CMB観測衛星LiteBIRD によるB-mode 偏光の 検出にむけて 市來淨與(名古屋大学・KMI) In collaboration with

T. Yamashita, N. Katayama, E. Komatsu and the LiteBIRD Phase A-1 team

ポスドク時代 … WMAP宇宙論全盛期で、 パワースペクトルから宇宙論パラメタを 推定する研究してました。

「初期揺らぎのパワースペクトルに微細構造」, Ichiki, Nagata & Yokoyama, PRD81, 2010

「ニュートリノ質量への制限」, Ichiki, Takada & Takahashi, PRD79, 2009

CMBgal150GHz.fits: UNKNOWN

「今後はパワースペクトルでなくて、マップだよね…」 (横山教授)

「Planck のデータにCOが混じっちゃって大変なんだって。」 (福井教授)

「独立成分分析によるCO成分の推定」, Ichiki, Kaji, Yamamoto et al., ApJ780, 2014

CMBgal95GHz.fits: UNKNOWN

CMBgal215GHz.fits: UNKNOW

sources_fastica_sph_0.fits: UNKNOWN:

sources_fastica_sph_1.fits: UNKNOWN1

sources_fastica_sph_2.fits: UNKNOWN:

-7.9

1877年創立、ノーベル物理学賞11名・同化学賞2名の受賞者を数える、会員約17,000名の学会です。

HOME > 刊行物 > PTEP招待論文·特集論文

PTEP 招待論文・特集論文

PTEP 2014年6月号の特集論文

CMB Cosmology (宇宙背景放射 宇宙論)

「市來くん、前景放射の差っ引きは、 君がこれまでやってきたどの研究より も大事!間違いない!」

(小松教授ビールを手に)

「PTEPでCMBの特集組みます。 市來さんには前景放射の問題 を…」

[CMB Foreground: a concise review], Ichiki , PTEP, 2014

ということで始めます

- ・CMB背景輻射B-modeと前景放射
 - インフレーションとB-mode
 - 銀河系前景放射
 - LiteBIRD計画
- LiteBIRD前景放射WGによる前景放射除去アル ゴリズム「デルタマップ法」
 - 先行研究(Katayama & Komatsu, ApJ '11) からのメッセージ
 - アルゴリズムとパフォーマンス
 - その他の前景放射除去法
- ・まとめ

THE CMB: stats

(1) 3 Kの黒体輻射、10⁻⁵ 程度の温度揺らぎ

Planck collaboration (2013)

THE CMB: stats

(2) 10⁻⁶ 程度の偏光揺らぎ

WMAP 7yr result

Planck results

THE CMB: stats

(3) 揺らぎはガウス統計に従う

CMB偏光で インフレーション理論を検証する

「インフレーションはレースに勝ったのではない」、 しかし今までのところ唯一の競争馬である」 Andrei Linde

CMBが意味すること

宇宙は(一様)・等方である

Q:なぜCMBはどの方向も同じ?

間隔 >> 3 8 万年で光が伝搬できる距離

(Starobinsky ('80); Sato ('81); Guth ('81); Linde ('82); Albrecht&Steinhardt ('82)

A: Inflation

宇宙誕生時の加速度的膨張

10-36秒の頃,少なくとも1026倍まで膨張

インフレーションの予言

- 量子揺らぎが宇宙のメトリックを揺らがせる
- $d\ell^2 = a^2(t) \left[1 + 2\zeta(\boldsymbol{x}, \boldsymbol{t})\right] \left[\delta_{ij} + \boldsymbol{h}_{ij}\right] dx^i dx^j$
- ζ:体積(面積)を変化させる「密度揺らぎ」

 h_{ij} :面積を変化させない「原始重力波」

テンソルスカラー比 ľ

- ア $=rac{\left\langle h_{ij}h^{ij}
 ight
 angle }{\left\langle \zeta^{2}
 ight
 angle }$ 重力波の大きさを、密度揺らぎ(観測済)で規格化 したもの
- インフレーションのエネルギースケールとの関係

$$\rho_{\rm GW} = \left\langle \dot{h}_{ij} \dot{h}_{ij} \right\rangle \sim H^2 \left\langle h_{ij} h_{ij} \right\rangle$$

 $E_{\rm GW} \approx \rho_{\rm GW} V \approx \rho_{\rm GW} H^{-3} \sim \langle h_{ij} h_{ij} \rangle H^{-1} \gtrsim 1/\Delta t \sim H$

CMB偏光を用いて どのように重力波を検出 するのか?

