

observable because this variable quantifies the inflationary models to explain the horizon and the

flatness problems. N is defined by

N ⌘ log
✓
a.tf/

a.ti/

◆
; (26)

where ti denotes beginning time of inflation and tf denotes end time of inflation. In our analysis, we

define tf as end time of inflation driven by the mass term of the scalar field potential. The number

of e-foldings N is determined by the initial data and it is possible to translate the probability

measure for � on ˙c to the probability measure for N .�/.

To introduce the conditional probability, we define an interval s1 as s1 D Œ�min;�plç where �min

is the lower bound of the interval and �pl D 4
3

p
2K
�

is the value of the inflaton field corresponding

to the Planck energy density m4pl. Then an interval s0 ⇢ s1 is defined as s0 D Œ�suf;�plç where �suf

corresponds to the number of e-foldings Nsuf ⇡ 60 consistent with observations. Accordingly, the

conditional probability to predict the universe with sufficient inflation becomes

P.s0js1/ D
R �pl
�suf
d� P .�/

R �pl
�min

d� P .�/
: (27)

We denote this probability as

Psuf ⌘ P.s0js1/ D P.N � 60/: (28)

The expectation value of N can be calculated as

hN i D
R �pl
�min

d�N .�/P .�/
R �pl
�min

d� P .�/
: (29)

These probability and expectation value depend not only on cosmological models but also on

boundary conditions of the wave function. As we have already commented in the introduction,

there are two well known proposals for the boundary condition of the wave function. One of

them is “no-boundary boundary condition proposal” by Hartle and Hawking (HH), the other one

is “tunneling proposal” by Vilenkin (V). They predict different evolution of universe; (HH) prefers

small value of N , on the other hands, (V) prefers large value of N . By calculating and comparing

Psuf for given models and boundary conditions, we can evaluate what type of models and boundary

conditions are more suitable to explain observation of our universe.
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�min : end of inflation driven by scalar field 

prob. of inflation

prob. of inflation with N > 60

�
�min �suf �pl

N > 60
sufficient inflation over Planck

energy density

P.�/

FIG. 13: The probability is defined in s0 D Œ�min;�plç. We set �min D 0 for � D 0:2 and �min D 1:8 for

� D 3 because the classicality condition is violated in � < 1:8 region for � D 3 case.

mass

wave function
 1  2  3  HH  V

� D 0:2 0.604 0.0512 0.627 0.0561 0.621

� D 3 2:40 ⇥ 10�5 1:60 ⇥ 10�10 1:72 ⇥ 10�7 1:61 ⇥ 10�10 6:74 ⇥ 10�7

TABLE III: Psuf D P.N � 60/ for five wave functions and two choices of �. The larger value of Psuf is

more preferred for sufficient inflation.

mass

wave function
 1  2  3  HH  V

� D 0:2 211 15.9 217 17.6 216

� D 3 6:75 6:74 6:74 6:74 6:74

TABLE IV: Expectation value of number of e-foldings hN i for five wave functions and two choices of �.

This quantity represents amount of inflation for the classical universe.

Finally, we obtain the probability P.a; b/ of boundary conditions using the relation (32) (Fig. 14).
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Probability of boundary conditions

On the other hand, 

probability of BC under the condition of sufficient inflation is

prior probability: assume uniformly distributedP.Bk/

III. PROBABILITY FOR BOUNDARY CONDITIONS

When we have some restriction on our models of inflationary universe from observations, we

can investigate a probability which states preferable type of boundary conditions. It is possible to

express this probability using the Bayes’ theorem:

P.Bi jS/ D P.Bi/P.S jBi/P
k P.Bk/P.S jBk/

; (30)

whereP.Bi jS/ is a probability forBi under S happened. Here,Bi is some candidate of the bound-

ary condition of the wave function labeled by index i , and S means the universe with sufficient

inflation, namely, N � 60. Thus, P.Bi jS/ denotes the probability for Bi under the sufficiently

inflated universe. On the contrary, P.S jBi/ in the right hand side is the probability for sufficient

inflation with boundary condition Bi and is equivalent to Psuf defined in the previous section

