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Abstract 

This study develops a novel distribution-free maximum likelihood estimator and formulates it for linear and 

binary choice models. The estimator is consistent and asymptotically normally distributed (at the rate of 

𝑁−1/2). The Monte Carlo simulation results show that the estimator is strongly consistent and efficient. For 

the binary choice model, when the linear combination of regressors is leptokurtic, the efficiency loss of 

having no distribution assumption is virtually nonexistent, and the estimator is superior to the probit and 

other semiparametric estimators. The results further show that the estimator performs exceedingly well in the 

presence of a typical perfect prediction problem. 
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1. Introduction 

The fact that conventional maximum likelihood (ML) estimation depends on parametric assumptions about 

the data distribution has long been recognized as a fundamental drawback. In the literature, this issue has 

been addressed via two distinct approaches. In the first group of studies, where the likelihood is considered 

to be misspecified and a simplified form of the likelihood function is often used, the minimal assumptions 

for obtaining consistent estimators of the true parameters and their asymptotic variances have been discussed 

(Huber, 1967; Wedderburn, 1974; White, 1982; Ruud, 1983; Gourieroux et al., 1984).1 This so-called quasi 

(pseudo) ML approach, however, still requires the assumption that the data follow a specific class of 

distributions. 

In contrast, the second group of studies estimates the likelihood function nonparametrically. 

Distribution-free ML estimators for semiparametric regression models include Cosslett’s (1983) infinite-

dimensional ML estimator, the sieve ML estimator (Duncan, 1986; Fernandez, 1986; Gallant and Nychka, 

1987), the local ML estimator (Tibshirani and Hastie, 1987; Fan et al., 1998), and the kernel ML estimator 

(Klein and Spady, 1993; Lee, 1995; Ai, 1997; Ichimura and Thompson, 1998). Most of these estimators 

exhibit consistency, and some are asymptotically normal and attain the semiparametric efficiency bound. 

However, none of these estimators is adaptive: Nonparametric estimation of an unknown likelihood function 

tends to lead to a nonnegligible loss of efficiency. 

In this study, I propose a third avenue of ML estimation with the advantages of the quasi ML 

approach and the semiparametric ML approach. Specifically, the newly proposed method exploits a 

parametric likelihood function by leveraging the normality of the limit distribution of the data generated from 

the original data by Monte Carlo “in-sample” resampling with replacement. The proposed method, therefore, 

does not require assuming an ad hoc data distribution and computing the likelihood nonparametrically. This 

is a clear methodological advantage, and the estimator exhibits several desirable asymptotic properties of the 

conventional ML estimator: it is consistent and asymptotically normally distributed (at the rate of 𝑁−1/2). In 

addition, for linear regression models, by achieving the Cramér–Rao lower bound, the new estimator is shown 

to be fully efficient. For binary choice models, where the parameters are identified up to a scale, a comparison 

of the asymptotic variance of the scale-normalized parameters shows that the proposed estimator can be as 

efficient as the probit estimator for a class of regressor distributions. 

The Monte Carlo simulation results for linear regression and binary choice models indeed show that 

the proposed estimator is strongly consistent and efficient. For the binary choice model, when the linear 

combination of the regressors is leptokurtic, the estimator performs better than ML-based methods, including 

the probit and other semiparametric estimators, even in cases where the probit is the correct model. The 

superiority of the proposed method in the binary choice model holds even in the presence of conditionally 

 
1 Generalized linear models based on an assumed exponential family density have also been developed (see, 
for instance, Nelder and Wedderburn (1972) and McCullagh and Nelder (1983)). 
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heteroscedastic errors, consistent with the theoretical argument in a companion paper (Ito, 2024). Moreover, 

the simulation results also indicate that the new estimator is the most stable in the sense that the root mean 

square error (RMSE) of the estimated parameters varies least with the regressor and error distributions. 

Theoretically, this could be because the proposed method constructs the likelihood based on the normality of 

the generated data, regardless of the distribution of the original data.2  

Furthermore, the new method is expected to be free from perfect prediction (or complete separation) 

problems in discrete choice models since it focuses on variations around the mean of (dependent and 

explanatory) variables, not on the one-to-one correspondence between them. The simulation results also 

support this theoretical implication, showing that in the presence of a typical perfect prediction problem, the 

new method is superior to other semiparametric methods in terms of the number of trials with convergence 

and the magnitude of the bias and RMSE.3 

The remainder of this paper is organized as follows. In Section 2, I propose a new ML-based 

semiparametric estimator and establish the root-N consistency and asymptotic normality of the proposed 

estimator. Section 3 presents example applications of the proposed method and discusses the asymptotic 

efficiency for linear regression and binary choice models. The Monte Carlo simulation results are presented 

in Section 4, and the conclusions follow in Section 5. 

 

2. Resampling-based maximum likelihood estimator 

2.1. Definitions 

Conventional (parametric) ML estimation assumes that the data are from a specific distribution, such as a 

normal distribution, a Poisson distribution, or another distribution from the exponential family, and the 

conditional mean of the dependent variable is correctly specified (Gourieroux et al., 1984). However, there 

is no guarantee that these distributional assumptions hold. To overcome this fundamental flaw in parametric 

ML estimation, a new ML estimator is proposed in this study based on the normality of the limit distribution 

of the data generated by Monte Carlo “in-sample” resampling. 

 

Definition 1 (RBML data construction) 

 
2  The use of the parametric likelihood function provides another practical advantage. In general, 

semiparametric methods are likely to have difficulties in optimizing the objective function due to complex 

calculations of the unknown function (and probably its undulating shape). However, the proposed method is 

expected to be less problematic in maximizing the likelihood than are the conventional semiparametric 

methods. In the simulation analysis of the binary choice models in Section 4, the proposed method achieved 

convergence in all 23,000 trials, but the sieve ML, kernel ML, and semiparametric least squares (SLS) 

estimations fail to achieve convergence in 378 (1.64%), 2,327 (10.12%), 2,111 (9.18%) cases, respectively, 

despite estimating simple models. 
3 All simulation results presented in this study can be replicated using a software package for Stata that is 

available on the author’s website. For details on the processes of obtaining and using the package, see Online 
Supplementary Material I. 
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Suppose there exist data with a sample size of 𝑁   that is  {𝑧𝑖| 𝑖 = 1, ⋯ , 𝑁}   By employing Monte Carlo 

resampling  new data are obtained as follows  

(1) Draw 𝑀  observations from {𝑧𝑖| 𝑖 = 1, ⋯ , 𝑁}  by random resampling with replacement 

( 𝑀 > 𝑁 ;  multiply the difference between the mean of the 𝑀  observations ( 𝑧̅ =

𝑀−1 ∑ 𝑧𝑗
𝑀
𝑗=1  ; and the original sample mean (𝜇𝑁 = 𝑁−1 ∑ 𝑧𝑖

𝑁
𝑖  ; by √𝑁𝑀/(𝑁 − 1)   and 

obtain an observation 𝑧̃= √𝑁𝑀/(𝑁 − 1) ⋅ (𝑧̅ − 𝜇𝑁). 

(2) Repeat the first step 𝑇 times and obtain a new sample with 𝑇 observations: 

{𝑧̃𝑡 | 𝑡 = 1, ⋯ , 𝑇}. 

𝑀 and 𝑇 are set to be sufficiently large  In particular  𝑇 increases in 𝑁 (e g   𝑇 = 𝑇′ + 𝑁;  where 𝑇′ is thus 

sufficiently large  This procedure to obtain a new sample {𝑧̃𝑡} via Monte Carlo “in-sample” resampling is 

defined as resampling-based maximum likelihood (RBML; data construction  

 

Then, based on an approach in finite population theory (Cornfield, 1944; Raj and Khamis, 1958), it 

is shown that newly generated data have the following distribution property. 