CMB温度を揺らがす波 2つ

http://www.mediacollege.com

1) 音波(密度揺らぎ)(

観測されているCMB揺らぎはこの成分

(cold)

薄い

濃い

(hot)

2) 重力波 h_{ij}

$\lambda \sim 10^{26} [m]$ $T \sim 10^{10} [yr]$

・時空を伝わる波

CMB 偏光によってのみ検出可能

No GWs

+ wave

x wave

偏光は散乱から

http://background.uchicago.edu/~whu/

偏光は散乱から

http://background.uchicago.edu/~whu/

トムソン散乱による偏光

音波による偏光生成

音波の伝搬方向

直線偏光の向き

The E-mode: 偏光の向きがフーリエモードの方向に 対して直交か並行な成分(ストークスQ)

hot

cold

(if not, what determines the polarization angle?)

重力波による偏光生成

Polarization direction

重力波の伝搬方向

The B-mode: 偏光の向きがフーリエモードの方向に 対し45度傾いている成分(ストークスU)

• E is -Q in the coordinate system such that $\ell \parallel e_1$

• *E* is -Q in the coordinate system such that $\ell \parallel e_1$ Q - - - + + + + +E + ++11,

• E is -Q in the coordinate system strength that $\ell \parallel e_1$

• B is -U in the coordinate system such that $\ell \parallel e_1$ U - - - + + + + + \\\////\\ B + + + - - - - + +B < 0superposition of the modes

(BICEP2 collaboration, PRL, 2014)

Polarized Foreground: Synchrotron

Synchrotron @ 23 GHz from WMAP 9yr result

Polarized Foreground : Thermal Dust

- 紫外線で暖められた宇宙塵の 熱放射(重ねあわせ)
- 投影された磁場に垂直に偏光
- $\beta \approx 1.53 \pm 0.05$ (Planck 2015 results X)
- 偏光度 as high as $\sim 20 \%$ やってみないと分からない!

WMAP: $3.6 \pm 1.1\%$ (outside p06 mask) (Kogut et al., ApJ, '07) Archeops : $4{-}5~\%$

(Benoit et al., A&A, '04)

Other Foregrounds: Free-Free & Spinning dust

Spinning dust

 $\beta \approx -2.5$

 $\nu \gtrsim 60 \, \mathrm{GHz}$ で強度落ちる (Macellari et al.,, MNRAS, 2011)

無偏光, less than 0.5% (Lazarian&Draine, ApJ, 2000)

eta pprox -2.1 (Bennet et al.,, ApJS, 2011)

無偏光, 観測からの上限 $\lesssim 3.4\%$ (Macellari et al.,, MNRAS, 2011)

Polarization foreground summary

LiteBIRD

Lite (Light) Satellite for the Studies of B-mode Polarization and Inflation from Cosmic Background Radiation Detection