P.S jBi/ D Psuf.Bi/ D P.N � 60 jBi/: (31)

As we do not have any information on the prior probability P.Bi/, we assume that it is uniformly

distributed. To represent different boundary conditions, we will introduce two parameters a; b in

(36). The probability for the parameters a; b is given by

P.a; bjS/ D P.S ja; b/R
da0db0P.S ja0; b0/

: (32)

When we solve the Wheeler-DeWitt equation, we have to impose some boundary condition

(in other words, initial condition) on the wave function. For this purpose, we use exact solutions

of the Wheeler-DeWitt equation which are obtained when the scalar field potential V.�/ is con-

stant. Based on the path integral representation of the wave function [9], for the constant scalar

field potential case, the wave function corresponding to the Hartle-Hawking and the Vilenkin type

boundary conditions are expressed as

 HH D  2 C  3;  V D  1 C i 3; (33)

where

 1 ⌘ .2V /�1=3Ai.z0/Ai.z/;  2 ⌘ .2V /�1=3Bi.z0/Ai.z/;  3 ⌘ .2V /�1=3Ai.z0/Bi.z/;

(34)

with

z D z.q/ D
✓
4V

K

◆�2=3
.1 � 2qV /; z0 D z.0/ D

✓
4V

K

◆�2=3
: (35)
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of the Wheeler-DeWitt equation which are obtained when the scalar field potential V.�/ is con-

stant. Based on the path integral representation of the wave function [9], for the constant scalar

field potential case, the wave function corresponding to the Hartle-Hawking and the Vilenkin type

boundary conditions are expressed as

 HH D  2 C  3;  V D  1 C i 3; (33)

where

 1 ⌘ .2V /�1=3Ai.z0/Ai.z/;  2 ⌘ .2V /�1=3Bi.z0/Ai.z/;  3 ⌘ .2V /�1=3Ai.z0/Bi.z/;

(34)

with

z D z.q/ D
✓
4V

K

◆�2=3
.1 � 2qV /; z0 D z.0/ D

✓
4V

K

◆�2=3
: (35)

9

Probability of boundary condition under restriction of sufficient inflation

For a wave function with a specific BC, it is possible to obtain probability

of sufficient inflation

Psuf D P.S jBi /

Bayes' theorem

III. PROBABILITY FOR BOUNDARY CONDITIONS

When we have some restriction on our models of inflationary universe from observations, we

can investigate a probability which states preferable type of boundary conditions. It is possible to

express this probability using the Bayes’ theorem:

P.Bi jS/ D P.Bi/P.S jBi/P
k P.Bk/P.S jBk/

; (30)

whereP.Bi jS/ is a probability forBi under S happened. Here,Bi is some candidate of the bound-

ary condition of the wave function labeled by index i , and S means the universe with sufficient

inflation, namely, N � 60. Thus, P.Bi jS/ denotes the probability for Bi under the sufficiently

inflated universe. On the contrary, P.S jBi/ in the right hand side is the probability for sufficient

inflation with boundary condition Bi and is equivalent to Psuf defined in the previous section

P.S jBi/ D Psuf.Bi/ D P.N � 60 jBi/: (31)

As we do not have any information on the prior probability P.Bi/, we assume that it is uniformly

distributed. To represent different boundary conditions, we will introduce two parameters a; b in

(36). The probability for the parameters a; b is given by

P.a; bjS/ D P.S ja; b/R
da0db0P.S ja0; b0/

: (32)

When we solve the Wheeler-DeWitt equation, we have to impose some boundary condition