 

Proposition 1 (Distribution of a new sample obtained by RBML data construction) 

Assume that an original sample {𝑧𝑖| 𝑖 = 1, ⋯ , 𝑁} is independent and identically distributed (i i d ; with finite 

mean 𝜇0 and finite variance 𝜎0
2 (𝜎0

2 ≠ 0;  Define the sample mean and variance as 𝜇𝑁 = 𝑁−1 ∑ 𝑧𝑖
𝑁
𝑖=1  and 

𝜎𝑁
2 = 𝑁−1 ∑ (𝑧𝑖 − 𝜇𝑁)2𝑁

𝑖=1    respectively  When 𝑀  (the size in the resampling process in RBML data 

construction; is sufficiently large  new data {𝑧̃𝑡 | 𝑡 = 1, ⋯ , 𝑇} obtained by RBML data construction are i i d  

with N(0, 𝜎𝑁
2) and converge in distribution to N(0, 𝜎0

2) as 𝑁 goes to infinity: 

𝑧̃𝑡 ~
𝑖.𝑖.𝑑.

 N(0, 𝜎𝑁
2) 

𝑑
→  N(0, 𝜎0

2). 

 

The proof is provided in Appendix A.1. Then, the RBML estimator is defined as follows. 

 

Definition 2 (RBML estimator) 

Let {𝑧̃𝑡 | 𝑡 = 1, ⋯ , 𝑇}  be an i i d  sample obtained by RBML data construction from the original sample 

{𝑧𝑖| 𝑖 = 1, ⋯ , 𝑁} and 𝑝(𝑧̃𝑡 | 𝜃) be the probability of an event of interest based on the normal density of 𝑧̃𝑡  

Then  the RBML estimator is defined as: 

𝜃RB = arg max
𝜃∈Θ

ln 𝐿(𝜃| 𝐳̃) = arg max
𝜃∈Θ

 𝑇−1 ∑ ln 𝑝(𝑧̃𝑡 | 𝜃)

𝑇

𝑡=1

, (1) 

where Θ is a compact parameter space  

 

Thus, exploiting the normality of the limit distribution of the generated data frees us from the 

nonparametric estimation of the likelihood function. 
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2.2. Asymptotic properties 

Theorems 1 and 2 state the results for the consistency and limit distribution of the RBML estimator. The 

theorems are similar to those for the conventional ML estimator.4 

 

Theorem 1 (Consistency) 

If (i; 𝜃0 ∈ Θ   which is compact  (ii; ln 𝐿(𝜃| 𝐳̃) = 𝑇−1 ∑ ln 𝑝(𝑧̃𝑡| 𝜃)𝑇
𝑡   converges to E[ln 𝑝(𝑧̃ | 𝜃)]  in 

probability uniformly in 𝜃 ∈ Θ as 𝑁 goes to infinity  (iii; E[ln 𝑝(𝑧 ̃| 𝜃)] is continuous  and (iv; E[ln 𝑝(𝑧̃ | 𝜃)] 

is uniquely maximized at 𝜃0  then 𝜃RB

𝑝
→ 𝜃0. 

 

See Appendix A.2 for the proof of Theorem 1. Note that conditions (ii) and (iv) of the theorem can 

be replaced with more primitive conditions. See Lemmas 2.2 and 2.4 in Newey and McFadden (1994). 

 

Theorem 2 (Asymptotic normality) 

Suppose that the conditions of Theorem 1 are satisfied  Furthermore  if (i; 𝜃0 ∈ interior(Θ)  (ii; 𝑝(𝑧̃𝑡| 𝜃) is 

twice continuously differentiable with respect to 𝜃 and 𝑝(𝑧̃𝑡| 𝜃) > 0 in an open convex neighbourhood 𝒩 of 

𝜃0 contained in 𝛩  (iii; 𝐽 = E[{∇𝜃 ln 𝑝(𝑧̃ | 𝜃0)} {∇𝜃 ln 𝑝(𝑧̃ | 𝜃0)}′] exists and is nonsingular  where ∇𝜃 is the 

operator taking the first partial derivatives  (iv; 𝑇−1 ∑ ∇𝜃𝜃 ln 𝑝(𝑧̃𝑡| 𝜃)𝑇
𝑡  converges uniformly in probability 

to 𝐻 = E[∇𝜃𝜃 ln 𝑝(𝑧̃ | 𝜃)]   where ∇𝜃𝜃  is the operator taking the second partial derivatives and 𝐻  is 

continuous at 𝜃0   and (v; ∫ sup
θ∈𝒩

‖∇𝜃𝑝(𝑧̃ | 𝜃)‖ d𝑧̃ < ∞  and ∫ sup
θ∈𝒩

‖∇𝜃𝜃𝑝(𝑧̃ | 𝜃)‖ d𝑧̃ < ∞   then √𝑁(𝜃̂RB −

𝜃0) 
𝑑
→ N(0, 𝐽−1). 

 

The proof is provided in Appendix A.3. Theorem 2 indicates that when 𝑁 is large, the variance–

covariance matrix of the RBML estimator is approximated by (𝑁 ⋅ 𝐽)−1, and it appears to be exactly the same 

as the Cramér–Rao lower bound for the estimator. However, the Cramér–Rao bound for the model expressed 

in Eq. (1) is (𝑇 ⋅ 𝐽)−1, and the efficiency of the RBML estimator must be discussed for each regression model 

based on the asymptotic variance of the conventional normal ML estimator. In the following section, I discuss 

the asymptotic efficiency of the RBML estimator for linear and binary choice models. 

 

3. Applications 

3.1. Linear regression model 

Suppose there exists a sample {(𝑦𝑖 , 𝐱𝑖)| 𝑖 = 1, ⋯ , 𝑁}, where 𝑦𝑖 ∈ ℝ and 𝐱𝑖
′ ∈ ℝ𝐾 are independent random 

 
4 See, for example, Theorem 4.1.1 in Amemiya (1985) and Theorem 2.1 in Newey and McFadden (1994) for 
consistency. See Theorem 3.3 in Newey and McFadden (1994) for asymptotic normality. 
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variables with finite means and variances. Note that in the following, 𝑧𝑖 , 𝑧̃𝑡 , and 𝑝(𝑧̃𝑡|𝜃)  in the previous 

section correspond to (𝑦𝑖 , 𝐱𝑖), (𝑦̃𝑡 , 𝐱̃𝑡), and 𝑝(𝑦̃𝑡|𝐱̃𝑡, 𝜽), respectively. The first model considered here is a 

linear regression model expressed as: 

𝑦𝑖 = 𝛼0 + 𝐱𝑖𝜷0 + 𝜀𝑖, 

where 𝜀𝑖 ∈ ℝ is an unobserved error and 𝛼0 ∈ ℝ and 𝜷0 ∈ ℝ𝐾 are unknown population parameters. It is also 

assumed that Rank[∑ 𝐱̀𝑖
𝑁
𝑖

′
𝐱̀𝑖] = 𝐾 + 1, where 𝐱̀𝑖 = (1, 𝐱𝑖), and E[𝜀𝑖|𝐱̀𝑖] = 0, which implies that E[𝑦𝑖|𝐱̀𝑖] =

𝛼0 + 𝐱𝑖𝜷0. 

Then, by means of RBML data construction, new data {(𝑦̃𝑡, 𝐱̃𝑡)| 𝑡 = 1, ⋯ , 𝑇} are obtained, and we 

have 

𝑦̃𝑡 = 𝐱̃𝑡𝜷0 + 𝜀𝑡̃, 

where 𝜀𝑡̃  ~
𝑖.𝑖.𝑑.