インフレーション宇宙を検証する

羽澄昌史氏(KEK/Kavli IPMU/総研大)スライドより

	<mark>JAXA</mark> T. Dotani H. Fuke H. Imada	KEK M. Hazumi (P M. Hasegawa N. Kimura	I) A. Ducout T. Iida D. Kaneko	<u>Kansei</u> <u>Gakuin U.</u> S. Matsuura	<u>U. Tsukuba</u> M. Nagai <u>TIT</u>	APC Paris J. Errard R. Stompor	UC Berkeley / LBNL D. Barron J. Borrill	
	I. Kawano H. Matsuhara	K. Kohri M. Maki	N. Katayama T. Matsumura	<u>Kitazato U.</u> T. Kawasaki	S. Matsuoka R. Chendra	<u>Cardiff U.</u> G. Pisano	Y. Chinone A. Cukierman	
	K. Mitsuda T. Nishibori K. Nishijo A. Noda	Y. Minami T. Nagasaki R. Nagata H. Nishino	Y. Sakurai H. Sugai B. Thorne S. Utsunomiya Osaka Pref. U. M. Inoue K. Kimura H. Ogawa N. Okada	Konan U. I. Ohta	U. Tokyo S. Sekiguchi T. Shimizu	CEA L. Duband J.M. Duval	D. Curtis T. de Haan L. Hayes J. Fisher	
	A. Okamoto S. Sakai Y. Sato	S. Oguri T. Okamura N. Sato		A. Dominjon T. Hasebe	S. Shu N. Tomita	CU Boulder N. Halverson	N. Goeckner-wald C. Hill O. Jeong	
	K. Shinozaki H. Sugita Y. Takei	J. Suzuki T. Suzuki O. Tajima		i K. Kimura J. Inatani <u>Tohoku</u> i H. Ogawa K. Karatsu M. Hattor na N. Okada S. Kashima	<u>Tohoku U.</u> M. Hattori	McGill U. M. Dobbs	R. Keskitalo T. Kisner A. Kusaka	
	T. Tomida T. Wada R. Yamamoto	T. Tomaru M. Yoshida	SOKENDAI Y. Akiba	T. Noguchi Y. Sekimoto M. Sekine	<u>Nagoya U.</u> K. Ichiki	<u>MPA</u> E. Komatsu	A. Lee(US PI) E. Linder	
	N. Yamasaki T. Yoshida K. Yotsumoto	Osaka U. S. Kuromiya M. Nakajima S. Takakura	Y. Inoue H. Ishitsuka Y. Segawa S. Takatori	Okayama U. T. Funaki N. Hidehira	<u>Yokohama</u> <u>Natl. U.</u> T. Fujino H. Kanai	<mark>NIST</mark> G. Hilton J. Hubmayr	P. Richards E. Taylor U. Seljak B. Sherwin	
K. Takano D. Tanabe H. Watanabe LiteBIRD working group				H. Ishino A. Kibayashi Y. Kida K. Komatsu S. Uozumi	S. Nakamura R. Takaku T. Yamashita <u>RIKEN</u>	Stanford U. S. Cho K. Irwin S. Kernasovskiy	A. Suzuki P. Turin B. Westbrook M. Willer N. Whitehorn	
X-ray astrophysicists				Y. Yamada <u>NICT</u> Y. Uzawa <u>NIFS</u> S. Take da	S. Mima C. Otani <u>AIST</u> K. Hattori	D. Li T. Namikawa K. L. Thompson	UC San Diego K. Arnold T. Elleot B. Keating G. Rebeiz	
IR astronomers				148 members, international and interdisciplinary (as of Feb 1, 2017)				

LiteBIRD計画の進捗

<u>ISAS/JAXAでの状況</u>

- 2015年2月、戦略的中型ミッションの公募に応募。
- 2015年6月、理学委員会から推薦。
- 2016年5月、国際レビュー、8月に計画審査。
- 2016年9月、Phase A1スタート(ノミナル2年間。2件のうちのひとつ)
- 日本学術会議マスタープラン2014、重点大型研究計画のひとつ。
- 文科省の指定する新大型研究計画のひとつ(ロードマップ2014)。
- 日本学術会議マスタープラン2017、重点大型研究計画のひとつ。

<u>米国側の状況</u>

- 2014年12月、MASA MO (Mission of Opportunity)に応募。
- 2015年8月、NASA MOに採択(全2件のひとつ)。Phase Aスタート。
- 2016年7月、Concept Study ReportをNASAに提出。
- 2017年4月、NASA MO down-selection予定。

堂谷氏スライドより

周波数帯域

前景放射対策として 15バンドで観測

		Band	Bandwidth	NEP	NET	N _{bolo}	NET arr	Sensitivity with margin
		GHz	$\Delta v/v$	aW/√Hz	$\mu K\sqrt{s}$		$\mu K \sqrt{s}$	μK·arcmin
	8 6	40	0.30	7.74	225.9	152	18.3	53.4
		50	0.30	7.86	136.9	152	11.1	32.3
		60	0.23	7.06	106.2	152	8.6	25.1
		68	0.23	7.10	82.9	152	6.7	19.6
		78	0.23	7.08	64.7	152	5.2	15.3
	LFT (12 band)	89	0.23	7.00	52.4	152	4.3	12.4
		100	0.23	8.55	79.7	222	5.3	15.6
		119	0.30	9.48	52.5	148	4.3	12.6
		140	0.30	8.99	42.3	222	2.8	8.3
		166	0.30	8.31	36.2	148	3.0	8.7
			0.30	7.62	34.1	222	2.3	6.7
	HFT (3 band)	235	0.30	6.86	35.8	148	2.9	8.6
		280	0.30	9.14	55.4	72	6.5	19.0
		338	0.30	8.34	78.0	108	7.5	21.9
		402	0.23	6.69	154.4	74	17.9	52.3
		total				2276		3.2