(in other words, initial condition) on the wave function. For this purpose, we use exact solutions

of the Wheeler-DeWitt equation which are obtained when the scalar field potential V.�/ is con-

stant. Based on the path integral representation of the wave function [9], for the constant scalar

field potential case, the wave function corresponding to the Hartle-Hawking and the Vilenkin type

boundary conditions are expressed as

 HH D  2 C  3;  V D  1 C i 3; (33)

where

 1 ⌘ .2V /�1=3Ai.z0/Ai.z/;  2 ⌘ .2V /�1=3Bi.z0/Ai.z/;  3 ⌘ .2V /�1=3Ai.z0/Bi.z/;

(34)

with

z D z.q/ D
✓
4V

K

◆�2=3
.1 � 2qV /; z0 D z.0/ D

✓
4V

K

◆�2=3
: (35)

9

(principle of insufficient reason)

causeresult

cause result

cause



Numerical analysis of the wave function
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�

q

Lorentzian

Euclideanqini

IV. NUMERICAL SIMULATION OF THE WAVE FUNCTION

A. Boundary conditions and probability

We solve the Wheeler-DeWitt equation (10) numerically to obtain the probability of boundary

conditions. We prepare the initial surface q D qini in the Euclidean region of mini-superspace and

impose the following boundary condition for the wave function  .q;�/

 .qini;�/ D  C .qini;�/; @q .qini;�/ D @q C .qini;�/: (37)

As C defined by (36) is specified by two parameters a; b, this boundary condition is also specified

by these two parameters. We call  C the boundary wave function. For models with constant scalar

field potential, this boundary condition of course reproduces the exact solution  C .

In the Lorentzian region of mini-superspace with sufficiently large value of �, the Wheeler-

DeWitt equation (10) has the following asymptotic form

4

K2

@2

@q2
� 1C 2qV.�/

�
 .q;�/ ⇡ 0; (38)

and the exact solution of this equation is given by

 1 D ˛1.�/Ai.z/C ˇ1.�/Bi.z/; z.q;�/ D
✓
4V.�/

K

◆�2=3
.1 � 2qV.�//: (39)

Using the asymptotic form of the Airy function,  1 can be expressed as superposition of two

WKB modes corresponding to the expanding mode and the collapsing mode

 1.q;�/ ⇡ CC.�/e�iS0.q;�/ C C�.�/eiS0.q;�/; (40)

where S0 is the phase function given by

S0.q;�/ D K

6V.�/
.2V .�/q � 1/3=2 � ⇡

4
: (41)

By fitting the numerically obtained wave function  num with  1, we determine the prefactor of

the WKB mode of the wave function  num. Let us denote real and imaginary part of the wave

function  num for a fixed value of � as

. num.q//R D expŒ�IR.q/ç cosSR.q/; . num.q//I D expŒ�II .q/ç cosSI .q/: (42)

From . num/R;I , it is possible to determine locations qi of local maximum points of the wave

function and their values  i . Thus, we obtain a set of data Œqi ; i ç.

11

Boundary condition for WD equation: exact solution for constant potential

2000x200 grids in mini-superspace

q D 0. qini cannot be chosen too small because we must keep the Courant condition for

stable numerical integration of the wave equation. For the present case, the condition is

2q >
�q

��
; (49)

where �q and �� are grid spacings and qini must satisfy this inequality.

2. Solve the Wheeler-DeWitt equation numerically from q D qini to qfin with a given boundary

wave function  C . We adopt the 5-step Adams-Bashforth method for numerical integration

which has the 5-th order accuracy. We used 20000 ⇥ 200 grid size which covers qini  q 
qfin;�min  �  �max (actual values used in the simulation is shown in Table II).

mass K qini qfin �q �min �max ��

� D 0:2 6:283 0:01 14 6:995 ⇥ 10�4 0 26 0:1307

� D 3 1413 0:0001 0:2 9:995 ⇥ 10�6 1:8 26 0.1216

TABLE II: Parameters of our simulation.

3. We specify a hypersurface ˙c on which the classicality condition is satisfied. We choose

˙c as a constant S0 surface. The classicality condition is defined by (47). We numerically

obtain the probability P .�/ on ˙c .

4. Integrating the classical equation of motion from ˙c , we evaluate the number of e-foldings

of each classical trajectories. Then calculate the probability measure for the e-foldings.