 N(0, 𝜎𝑁
2) 

𝑑
→  N(0, 𝜎0

2), 𝜎𝑁
2 = 𝑁−1 ∑ 𝜀𝑖

2𝑁
𝑖=1 , and 𝜎0

2 = lim
𝑁→∞

E[𝜎𝑁
2]. The distribution property of 

the new error term 𝜀𝑡̃ follows from Proposition 1 for the homoscedastic case (i.e., E[𝜀𝑖
2|𝐱̀𝑖] = 𝜎0

2 for all 𝑖) 

and Proposition A1 in Appendix A.4 for the heteroscedastic case (i.e., E[𝜀𝑖
2|𝐱̀𝑖] = 𝜎𝑖

2). In particular, 𝜎𝑖
2 is 

allowed to depend on the value of 𝐱̀𝑖, that is, 𝜎𝑖
2 = ℎ𝑖(𝐱̀𝑖). See Ito (2024) for the theoretical discussion. 

Thus, the RBML estimator 𝜽̂RB
′ = (𝜷̂RB

′ , 𝜎̂RB) is defined as values that satisfy the following: 

𝜽̂RB = arg max
𝜽∈𝚯

ln 𝐿(𝜽; 𝐲̃, 𝐗̃) = arg max
𝜽∈𝚯

∑ [ln 𝜙 {
(𝑦̃𝑡 − 𝐱̃𝑡𝜷)

𝜎
} − ln 𝜎]

𝑇

𝑡=1

, (2) 

where 𝚯 is a compact subset of ℝ𝐾+1, which contains the true value 𝜽0 , and 𝜙(∙) is the standard normal 

density. 

The limit variance matrix of √𝑁(𝜷̂RB − 𝜷0) for the above linear model, according to Theorem 2, is 

𝜎0
2 lim

𝑁→∞
(𝑇−1 ∑ 𝐱̃𝑡

′ 𝐱̃𝑡
𝑇
𝑡 )−1 = 𝜎0

2 lim
𝑁→∞

(𝚺𝑁,𝐱)
−1

 , where 𝚺𝑁,𝐱 = 𝑁−1 ∑ (𝐱𝑖 − 𝛍𝑁,𝐱)
′
(𝐱𝑖 − 𝛍𝑁,𝐱)𝑁

𝑖  . 𝚺𝑁,𝐱  and 

∑ 𝐱̃𝑡
′ 𝐱̃𝑡

𝑇
𝑡  are, by assumption, nonsingular matrices. Note also that 𝑇 → ∞ when 𝑁 → ∞ because 𝑇 = 𝑇′ + 𝑁, 

and the equality comes from the fact that the variance of 𝐱̃ is equal to the variance of 𝐱 when 𝑁 is large, that 

is, lim
𝑁→∞

(𝑇−1 ∑ 𝐱̃𝑡
′ 𝐱̃𝑡

𝑇
𝑡 ) = lim

𝑁→∞
𝚺𝑁,𝐱. Therefore, the variance of the RBML estimator, 𝜷̂RB in Eq. (2), achieves 

the Cramér–Rao lower bound for the linear regression model. Notably, even when 𝑁 is small, 𝑇−1 ∑ 𝐱̃𝑡
′ 𝐱̃𝑡

𝑇
𝑡  

can equal 𝚺𝑁,𝐱  if 𝑇′  (and, hence, 𝑇 ) is sufficiently large. However, if 𝑇′  is small, 𝑇−1 ∑ 𝐱̃𝑡
′ 𝐱̃𝑡

𝑇
𝑡 = 𝚺𝑁,𝐱 +

o𝑝(1) and 𝑇−1 ∑ 𝜀𝑡̂̃
2

=𝑇
𝑡 𝜎𝑁

2 + 𝑜𝑝(1) for a given 𝑁. This indicates that a small 𝑇′ leads to a loss of efficiency 

when the sample size 𝑁 is small. Therefore, 𝑇′ is assumed to be sufficiently large in Definition 1 (RBML 

data construction). The efficiency loss due to a small 𝑇′ is verified in the Monte Carlo simulation in Section 

4. 

 

3.2. Binary choice model 

The second example is a binary choice model, which is expressed as follows: 

𝑑𝑖 = 1[𝑦𝑖 > 0] = 1[𝛼0 + 𝐱𝑖𝜷0 + 𝜀𝑖 > 0], (3) 
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where 𝑑𝑖 ∈ {0,1}  and 𝐱𝑖
′ ∈ ℝ𝐾  are observed, 𝑦𝑖 ∈ ℝ  is an unobserved latent variable, 𝜀𝑖 ∈ ℝ  is an 

unobserved error, and 𝛼0 ∈ ℝ and 𝜷0 ∈ ℝ𝐾 are unknown population parameters. It is assumed that 𝑦𝑖 and 𝐱𝑖 

are independent random variables with finite means and variances. In addition, by letting 𝐱̀𝑖 = (1, 𝐱𝑖), it is 

assumed that Rank[∑ 𝐱̀𝑖
′𝐱̀𝑖

𝑁
𝑖 ] = 𝐾 + 1  and E[𝜀𝑖| 𝐱̀𝑖] = 0 . In particular, the second condition (zero 

conditional mean of errors) implies that E[𝑦𝑖| 𝐱̀𝑖] = 𝛼0 + 𝐱𝑖𝜷0. Note that both the linear and binary models 

here assume that 𝑦𝑖 and 𝐱𝑖 have a linear relationship. This linear assumption may seem stringent, but this is 

not always the case. Especially in typical experimental settings, where binary treatment status is often 

employed, the assumption can be regarded as less restrictive. These issues are discussed in detail by Ito 

(2024). 

Then, by applying RBML data construction and arranging the expression of the latent outcome 𝑦̃𝑡, 

we obtain the following relationship (see Appendix A.5 for the derivation): 

𝑑̃𝑡 > 0

𝑑̃𝑡 ≤ 0

if  𝑦̃𝑡 = 𝐱̃𝑡𝜷0 + 𝜀𝑡̃ > 𝛾𝑡

if  𝑦̃𝑡 = 𝐱̃𝑡𝜷0 + 𝜀𝑡̃ ≤ 𝛾𝑡.
(4) 

where 𝛾𝑡 is a threshold variable defined in Eq. (A-6) in the Appendix and is assumed to be independent of 𝐱̃𝑡 

and 𝜀𝑡̃ .5  Note that 𝛾𝑡  ~
𝑖.𝑖.𝑑.

 N(0, 𝑛𝑁,0𝜎𝑁,0
2 + 𝑛𝑁,1𝜎𝑁,1

2 ) , where by defining {𝑎} = {𝑦𝑖| 𝑖 = 1, ⋯ , 𝑁 & 𝑑𝑖 = 𝑎} , 

𝑁𝑎 = #{𝑎}  (the number of observations for which 𝑑𝑖 = 𝑎 ), and 𝑦̅𝑁,𝑎 = 𝑁𝑎
−1 ∑ 𝑦𝑖𝑦𝑖∈{𝑎}  , 𝑛𝑁,𝑎 = 𝑁𝑎/𝑁  and 

𝜎𝑁,𝑎
2 = 𝑁𝑎

−1 ∑ (𝑦𝑖 − 𝑦̅𝑁,𝑎)
2

𝑦𝑖∈{𝑎}   for 𝑎 = 0,1 . Additionally, as shown in the linear regression model, 

𝜀𝑡̃  ~
𝑖.𝑖.𝑑.

 N(0, 𝜎𝑁
2) , where 𝜎𝑁

2 = 𝑁−1 ∑ 𝜀𝑖
2𝑁

𝑖=1  . Letting 𝛿𝑡 = 𝛾𝑡 − 𝜀𝑡̃  and 𝜏 = √𝑛𝑁,0𝜎𝑁,0
2 + 𝑛𝑁,1𝜎𝑁,1

2 + 𝜎𝑁
2 , 𝛅/

𝜏 = (𝛿1, ⋯ , 𝛿𝑇)′/𝜏 are uncorrelated standard normal random variables and therefore are i i d  with N(0,1). 