Table 1 The LiteBIRD sensitivity. The last column is the sensitivity to polarization with the units μ K·arcmin and it includes the 3 sources of margin, i) the observational time of 3 years with the time efficiency of 0.72, ii) the yield of 0.8, and iii) $1.25 \times NET$.

r=0.001 B-mode シグナルは $\ell \lesssim 10$

検出器ノイズが ≲ 5 µK arcmin であればノイズは CMBレンズ

L=2の観測だけでも重力波検出には十分 (前景放射除ければ) CMB lensingがノイズとなる場合、情報は I<10 の範囲 ↔ 低分解能

ということで始めます

- ・ CMB背景輻射B-modeと前景放射
 - インフレーションとB-mode
 - 銀河系前景放射 - LiteBIRD計画
- LiteBIRD前景放射WGによる前景放射除去アル ゴリズム「デルタマップ法」
 - 先行研究(Katayama & Komatsu, ApJ '11) からのメッセージ
 - アルゴリズムとパフォーマンス
 - その他の前景放射除去法
- ・まとめ

片山&小松(2011) からr=0.001重力波 へのメッセージ(2)

「シンクロトロン放射の 周波数冪の方向依存性 $\beta_{sync}(\hat{n})$ がrの推定を バイアスさせる」

前景放射差し引き(1)

CMBは特徴的 な角度スケール 依存性を持つ

スペクトル解析

480

前景放射の差し引き(2)

パワースペクトルは同じ

CMBはガウス 統計に従う

多変量正規分布

松原さんホームページより拝借

 $P(\{T_k\}) = \frac{\exp\left[-\frac{1}{2}\sum_{ij}(T_i - T_{\rm cmb})(C^{-1})_{ij}(T_j - T_{\rm cmb})\right]}{\sqrt{(2\pi)^{N_{\rm pix}}\det(C)}}$

前景放射差し引き(3)

CMBの特徴的 な波長依存性 を活用する

複数のチャン ネルで観測

シンプルな前景放射除去法

高分解能観測は不要なので
 実空間でガウス分布関数をフル活用

$$\mathcal{L}(r, s, \bar{\beta}) \propto \frac{\exp\left[-\frac{1}{2}[Q, U]^T C^{-1}[Q, U]\right]}{\sqrt{|C(r, s, \bar{\beta})|}}$$

コバリアンスには 理論から予想される ^①パワースペクトルを

CMB成分の推定は ^③多波長観測を

アルゴリズムを説明します(1)

・モデル(説明のためダストは無視):

 $Q(\nu, \hat{n}) = \text{CMB}(\hat{n}) + g_{\nu} \left(\frac{\nu}{\nu_*}\right)^{\beta(\hat{n})} Q^{\text{sync}}(\nu_*, \hat{n}) + \text{noise}$

Taylor expansion $\beta(\hat{n}) \equiv \bar{eta} + \delta \beta(\hat{n})$

 $Q(\nu, \hat{n}) \approx \text{CMB}(\hat{n}) + g_{\nu} \left(\frac{\nu}{\nu_{*}}\right)^{\beta} \left[1 + \ln\left(\frac{\nu}{\nu_{*}}\right)\delta\beta(\hat{n})\right] Q^{\text{sync}}(\nu_{*}, \hat{n})$

▲ この部分を差し引きたい

+noise

アルゴリズムを説明します(2)

2バンド (60GHz, 78GHz) 使って'delta map'を作成し
 ターゲットバンド(100GHz)に加えると

 $Q(\nu_0) + \alpha_1 Q(\nu_1) + \alpha_2 Q(\nu_2) = (1 + \alpha_1 + \alpha_2) \text{CMB}$ $+ f(\alpha_1, \alpha_2, \bar{\beta}) Q^{\text{synch}}(\nu_*)$ $+ g(\alpha_1, \alpha_2, \bar{\beta}) \delta \beta Q^{\text{synch}}(\nu_*)$

アルゴリズムを説明します(2)

2バンド (60GHz, 78GHz) 使って'delta map'を作成し
 ターゲットバンド(100GHz)に加えると

$$Q(\nu_0) + \alpha_1 Q(\nu_1) + \alpha_2 Q(\nu_2) = (1 + \alpha_1 + \alpha_2) \text{CMB}$$
$$+ f(\alpha_1, \alpha_2, \overline{\beta}) Q^{\text{synch}}(\nu_*)$$
$$+ g(\alpha_1, \alpha_2, \overline{\beta}) \delta \beta Q^{\text{synch}}(\nu_*)$$