5. Repeating step 2 to step 5 for different values of parameters .a; b/, we obtain the probability

of parameters .a; b/ which specify the boundary condition of the wave function.

C. Simulation results

Fig. 5 shows the wave function numerically solved with the boundary wave function  HH corre-

sponding to the no-boundary boundary condition (HH). Fig. 6 shows the wave function with the

boundary wave function  V corresponding to the tunneling boundary condition (V).

15

We solved the WD equation numerically

and obtained wave functions for 9x9 BCs

parameter a; b

H.Suenobu & YN

arXiv:1603.08172

be satisfied for � < 1:8. Thus, we introduce a cut off �min to calculate the conditional probability

and we consider that probability only in the interval Œ�min;�plç.
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FIG. 9: The density plot of the classicality Rc of the wave function with the Hartle-Hawking boundary

condition (HH) (left: � D 0:2, right: � D 3). ˙c (solid line) is chosen as S0 D const. in the region with

Rc < 0:02. In the case of � D 3, the classicality condition can not be satisfied for � < 1:8. The dashed

line represents the boundary between the Euclidean region and the Lorentzian region.

On the hypersurface ˙c which satisfies the classicality condition, we calculate the probability

measure of � for 9 ⇥ 9 grid points in the parameter space .a; b/ of the boundary wave function

(Fig. 10).

a

b

⇡=2

⇡=2

⇡=40

FIG. 10: Parametrization of boundary conditions.

Fig. 11 shows P .�/ obtained from solutions of the Wheeler-DeWitt equation with bound-

18

space of BCs
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Extraction of probability from wave functions
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(3) Then, integrate classical eq. motion to obtain e-foldings for scalar field

     driven inflation and obtain probability for e-foldings.

�

q

Euclidean classicality surface

classical trajectories

˙c

(1) Specify a classicality surface

IV. NUMERICAL SIMULATION OF THE WAVE FUNCTION

A. Boundary conditions and probability

We solve the Wheeler-DeWitt equation (10) numerically to obtain the probability of boundary

conditions. We prepare the initial surface q D qini in the Euclidean region of mini-superspace and

impose the following boundary condition for the wave function  .q;�/

 .qini;�/ D  C .qini;�/; @q .qini;�/ D @q C .qini;�/: (37)

As C defined by (36) is specified by two parameters a; b, this boundary condition is also specified

by these two parameters. We call  C the boundary wave function. For models with constant scalar

field potential, this boundary condition of course reproduces the exact solution  C .

In the Lorentzian region of mini-superspace with sufficiently large value of �, the Wheeler-

DeWitt equation (10) has the following asymptotic form

4

K2

@2

@q2
� 1C 2qV.�/

�
 .q;�/ ⇡ 0; (38)

and the exact solution of this equation is given by

 1 D ˛1.�/Ai.z/C ˇ1.�/Bi.z/; z.q;�/ D
✓
4V.�/

K

◆�2=3
.1 � 2qV.�//: (39)

Using the asymptotic form of the Airy function,  1 can be expressed as superposition of two

WKB modes corresponding to the expanding mode and the collapsing mode

 1.q;�/ ⇡ CC.�/e�iS0.q;�/ C C�.�/eiS0.q;�/; (40)

where S0 is the phase function given by

S0.q;�/ D K

6V.�/
.2V .�/q � 1/3=2 � ⇡

4
: (41)

By fitting the numerically obtained wave function  num with  1, we determine the prefactor of

the WKB mode of the wave function  num. Let us denote real and imaginary part of the wave

function  num for a fixed value of � as

. num.q//R D expŒ�IR.q/ç cosSR.q/; . num.q//I D expŒ�II .q/ç cosSI .q/: (42)

From . num/R;I , it is possible to determine locations qi of local maximum points of the wave

function and their values  i . Thus, we obtain a set of data Œqi ; i ç.