Thus, 𝑝(𝑑̃𝑡| 𝐱̃𝑡, 𝜽) = [Φ(𝐱̃𝑡𝜷/𝜏)]1[𝑦̃𝑡>0] ⋅ [1 − Φ(𝐱̃𝑡𝜷/𝜏)]1[𝑦̃𝑡≤0] , and the RBML estimator for the binary 

choice model is defined as values that satisfy 

𝜽̂RB = arg max
𝜽∈𝚯

ln 𝐿(𝜽 | 𝐝̃, 𝐗̃)                                                                                  

= arg max
𝜽∈𝚯

∑{1[𝑑̃𝑡 > 0] ln Φ(𝐱̃𝑡𝜽) + 1[𝑑̃𝑡 ≤ 0] ln Φ(−𝐱̃𝑡𝜽)}

𝑇

𝑡=1

, (5) 

where 𝜽 = 𝜷/𝜏, 𝚯 is a compact subset of ℝ𝐾, which contains the true value 𝜽0, and Φ(∙) is the standard 

normal cumulative distribution function. 

Notably, the proposed method is theoretically expected to be free from perfect prediction (or 

complete separation) problems in discrete choice models. This is because the new method focuses on 

variations around the mean of the (outcome and explanatory) variables and not the one-to-one 

correspondence between them. This notable property is also examined in the Monte Carlo simulation analysis 

in Section 4. 

Also note that in the proposed estimation, the parameters in Eq. (5) are identified up to a scale, as in 

 
5 In the absence of the assumption that 𝛾𝑡 is independent of 𝐱̃𝑡 and 𝜀𝑡̃, it is impossible to estimate 𝜷0 unless 

an additional identification condition is assumed. Online Supplementary Material II examines the validity of 
this assumption using simulated data, and the results support the assumption. 
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the conventional probit estimation, but with a different scale from the probit. The estimand of the probit 

estimation is 𝛽0/𝜎0 and that of the RBML estimation is 𝛽0/𝜏0. Therefore, a direct comparison of the variance 

or efficiency between the two estimators is not meaningful. The small sample properties, including the 

efficiency of the proposed estimator for the binary choice model, are verified in the Monte Carlo simulations 

in the next section. See also Online Supplementary Material III, where a numerical simulation is conducted 

to compare the asymptotic variance of the scale-normalized parameters between the probit and RBML 

methods. The results in the Appendix show that the RBML estimator can be as efficient as the probit estimator 

when the linear combination of regressors is highly leptokurtic. 

For applications other than the two examples above, the RBML method is applicable to, for example, 

sample selection models based on the two-step procedure and ordered response models.6 

 

4. Monte Carlo analysis 

4.1. Simulation design 

In the simulation analysis, the RBML method is applied to linear regression and binary choice models, and 

the finite sample performance of the proposed estimator is examined. Specifically, I consider three estimation 

models, as explained below. 

The first model (referred to as Model 1) is a linear regression model given by 𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 +

𝛽2𝑧𝑖 + 𝜀𝑖. The regressors are generated by drawing randomly from a chi-square distribution with 16 degrees 

of freedom and adjusting the values to have a variance of 0.5 (i.e., 𝑥𝑖 , 𝑧𝑖  ~ χ2(16)/8). The parameters are set 

as 𝛽0 = 0  and 𝛽1 = 𝛽2 = 1 ; thus, 𝛽1𝑥𝑖 + 𝛽2𝑧𝑖  has unit variance. Regarding the error distribution, four 

designs are employed: (a) standard normal, N(0,1); (b) normal mixture (left skewed and leptokurtic), 0.6 ⋅

N(−0.3, 1.225) + 0.4 ⋅ N(0.45, 0.325);7 (c) normal with heteroscedastic variance, N(0, (𝐱𝑖𝜷)𝟐/E[(𝐱𝑖𝜷)𝟐]), 

where 𝐱𝑖𝜷 = 𝛽1𝑥𝑖 + 𝛽2𝑧𝑖, and (d) Student’s 𝑡 with two degrees of freedom, T(2). 

The second model (Model 2) is a binary choice model given by 𝑑𝑖 = 1[𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑧𝑖 + 𝜀𝑖 > 0]. 

The parameters are set as 𝛽1 = 𝛽2 = 1, and the nuisance parameter, 𝛽0, is set to the negative population 

median of 𝛽1𝑥𝑖 + 𝛽2𝑧𝑖 so that the probability of 𝑑𝑖 = 1 in the population is 0.5. For the regressors, several 

distributions with different degrees of kurtosis are employed. This is because the relative efficiency of the 

RBML estimator for binary choice models is expected to depend on the kurtosis of the regressors, as indicated 

in Online Supplementary Material III. Thus, I employ the following cases where the (excess) kurtosis of 𝑥𝑖 

and 𝑧𝑖 varies from −2 to 4: chi-square distributions with 3, 4, 6, 8, 12, and 24 degrees of freedom (kurtosis 

= 12/d.f.); normal distribution (kurtosis = 0); and beta distributions with parameter values of (4.5, 4.5), 

(1.5, 1.5), (0.5, 0.5), and (10−10, 10−10) (kurtosis = −6/(2p.v. + 3)). Here, again, 𝛽1𝑥𝑖 + 𝛽2𝑧𝑖 is designed 

to have the same unit variance in all cases (but different kurtosis values from −2 to 4). The error designs used 

 
6 For an application to ordered response models, see Ito (2024). 
7 Although not mentioned in the text, I also use a right skewed and platykurtic error distribution as another 
type of normal mixture distribution. See Online Supplementary Material IV for details. 
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for the binary model are the same as those for the linear model (Model 1). 

Notably, when the expectation of each regressor (𝑥𝑖 and 𝑧𝑖), conditional on 𝐱𝑖𝜷, is linear in 𝐱𝑖𝜷, the 

probit estimator is known to be consistent (Ruud, 1983).8 Therefore, for regressors with chi-square or normal 

distributions, the conditional expectations of 𝑥𝑖  and 𝑧𝑖  given 𝐱𝑖𝜷 are linear, and the probit estimator is 

consistent (up to scale) across all error designs, although some efficiency may be lost when the errors are 

nonnormal. On the other hand, the RBML estimator is consistent for all error designs except one—error 

design (d)—because Student’s 𝑡 distribution with 2 degrees of freedom has no variance, the central limit 

theorem (CLT) cannot be applied in the RBML data construction, and the RBML estimator is theoretically 

inconsistent. Therefore, to determine the performance of the RBML estimator in an inconsistent case, while 

the errors in designs (a) to (c) are set to have unit variance in the population, the variance of the errors in 

design (d) is not standardized. 

Finally, the third estimation model (Model 3) is a binary choice model with a perfect prediction (or 

complete separation) problem. Specifically, I consider a simple problem in which a regressor predicts the 

binary outcome perfectly. As mentioned in Section 3.2, the proposed method is theoretically expected to be 

able to estimate the impact of a variable that perfectly predicts the outcome in discrete choice models. Model 

3 is given by 𝑑𝑖 = 1[𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑧𝑖 + 𝜀𝑖 > 0], where 𝑥𝑖 is a binary variable that is unity with a probability 

of 50%, 𝑧𝑖  and 𝜀𝑖  follow normal distributions defined as 𝑧𝑖  ~ N(0, 0.2) and 𝜀𝑖  ~ N(0, 0.8), respectively, 

𝛽0 = 0, and 𝛽2 = 1. Then, the following two cases with different degrees of perfect prediction are considered. 