• f = 0, g = 0 となるように $\bar{\beta}$ をパラメタとして α_1, α_2 を定める

アルゴリズムを説明します(3)

• f = 0, g = 0 となるように β をパラメタとして α_1, α_2 を定める

 $\alpha_1 = -\frac{g_{\nu}}{g_{\nu_1}} \left(\frac{\nu_0}{\nu_1}\right)^{\bar{\beta}} \frac{\ln\left(\frac{\nu_0}{\nu_2}\right)}{\ln\left(\frac{\nu_1}{\nu_2}\right)}$ $\alpha_2 = -\frac{g_{\nu}}{g_{\nu_2}} \left(\frac{\nu_0}{\nu_2}\right)^{\bar{\beta}} \frac{\ln\left(\frac{\nu_0}{\nu_1}\right)}{\ln\left(\frac{\nu_2}{\nu_1}\right)}$

 (\hat{n}, ν_*) independent

performance test

Foreground and CMB parameters are estimated simultaneously

KK2011再び

片山&小松(2011) からのメッセージ

「シンクロトロン放射の 周波数冪の方向依存性 $\beta_{sync}(\hat{n})$ がrの推定を バイアスさせる」

Result

Result

Result

様々な前景放射モデル

We can download foreground maps from:

edison.nersc.gov:/project/projectdirs/litebird/data/simset1/components/foreground

	synchrotron	Thermal dust	Spin dust	Point source	FF	decorrelation
PSM v 1.6.2 (KK2011)	power law varying β	power law varying β	-	-	-	-
gm100	power law varying β	2 components modified BB varying T	-	-	-	on
PySM (1608.02841)	power law varying β	modified BB varying T&β	unpol	-	unpol	-
psm_mr	power law varying β	modified BB varying T&β	CNM 1% pol	4 types 1% pol	-	-
Vansyngel (1611.02577)	power law fixed β	modified BB fixed β	-	-	-	-

Delta map method performance

Delta map method performance

Modeling dust with a modified black body

•
$$Q^{\text{dust}}(\nu, \hat{n}) = g_{\nu} \left(\frac{\nu}{\nu_*}\right)^{\beta(\hat{n})} \frac{1}{e^{kT(\hat{n})/h\nu} - 1} Q^{\text{dust}}(\nu_*, \hat{n})$$

• The sky model is modified to:

$$Q(\nu, \hat{n}) \approx \text{CMB}(\hat{n}) + g_{\nu} \left(\frac{\nu}{\nu_{*}}\right)^{\bar{\beta}_{d}} \frac{1}{e^{x} - 1} \left[1 + \ln\left(\frac{\nu}{\nu_{*}}\right) \frac{\delta\beta(\hat{n})}{\delta\beta(\hat{n})} + \frac{xe^{x}}{e^{x} - 1} \frac{\delta T(\hat{n})}{\bar{T}}\right] Q^{d}(\nu_{*}, \hat{n}) + \text{noise} \qquad (x = h\nu/k\bar{T})$$

Again estimate $Q^{d}(\nu_{*}, \hat{n}), \delta\beta(\hat{n})Q^{d}(\nu_{*}, \hat{n})$ and $\delta T(\hat{n})Q^{d}(\nu_{*}, \hat{n})$ and subtract them ! (We now need four bands)

Delta map & modified Delta map (noiseless) comparison

r_{input}

空を分割する

gm100 でも無バイアスで推定可能になった

他の手法と議論

アストロ寄り

CMB寄り

スケー	ル	コンポーネント セパレーション	foregroundサブトラクション
	パラメトリック (物理の知識を用いる)	Planck Likelihood, Commander-Ruler, MCMC	"Delta map" Template fitting
◆ 小	ノンパラメトリック (統計の知識を用いる)	FastICA, JADE	ILC,NILC,MILCA,PCA GMCA,SMICA

Though past performance is no guarantee of future success, we have consistently been able to clean foregrounds to within a factor of a few times the uncertainties of the raw measurements. <u>As a community we have a set of tools</u> <u>ready for performing component separation</u> and estimating the CMB signal from observed sky maps. (J.Dunkley, 0811.3915)

・原始重力波を捉えてインフレーショ ンの存在証明

- CMBのB-mode観測が使える

B-modeは前景除去が必須

- シンクロトロンと宇宙塵
- 蓋を開けるまで分からない
- ・我々のdelta map法

- 多波長・ガウス統計・スペクトル

- r=0.001まで無バイアス CONCLUSION