11

(2) On the classicality surface, we obtain probability measure of inflaton  
     field from the wave function. initial value of classical equation

(0) Obtain wave function with (a,b)

duration of slow roll inflation
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ary wave functions  1,  2,  3 and  HH,  V. From now on, we denote these solutions as

 1; 2; 3; HH; V. This probability measure is not normalized because the conditional prob-

ability P.S ja; b/ can be obtained without normalizing P .�/.
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FIG. 11: P .�/ for � D 0:2 (left) and � D 3 (right). P .�/ is not normalized.

The left panel of Fig. 11 shows P .�/ with each boundary conditions for � D 0:2 model. Wave

functions  1,  3,  V prefer large values of � and  2,  HH prefer small values of �. This behavior

of P .�/ is the same as that obtained from the exact wave function  C . However, the distribution

in small � is slightly different from that of  C . A reason for this will be discussed soon later. The

right panel of Fig. 11 shows P .�/ for � D 3 model. Probabilities for  2 and  HH have the same

behavior as these in the case of � D 0:2. However, probabilities for  1,  3 and  V are different

from these in the case of � D 0:2. The probabilities for small � have significantly large values

and have similar behaviors of  2 and  HH.

Here, we explain why different behavior of P .�/ for three wave functions  1,  3 and

 V arises in the small � region. These three wave functions have a common behavior, that

is, the wave functions decay from q D 0 towards increasing q in the Euclidean region. In

this region, if we assume V.�/ is constant, the wave function consists of two WKB modes

 ˙ / exp.˙.K=6V /.1 � .1 � 2qV /3=2//. The wave functions  1,  3 and  V select the de-

caying mode  � / exp.�.K=6V /.1� .1� 2qV /3=2// ⇡ exp.�K
2
q/ and keep this behavior until

reaching the boundary between the Euclidean and the Lorentzian region. However, � dependence

of the scalar field potential causes change of the decaying mode  � to the growing mode  C.

This growing mode corresponds to the  2 and  HH, therefore, resulting probability distributions

19

� D 0:2 � D 3

For large values of the scale factor (classical region),  HH is superposition of expanding and con-

tracting universes with amplitude exp
�C K

6V

�
which prefers small values of the potential. On the

other hand,  V represents an expanding universe with amplitude exp
�� K

6V

�
which prefers large

values of the potential. We can express more general type of wave functions introducing two real

parameters a; b which represent boundary conditions of the wave function

 C D tan a.cos b  2 � i sin b  1/C  3; 0  a; b  ⇡=2: (36)

Introduced parameters a; b distinguish boundary conditions of the wave function (Table I and

Fig. 1).

wave function parameter .a; b/ asymptotic form for q � 1

 HH .⇡4 ; 0/ ⇠ exp
⇣
C K
6V

⌘
cosS0

 V .⇡4 ;
⇡
2 / ⇠ exp

⇣
� K
6V

⌘
exp.�iS0/

 1 .⇡2 ;
⇡
2 / ⇠ exp

⇣
� K
6V

⌘
cosS0

 2 .⇡2 ; 0/ ⇠ exp
⇣
C K
6V

⌘
cosS0

 3 .0; any values/ ⇠ � exp
⇣
� K
6V

⌘
sinS0

TABLE I: Typical wave functions and their parameters .a; b/ and asymptotic behaviors. The phase function

S0 is defined by S0 D K
6V .2qV � 1/3=2 � ⇡

4 .

a

b

⇡=2

⇡=2

⇡=40

 V

 HH

 1

 2

 3

FIG. 1: Parametrization .a; b/ of boundary conditions for  C .

Solving the wave function and calculating probability Psuf for each values of .a; b/, we can evalu-

ate the probability for the parameters .a; b/ using the relation (32).