In the first case, 𝛽1 = Φ−1(0.99) ≈ 2.326, and therefore, for 99% of the observations with 𝑥𝑖 = 1, 𝛽1𝑥𝑖 >

−(𝛽0 + 𝛽2𝑧𝑖 + 𝜀𝑖) and 𝑦𝑖 = 1. This case is referred to as a nearly perfect prediction. Then, the second case 

is a fully perfect prediction, where 𝛽1 = |Min(𝛽0 + 𝛽2𝑧𝑖 + 𝜀𝑖)| + 0.01, and therefore, for all observations 

with 𝑥𝑖 = 1, 𝑦𝑖 = 1. Note that it is generally not possible to estimate the impact of a variable causing a fully 

perfect prediction, as observed from the fact that doubling or tripling 𝛽1 does not change the binary outcome 

(and hence, this may result in an inflated estimate of the coefficient). Therefore, in the presence of a perfect 

prediction problem, a reasonable goal is to estimate the impact at the threshold, and 𝛽1 in this second case is 

set to a value close to the threshold such that 𝛽1𝑥𝑖 > −(𝛽0 + 𝛽2𝑧𝑖 + 𝜀𝑖). Table 1 summarizes the simulation 

designs for the three models. For all simulations, the sample size in a trial is set to 500 (𝑁 = 500), and each 

design consists of 500 independent trials.9 

[Table 1 near here] 

 

4.2. Results 

4 2 1  Linear regression model (Model 1; 

 
8 For linear regression models, the normal ML estimator is equivalent to the ordinary least squares (OLS) 

estimator and is consistent, albeit with a loss of efficiency, even when the errors are nonnormal. 
9 Descriptive statistics of the variables used in a trial are presented in Table IV-1 in Online Supplementary 
Material IV. 
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Table 2 presents the simulation results for the linear regression model. To investigate the role of the size of 

𝑇′ (and thus, 𝑇), different values of 𝑇 are employed: 𝑇 = 1,000, 10,000, and 100,000. OLS results are also 

reported for comparison. 

[Table 2 near here] 

The results show that the RBML estimator is strongly consistent. As previously suggested, even if 𝑇 

is small, the bias is comparable to that of the OLS estimator across all four error designs. However, when 𝑇 

is relatively small (𝑇 = 1,000 or 10,000), the RMSE is always greater for the RBML estimator than for the 

OLS estimator. Nonetheless, when 𝑇 = 100,000, the RBML estimator performs as well as the OLS estimator 

in terms of the RMSE: the relative efficiency always exceeds 99%. As shown in Section 3.1, the asymptotic 

variance of the RBML and OLS estimators is identical for the linear regression model, and this is true when 

𝑇 is sufficiently large. The efficiency loss due to the small 𝑇′ almost disappears when 𝑇 = 100,000. 

 

4 2 2  Binary choice model (Model 2; 

Figure 1 presents the simulation results for the binary choice model. For comparison with the RBML method, 

the results obtained by probit (normal ML), Gallant and Nychka’s (1987) Hermite polynomial sieve ML, 

Klein and Spady’s (1993) Nadaraya–Watson kernel ML, and Ichimura’s (1993) SLS estimations are also 

presented.10 Note that the bias and RMSE reported in the figure are for the regression coefficient and not the 

marginal effect. For discrete choice models, researchers’ interest is generally in the marginal effect on the 

choice probability, not the coefficient estimate. However, in this simulation, the ratio of coefficients of the 

two regressors is designed to equal the ratio of their marginal effects.11 

[Figure 1 near here] 

As shown in Figure 1 (lower lines), the RBML estimator is strongly consistent for all kurtosis values 

(horizontal axis) and error designs (Panels A to D). Notably, regardless of the error designs, the bias of the 

RBML estimator is smaller than those of the other estimators in most cases. The only exception is when the 

kurtosis is −2 (i.e., 𝑥𝑖 and 𝑧𝑖 are both binary variables). In this case, the RBML estimator tends to have a 

larger bias than those of the probit and sieve ML estimators. 

Turning to the RMSE (upper lines), it is worth noting that when the linear combination 𝐱𝜷  is 

leptokurtic (positive excess kurtosis), the RBML estimator always has the smallest RMSE compared to those 

of the probit and other semiparametric estimators for all error designs. This is also true for the case of normal 

errors (Panel A), where the probit specification is correct. Although the numerical simulation in Online 

 
10  The sieve ML, kernel ML, and SLS estimations are implemented using the –snp–, –sml–, and –sls– 

commands in Stata, respectively. See De Luca (2008) for the –snp– and –sml– commands and Barker (2014) 

for the –sls– command. 
11 Although this study focuses on coefficient estimates, it would be an interesting exercise to examine the 

various situations in which the choice probabilities are inconsistently estimated by probit estimation but 

consistently estimated by semiparametric estimators. Ito (2024) compared marginal effect estimates between 
the RBML and other parametric and semiparametric estimators for binary and ordered response models. 
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Supplementary Material III suggests that the RBML estimator is asymptotically less efficient than the probit 

estimator when the kurtosis of the regressors is positive but small, the results in this figure show that the 

RBML estimator performs exceedingly well for the small sample. 

When 𝐱𝑖𝜷  is platykurtic (negative excess kurtosis), on the other hand, the performance of the 

proposed estimator is worse than that of the probit and sieve estimators in most cases except for the case of 

a kurtosis of −2. When the regressors are both dummy variables (and the excess kurtosis is −2), 

semiparametric estimators tend to have difficulty estimating the likelihood nonparametrically. In fact, kernel-

based semiparametric estimations require at least one variable to be continuous, and hence, kernel ML and 

SLS methods cannot be applied in this case. In addition, in the case of the sieve ML estimation, of 2,000 

trials (500 trials × 4 error designs), there are 367 cases (or 18.4%) in which convergence cannot be achieved 

(while the proposed method achieves convergence in all 2,000 trials). Even when the estimation performed 

successfully, the RMSEs are sacrificed.12 

Then, when 𝐱𝑖𝜷  is normal (mesokurtic), the RBML, probit, and sieve ML estimators achieve 

comparable performance: the relative efficiency of the RBML and sieve ML estimators to the probit estimator 

always exceeds 97%. Moreover, we see that the probit estimator is clearly superior to both the RBML and 

sieve ML estimators only when the kurtosis of 𝐱𝑖𝜷 is −2. Therefore, except in those special cases, the RBML 

and sieve ML estimations complement each other as alternatives to the probit estimation: the RBML estimator 

for the leptokurtic 𝐱𝑖𝜷 and the sieve ML estimator for the platykurtic 𝐱𝑖𝜷. 

In addition, the RBML estimator performs better than the kernel ML and SLS estimators in terms of 

the RMSE in most cases. While kernel-based semiparametric estimators generally suffer a loss of efficiency 

when estimating an unknown function nonparametrically, the proposed method utilizing the parametric 

likelihood function does not. The results further indicate that the RBML estimator is considerably stable in 

the sense that the RMSE does not vary significantly with the degree of the regressors’ kurtosis and error 

design. When the kurtosis of the regressors varies, the RMSEs of all the estimators also vary, but the RBML 

estimator fluctuates less than the other estimators. The proposed method provides robust estimates across the 

error and regressor distributions. 

 

4 2 3  Binary choice model with a perfect prediction problem (Model 3; 

Finally, Figure 2 presents the distribution of the estimation errors (differences between estimates and true 

parameter values) for the binary choice model with a perfect prediction problem (Model 3). Panel A 

represents the case where 𝑥𝑖 predicts 𝑦𝑖 nearly perfectly (for 99% of the observations with 𝑥𝑖 > 0, 𝑦𝑖 = 1), 

and Panel B is the case where 𝑥𝑖  predicts 𝑦𝑖  perfectly (for all observations with 𝑥𝑖 > 0 , 𝑦𝑖 = 1 ). In both 

panels, in addition to the RBML estimation results, those of the sieve ML, kernel ML, and SLS estimations 

 
12 For sieve ML estimation, I started with third-order Hermite polynomials. If convergence was not achieved, 
I reestimated the model by increasing the order by one repeatedly until the eighth order. 
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are presented for comparison. 

Panel A shows that the estimation error of the RBML method is almost symmetrically distributed 

around zero, and the method is superior to other semiparametric methods in terms of the number of trials 

with convergence and the magnitude of the bias and RMSE. The kernel-based semiparametric methods (i.e., 

kernel ML and SLS) tend to underestimate the parameter, and the sieve ML method has a relatively smaller 

bias but slightly larger RMSE. 

[Figure 2 near here] 

Turning to Panel B, where the model has a fully perfect prediction problem and is designed to 

estimate the lower bound of the impact, the results show that the RBML method has a relatively smaller bias 

but a tendency for underestimation. Nonetheless, it can be observed that the proposed method is superior to 

other methods in terms of the number of trials with convergence and the magnitude of the RMSE. The kernel 

ML method provides an error distribution roughly centred at zero and has the smallest bias, but it fails to 

converge in more than half of the 500 trials, and the RMSE is also relatively large because some errors are 

outside the range shown in the figure. Thus, these results indicate that the RBML method is the best to employ 

when estimating models with a perfect prediction problem. 

 

5. Conclusions 

In this study, an innovative ML estimation method that requires no distributional assumption was proposed 

and formulated for linear regression and binary choice models. Furthermore, this study showed that the 

proposed estimator is consistent and normally distributed for large samples. In particular, the estimator attains 

an asymptotic efficiency bound for the linear regression model. For the binary choice model, the proposed 

estimator can be as efficient as the probit estimator when comparing the asymptotic variance of the scale-

normalized parameter when the excess kurtosis of the regressors is positive and high. 

I also evaluated the estimator in a Monte Carlo analysis for linear regression and binary choice 

models under several error distributions. The results showed that the RBML estimator performed exceedingly 

well for the small sample case. For the linear regression model, the RBML estimator was almost equivalent 

to the OLS estimator in terms of bias and the RMSE when the sample size of the resampled data (𝑇) was 

large. For the binary choice model, the RBML estimator outperformed the probit and other semiparametric 

estimators when the linear combination of regressors was leptokurtic, even if the probit model was, in theory, 

expected to be the best. Furthermore, the RBML method was shown to avoid a typical perfect prediction 

problem and to estimate (the lower bound of) the impact of the variable causing the problem.  

The new semiparametric ML method proposed in this study has potential in the field of behavioural 

and experimental social sciences, where discrete choice models are extensively utilized. While the recent 

trend in empirical fields is to require robust estimation against model misspecification, conventional 

semiparametric estimators are seldom employed in practice, probably because of their practical 

inconvenience. The proposed estimator can potentially bridge the gap between the needs in empirical fields 
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and the sparsity of well-performing practicable semiparametric estimators. Although the regressor and error 

distributions in the simulation showed only a few possible examples, the RBML estimator could be the first 

choice for binary choice models, especially in the case of leptokurtic regressors or in the presence of a perfect 

prediction problem. 

 

Appendix A: Proofs and other results 

A.1. Proof of Proposition 1 

Taking 𝑀 observations from {𝑧𝑖| 𝑖 = 1, ⋯ , 𝑁} by resampling with replacement (in RBML data construction) 

is equivalent to taking one observation at random from {𝑧𝑖| 𝑖 = 1, ⋯ , 𝑁} and repeating 𝑀 times. Therefore, 

𝑧̃𝑡 can be expressed as follows: 

𝑧̃𝑡 ≡ √
𝑁𝑀

𝑁 − 1
(

∑ 𝑧𝑗𝑡
𝑀
𝑗=1

𝑀
− 𝜇𝑁) = √

𝑁𝑀

𝑁 − 1
(

∑ ∑ 𝑤𝑖𝑗𝑡𝑧𝑖
𝑀
𝑗=1

𝑁
𝑖=1

𝑀
− 𝜇𝑁) , 

where 𝑤𝑖𝑗𝑡 is a random variable that is one if the 𝑖-th observation is drawn at the 𝑗-th iteration in the 𝑡-th 

resampling stage and zero otherwise. 

Then, treating 𝑤𝑖𝑗𝑡  as a variable following a Bernoulli distribution with probability of 1/𝑁 

(Cornfield, 1944; Raj and Khamis, 1958), 𝑀−1 ∑ 𝑤𝑖𝑗𝑡
𝑀
𝑗   has a mean of 1/𝑁  and a variance of 

(𝑁 − 1)/(𝑁2𝑀). Therefore, 

(
𝑁 − 1

𝑁2𝑀
)

−
1
2

(
∑ 𝑤𝑖𝑗𝑡

𝑀
𝑗

𝑀
−

1

𝑁
) 

𝑑
→  N(0,1) 

as 𝑀  goes to infinity by the Lindeberg–Levy CLT. Alternatively, we can apply the de Moivre–Laplace 

theorem by treating ∑ 𝑤𝑖𝑗𝑡
𝑀
𝑗  as a binomial random variable. Thus, assuming that 𝑁 is given (and hence the 

sample {𝑧𝑖| 𝑖 = 1, ⋯ , 𝑁} is given) and 𝑀 is sufficiently large, 

𝑧́𝑖 = (
𝑁 − 1

𝑁2𝑀
)

−
1
2

̇

(
∑ 𝑤𝑖𝑗𝑡

𝑀
𝑗=1

𝑀
−

1

𝑁
) (𝑧𝑖 − 𝜇𝑁) ~ N(0, (𝑧𝑖 − 𝜇𝑁)2). (A-1) 

Therefore, 𝑧̃𝑡 (= 𝑁−1/2 ∑ 𝑧́𝑖
𝑁
𝑖=1 ) follows N(0, 𝜎𝑁

2), where 𝜎𝑁
2 = 𝑁−1 ∑ (𝑧𝑖 − 𝜇𝑁)2𝑁

𝑖 . 

The i i d  property of the new data comes from the fact that {𝑧̃𝑡| 𝑡 = 1, ⋯ , 𝑇} are uncorrelated joint 

normal random variables. When 𝑁 (and the sample {𝑧𝑖| 𝑖 = 1, ⋯ , 𝑁}) is given, the covariance of any two 

observations, 𝑧̃𝑡 and 𝑧̃𝑠 (𝑡, 𝑠 ∈ {1, ⋯ , 𝑇} and 𝑡 ≠ 𝑠), is expressed as follows: 

Cov𝑤(𝑧̃𝑡, 𝑧̃𝑠) = E𝑤 [√
𝑁2𝑀

𝑁 − 1
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=
𝑁2𝑀

𝑁 − 1
{

E[𝑊𝑖𝑡]E[𝑊𝑗𝑠]

𝑀2
−

E[𝑊𝑖𝑡]

𝑁𝑀
−
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1
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(1 − 1 − 1 + 1) ∑ ∑ 𝑧𝑖𝑧𝑗

𝑁

𝑗

𝑁

𝑖

= 0, 

where 𝑊𝑖𝑘 is defined as ∑ 𝑤𝑖𝑗𝑘
𝑀
𝑗=1  and represents the number of times that 𝑧𝑖 is drawn at the 𝑘-th resampling 

stage (𝑘 = 𝑡, 𝑠). E𝑤[⋅] means that the expectation is taken solely with respect to the distribution of random 

weights 𝑤𝑖𝑗𝑘, given the other random variables in the expectation operator. Then, since 𝑤𝑖𝑗𝑘 is a Bernoulli 

random variable, E[𝑊𝑖𝑘] = E[∑ 𝑤𝑖𝑗𝑘
𝑀
𝑗=1 ] = 𝑀/𝑁. Therefore, 𝒛̃ = (𝑧̃1, ⋯ ,𝑧̃𝑇) follows N(𝟎, 𝜎𝑁

2𝐈𝑇), where 𝐈𝑇 

is a 𝑇 × 𝑇 identity matrix, and hence, the joint normal density can be expressed as the product of individual 

normal densities: 𝑓(𝒛̃) = 1/√(2𝜋)𝑇|𝜎𝑁
2𝐈𝑇| × exp{−(𝒛̃)′(𝜎𝑁

2𝐈𝑇)−1(𝒛̃)/2} = ∏ 1/√2𝜋𝜎𝑁
2𝑇

𝑡=1 × exp{−(𝑧̃𝑡/

𝜎𝑁)2/2} = ∏ 𝑓(𝑧̃𝑡)𝑇
𝑡=1 , showing that {𝑧̃𝑡| 𝑡 = 1, ⋯ , 𝑇} are mutually independent. 