10

● The wave function with (HH) prefers small values of potential
● The behavior of the wave function with (V) depends on the value of

� / m=⇤1=2

small � prefers large values of potential
large � prefers small values of potential

slow roll inflation never end

slow roll inflation ends at

The domination of the mass term ends at �f, which depends on the value of a dimensionless

parameter

µ =

mp
⇤/3

. (A8)

For µ < 3,

�f ⇡
r

⇤

4⇡Gm2
, �f =

1

µ
, (A9)

and after this value, the scalar field evolves as

� ⇡ �f exp

"
�µ2

3

r
⇤

3

(t� tf)

#
. (A10)

The e-foldings from �i to �f is

N = ln

✓
af

ai

◆
⇡ 3

2

✓
�2

i �
1

µ2

◆
. (A11)

For µ > 3,

�f ⇡
1

2

p
3⇡G

, �f =
1

3

, (A12)

and after this value, the scalar field oscillates around � = 0. The e-foldings from �i to �f is

N = ln

✓
af

ai

◆
⇡ 2⇡G(�

2
i � �

2
f ) =

3

2

✓
�2

i �
1

9

◆
. (A13)

The value of the scalar field at the Planck energy is defined by1

m2

2

�

2
pl = m4

pl, �pl =
4

3

p
2K

µ
. (A14)

As �f < �pl, we have the following constraint for parameters in our model

µ < 3 :

9

32

< K, (A15)

µ > 3 :

9

32

<
µ2

32

< K. (A16)

1
The Planck mass is defined by m2

pl =
1
G .

26

Probability of inflaton field (unnormalized) on the classicality surface
for various BCs
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For large values of the scale factor (classical region),  HH is superposition of expanding and con-

tracting universes with amplitude exp
�C K

6V

�
which prefers small values of the potential. On the

other hand,  V represents an expanding universe with amplitude exp
�� K

6V

�
which prefers large

values of the potential. We can express more general type of wave functions introducing two real

parameters a; b which represent boundary conditions of the wave function

 C D tan a.cos b  2 � i sin b  1/C  3; 0  a; b  ⇡=2: (36)

Introduced parameters a; b distinguish boundary conditions of the wave function (Table I and

Fig. 1).

wave function parameter .a; b/ asymptotic form for q � 1

 HH .⇡4 ; 0/ ⇠ exp
⇣
C K
6V

⌘
cosS0

 V .⇡4 ;
⇡
2 / ⇠ exp

⇣
� K
6V

⌘
exp.�iS0/

 1 .⇡2 ;
⇡
2 / ⇠ exp

⇣
� K
6V

⌘
cosS0

 2 .⇡2 ; 0/ ⇠ exp
⇣
C K
6V

⌘
cosS0

 3 .0; any values/ ⇠ � exp
⇣
� K
6V

⌘
sinS0

TABLE I: Typical wave functions and their parameters .a; b/ and asymptotic behaviors. The phase function

S0 is defined by S0 D K
6V .2qV � 1/3=2 � ⇡

4 .

a

b

⇡=2

⇡=2

⇡=40

 V

 HH

 1

 2

 3

FIG. 1: Parametrization .a; b/ of boundary conditions for  C .

Solving the wave function and calculating probability Psuf for each values of .a; b/, we can evalu-

ate the probability for the parameters .a; b/ using the relation (32).

10

P.a; b/Probability of boundary conditions
� D 0:2 � D 3

● Location and spread of peak depends on mass parameter �
is superior to         for large e-foldings of inflation V  HH●

a

b
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P.S j�/ D
Z

dbP�.S jb/P.b/

� / m=⇤1=2

P.�jS/ D P.S j�/P.�/R
d�P.S j�/P.�/

D
R

db P�.S jb/R
d�db P�.S jb/

�
�min �suf �pl

N > 60
sufficient inflation over Planck

energy density

P.�/

FIG. 13: The probability is defined in s0 = [�min,�pl]. We set �min = 0 for µ = 0.2 and �min = 1.8

for µ = 3 because the classicality condition is violated in � < 1.8 region for µ = 3 case.

mass

wave function
 1  2  3  HH  V

µ = 0.2 0.604 0.0512 0.627 0.0561 0.621

µ = 3 2.40⇥ 10

�5
1.60⇥ 10

�10
1.72⇥ 10

�7
1.61⇥ 10

�10
6.74⇥ 10

�7

TABLE III: Psuf = P (N � 60) for five wave functions and two choices of µ. The larger value of

Psuf is more preferred for sufficient inflation.

mass

wave function
 1  2  3  HH  V

µ = 0.2 211 15.9 217 17.6 216

µ = 3 6.75 6.74 6.74 6.74 6.74

TABLE IV: Expectation value of number of e-foldings hN i for five wave functions and two choices

of µ. This quantity represents amount of inflation for the classical universe.