The assumption that the original sample {𝑧𝑖| 𝑖 = 1, ⋯ , 𝑁} is i i d  with a finite mean and variance 

(𝜇0, 𝜎0
2 < ∞) ensures that {𝑧́𝑖| 𝑖 = 1, ⋯ , 𝑁}, where 𝑧́𝑖 is defined in Eq. (A-1), is i i d  with a mean of E[𝑧́𝑖] =

0  and a variance of Var[𝑧́𝑖] = 𝜎0
2(𝑁 − 1)/𝑁 . Then, E[𝑁−1 ∑ 𝑧́𝑖

𝑁
𝑖 ] = 0  and Var[𝑁−1 ∑ 𝑧́𝑖

𝑁
𝑖 ] = 𝜎0

2(𝑁 − 1)/

𝑁2, and 

{
𝜎0

2(𝑁 − 1)

𝑁2
}

−
1
2 ∑ 𝑧́𝑖

𝑁
𝑖

𝑁

𝑑
→ N(0,1) 

as 𝑁  goes to infinity by the Lindeberg–Levy CLT. Therefore, applying the Slutzky theorem, 𝑧̃𝑡  ( =

𝑁−1/2 ∑ 𝑧́𝑖
𝑁
𝑖=1 ) converges in distribution to N(0, 𝜎0

2), and the conclusion is obtained. 

 

A.2. Proof of Theorem 1 

From condition (ii), plim
𝑁→∞

 |𝑇−1 ∑ ln 𝑝(𝑧̃𝑡|𝜃)𝑇
𝑡=1 − E[ln 𝑝(𝑧̃|𝜃)]| < 𝜖/3 . Note that 𝑇 = 𝑇′ + 𝑁  as in 

Definition 1 (RBML data construction). Therefore, 

E[ln 𝑝(𝑧̃|𝜃̂𝑅𝐵)] >
∑ ln 𝑝(𝑧̃𝑡|𝜃̂𝑅𝐵)𝑇

𝑡=1

𝑇
−

𝜖

3
, (A-2) 

∑ ln 𝑝(𝑧̃𝑡|𝜃0)𝑇
𝑡=1

𝑇
−

2𝜖

3
> E[ln 𝑝(𝑧̃|𝜃0)] − 𝜖, (A-3) 

with probability approaching one (w.p.a.1). In addition, by Definition 2 (RBML estimator), as expressed in 

Eq. (1), 

∑ ln 𝑝(𝑧̃𝑡|𝜃𝑅𝐵)𝑇
𝑡=1

𝑇
>

∑ ln 𝑝(𝑧̃𝑡|𝜃0)𝑇
𝑡=1

𝑇
−

𝜖

3
, (A-4) 

Hence, adding both sides of inequalities (A-2), (A-3), and (A-4) and arranging the expression yields 

E[ln 𝑝(𝑧̃|𝜃𝑅𝐵)] > E[ln 𝑝(𝑧̃|𝜃0)] − 𝜖, 
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for any 𝜖 > 0, w.p.a.1. Then, let 𝒩 be any open subset of Θ containing 𝜃0, and let 𝒩𝑐 be the complement of 

𝒩 . By Θ ∩ 𝒩𝑐  compact (by condition (i) and the definition of 𝒩𝑐 ) and conditions (iii) and (iv), 

sup
𝜃∈𝛩∩𝒩𝑐

E[ln 𝑝(𝑧̃|𝜃)] = E[ln 𝑝(𝑧̃|𝜃∗)] < E[ln 𝑝(𝑧̃|𝜃0)]  for some 𝜃∗ ∈ Θ ∩ 𝒩𝑐 . Therefore, by choosing 𝜖 =

E[ln 𝑝(𝑧̃|𝜃0)] − sup
𝜃∈𝛩∩𝒩𝑐

E[ln 𝑝(𝑧̃|𝜃)], it follows that 

E[ln 𝑝(𝑧̃|𝜃𝑅𝐵)] > sup
𝜃∈Θ∩𝒩𝑐

E[ln 𝑝(𝑧̃|𝜃)] 

and thus, 𝜃𝑅𝐵 ∈ 𝒩 w.p.a.1 as 𝑁 goes to infinity. 

 

A.3. Proof of Theorem 2 

Let 1̂  be the {0,1} -valued indicator function for the event that 𝜃𝑅𝐵 ∈ 𝒩 . Note that 1̂
𝑝
→ 1  by 𝜃𝑅𝐵

𝑝
→ 𝜃0  (as 

𝑁 → ∞ ) from Theorem 1. From condition (ii) and the first-order conditions for a maximum, 0 = 1̂ ⋅

∇𝜃 ln 𝐿(𝜃𝑅𝐵| 𝐳̃). The mean value theorem applied to each row (denoted by 𝑘) of the right-hand side yields 

0 = 1̂ ⋅ ∇𝜃 ln 𝐿(𝜃𝑅𝐵| 𝐳̃)𝑘 = 1̂ ⋅
∑ ∇𝜃 ln 𝑝(𝑧̃𝑡| 𝜃𝑅𝐵)𝑘

𝑇
𝑡=1

𝑇
                                   

= 1̂ ⋅
{∑ ∇𝜃 ln 𝑝(𝑧̃𝑡| 𝜃0)𝑘

𝑇
𝑡=1 + ∑ ∇𝜃𝜃 ln 𝑝(𝑧̃𝑡| 𝜃̅𝑘)𝑘

T𝑇
𝑡=1 (𝜃𝑅𝐵 − 𝜃0)}

𝑇
, 

where 𝜃̅𝑘 denotes a random variable equal to a mean value located between 𝜃0 and 𝜃𝑅𝐵 and converges in 

probability to 𝜃0. Let 𝑔 denote the vector with the 𝑘-th row 𝑇−1 ∑ ∇𝜃 ln 𝑝(𝑧̃𝑡| 𝜃0) 𝑘
𝑇
𝑡 , and let 𝐻̅ denote the 

matrix with the 𝑘-th row 𝑇−1 ∑ ∇𝜃𝜃 ln 𝑝(𝑧̃𝑡| 𝜃̅𝑘)𝑘
T𝑇

𝑡=1 . In addition, let 1̅ be an indicator variable that takes 

unity if 𝜃𝑅𝐵 ∈ 𝒩  and 𝐻̅  is nonsingular and zero otherwise. Then, from 1̅
𝑝
→ 1  and 0 = 1̅ ⋅ 𝑔 + 1̅ ⋅

𝐻̅(𝜃̂𝑅𝐵 − 𝜃0) , √𝑁(𝜃̂𝑅𝐵 − 𝜃0) = 1̅ ⋅ 𝐻̅−1 ⋅ √𝑁𝑔 + (1 − 1̅)√𝑁(𝜃𝑅𝐵 − 𝜃0) . By 𝜃̅𝑘

𝑝
→ 𝜃0  and condition 

(iv),  𝐻̅
𝑝
→ E[∇𝜃𝜃 ln 𝑝(𝑧̃|𝜃0)] = 𝐻 . Furthermore, 𝐻 = −𝐽  by differentiating ∫ 𝑝(𝑧̃ | 𝜃)𝑑𝑧  twice and 

interchanging the order of differentiation and integration (by conditions (ii) and (v), applying Lemma 3.6 of 

Newey and McFadden (1994)). Then, √𝑁𝑔
𝑑
→ N(0, 𝐽) by  𝑔

𝑝
→ E[∇𝜃𝑝(𝑧̃ | 𝜃0)] = 0, condition (iii), and the 

Lindeberg–Levy CLT. Additionally, (1 − 1̅)√𝑁(𝜃𝑅𝐵 − 𝜃0)
𝑝
→ 0 by 1̅

𝑝
→ 1. Therefore, by the nonsingularity 

of 𝐽, the conclusion follows from the Slutzky theorem. 