Finally, we obtain the probability P (a, b) of boundary conditions using the relation (32)

(Fig. 14).
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P�.S jBi /

For a fixed value of mass,

large cosmological constant

is preferred

P.� D 0:2jS/ D 0:999987

P.� D 3jS/ D 0:000013

P.�/

�
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Volume weighting physical volume

e3N .�/

P .�/ e3N .�/ P .�/

probability for large field value is enhanced
P�.S jBi / with large mass is enhanced

small cosmological constant

is expected

P.�/

�

P .�/

�
�suf�min

�
�suf�min

e3N .�/ P .�/
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● Introducing parametrization in BC space of the wave function, 
   we evaluated probability of BC under the condition of sufficient  
   e-foldings of inflation. The probability sharply depends of the value of 
   parameters in the model.


● One purpose of quantum cosmology is to predict inflationary universe.

● prediction on model parameters 

�

q

˙c

superposition of WKB wave functions

technically difficult to decompose

each WKB components

● treatment of oscillatory phase large    case�
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Baysian update?

III. PROBABILITY FOR BOUNDARY CONDITIONS

When we have some restriction on our models of inflationary universe from observations, we

can investigate a probability which states preferable type of boundary conditions. It is possible to

express this probability using the Bayes’ theorem:

P.Bi jS/ D P.Bi/P.S jBi/P
k P.Bk/P.S jBk/

; (30)

whereP.Bi jS/ is a probability forBi under S happened. Here,Bi is some candidate of the bound-

ary condition of the wave function labeled by index i , and S means the universe with sufficient

inflation, namely, N � 60. Thus, P.Bi jS/ denotes the probability for Bi under the sufficiently

inflated universe. On the contrary, P.S jBi/ in the right hand side is the probability for sufficient

inflation with boundary condition Bi and is equivalent to Psuf defined in the previous section

P.S jBi/ D Psuf.Bi/ D P.N � 60 jBi/: (31)

As we do not have any information on the prior probability P.Bi/, we assume that it is uniformly

distributed. To represent different boundary conditions, we will introduce two parameters a; b in

(36). The probability for the parameters a; b is given by

P.a; bjS/ D P.S ja; b/R
da0db0P.S ja0; b0/

: (32)

When we solve the Wheeler-DeWitt equation, we have to impose some boundary condition

(in other words, initial condition) on the wave function. For this purpose, we use exact solutions

of the Wheeler-DeWitt equation which are obtained when the scalar field potential V.�/ is con-

stant. Based on the path integral representation of the wave function [9], for the constant scalar

field potential case, the wave function corresponding to the Hartle-Hawking and the Vilenkin type

boundary conditions are expressed as

 HH D  2 C  3;  V D  1 C i 3; (33)

where

 1 ⌘ .2V /�1=3Ai.z0/Ai.z/;  2 ⌘ .2V /�1=3Bi.z0/Ai.z/;  3 ⌘ .2V /�1=3Ai.z0/Bi.z/;

(34)

with

z D z.q/ D
✓
4V

K

◆�2=3
.1 � 2qV /; z0 D z.0/ D

✓
4V

K

◆�2=3
: (35)

9

: prior probabilityP.Bk/

P.Bi jS/ : posterior probability

.q; �/
time

??

P .0/.a; b/ P .1/.a; b/ P .n/.a; b/.q; �/
time

??

.q; �/
time

??

宇宙の生成実験 multiverse?

試行回数