 

A.4. Proposition A-1 and its proof 

Proposition A1 (Distribution properties of new data with heteroscedasticity) 

Assume that the original data {(𝑦𝑖 , 𝐱𝑖)| 𝑖 = 1, ⋯ , 𝑁} are independent with finite means and variances  The 

regression model is expressed by 𝑦𝑖 = 𝛼0 + 𝐱𝑖𝜷0 + 𝜀𝑖   as defined in the main text  {𝜀𝑖| 𝑖 = 1, ⋯ , 𝑁}  are 

independent with E[𝜀𝑖] = 0 and Var[𝜀𝑖] = 𝜎𝑖
2  Further assume that lim

𝑁→∞
∑ E|𝜀𝑖|2+𝛿𝑁

𝑖=1 /(∑ 𝜎𝑖
2𝑁

𝑖=1 )
1+𝛿/2

= 0 

for some 𝛿 > 0  Then  letting 𝜎𝑁
2 = 𝑁−1 ∑ 𝜀𝑖

2𝑁
𝑖  and 𝜎0

2 = lim
𝑁→∞

𝑁−1 ∑ 𝜎𝑖
2𝑁

𝑖 , {𝜀𝑡̃| 𝑡 = 1, ⋯ , 𝑇} obtained in the 
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first (data construction; step with sufficiently large 𝑀 are i i d  with N(0, 𝜎𝑁
2) and converge in distribution to 

N(0, 𝜎0
2) as 𝑁 goes infinity: 

𝜀𝑡̃  ~
𝑖.𝑖.𝑑.

 N(0, 𝜎𝑁
2) 

𝑑
→  N(0, 𝜎0

2). 

 

Note that in the above proposition, the variances can be dependent on 𝐱𝑖, that is, 𝜎𝑖
2 = ℎ𝑖(𝐱𝑖). In 

this case, the issue of conditional heteroscedasticity arises for the original error term (𝜀𝑖). However, the new 

error term ( 𝜀𝑖̃ ) obtained through RBML data construction is independent of 𝐱̃𝑖  and is free from 

heteroscedasticity (see the discussion in Section 3.2 in Ito (2024)). The proof of Proposition A-1 is presented 

below. 

 

Proof of Proposition A-1 

The result that 𝜀𝑡̃  ~
𝑖.𝑖.𝑑.

 N(0, 𝜎𝑁
2) follows from the same discussion in Appendix A.1 by replacing 𝑧̃𝑡 with 𝜀𝑡̃. 

Then, similar to Eq. (A-1), 𝜀𝑖́ is defined as follows: 

𝜀𝑖́ = (
𝑁 − 1

𝑁2𝑀
)

−
1
2

(
∑ 𝑤𝑖𝑗𝑡

𝑀
𝑗=1

𝑀
−

1

𝑁
) (𝜀𝑖 − 𝜇𝑁), (A-5) 

with E[𝜀𝑖́] = 0 and Var[𝜀́𝑖] = 𝜎𝑖
2. Then, {𝜀𝑖́| 𝑖 = 1, ⋯ , 𝑁} satisfies the Lindeberg condition as shown below. 

lim
𝑁→∞

∑ E|𝜀𝑖́|
2+𝛿𝑁

𝑖=1

(∑ 𝜎𝑖
2𝑁

𝑖=1 )1+𝛿/2
= lim

𝑁→∞

∑ E |√
𝑁2

(𝑁 − 1)𝑀
(∑ 𝑤𝑖𝑗𝑡

𝑀
𝑗=1 −

𝑀
𝑁) (𝜀𝑖 − 𝜇𝑁)|

2+𝛿

𝑁
𝑖=1

(∑ 𝜎𝑖
2𝑁

𝑖=1 )1+𝛿/2

= lim
𝑁→∞

{
𝑁2

(𝑁 − 1)𝑀
}

1+
𝛿
2

∑ E |𝑊𝑖𝑡 −
𝑀
𝑁|

2+𝛿

E|𝜀𝑖 − 𝜇𝑁|2+𝛿𝑁
𝑖=1

(∑ 𝜎𝑖
2𝑁

𝑖=1 )1+𝛿/2

= lim
𝑁→∞

[{
𝑁2

(𝑁 − 1)𝑀
}

1+
𝛿
2

E |𝑊𝑖𝑡 −
𝑀

𝑁
|

2+𝛿 ∑ E|𝜀𝑖 − 𝜇𝑁|2+𝛿𝑁
𝑖=1

(∑ 𝜎𝑖
2𝑁

𝑖=1 )1+𝛿/2
]

= lim
𝑁→∞

[{
𝑁

(𝑁 − 1)
}

1+
𝛿
2

(
𝑁

𝑀
)

1+
𝛿
2

E |𝑊𝑖𝑡 −
𝑀

𝑁
|

2+𝛿 ∑ E|𝜀𝑖 − 𝜇𝑁|2+𝛿𝑁
𝑖=1

(∑ 𝜎𝑖
2𝑁

𝑖=1 )1+𝛿/2
]

= lim
𝑁→∞

[{
𝑁

(𝑁 − 1)
}

1+𝛿/2

E |𝑊𝑖𝑡 (
𝑁

𝑀
)

1
2

− (
𝑀

𝑁
)

1
2

|

2+𝛿

∑ E|𝜀𝑖 − 𝜇𝑁|2+𝛿𝑁
𝑖=1

(∑ 𝜎𝑖
2𝑁

𝑖=1 )1+𝛿/2
] , 

where 𝑊𝑖𝑡 = ∑ 𝑤𝑖𝑗𝑡
𝑀
𝑗=1  , which can be viewed as a binomial random variable with E[𝑊𝑖𝑡] = 𝑀/𝑁 , 

E[𝑊𝑖𝑡 − 𝑀/𝑁]2 = 𝑀(𝑁 − 1)/𝑁2, and E[𝑊𝑖𝑡 − 𝑀/𝑁]4 = 3𝑀(𝑀 − 2)(𝑁 − 1)2/𝑁4. Thus, we have  

E |𝑊𝑖𝑡 (
𝑁

𝑀
)

1
2

− (
𝑀

𝑁
)

1
2

|

2+𝛿
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= ∫ |𝑊 (
𝑁

𝑀
)

1
2

− (
𝑀

𝑁
)

1
2

|

2+𝛿

d𝐹(𝑊)
|𝑊−

𝑀
𝑁

|<(
𝑀
𝑁

)

1
2

+ ∫ |𝑊 (
𝑁

𝑀
)

1
2

− (
𝑀

𝑁
)

1
2

|

2+𝛿

d𝐹(𝑊)
|𝑊−

𝑀
𝑁

|≥(
𝑀
𝑁

)

1
2

 

≤ ∫ {𝑊 (
𝑁

𝑀
)

1
2

− (
𝑀

𝑁
)

1
2

}

2

d𝐹(𝑊)
|𝑊−

𝑀
𝑁

|<(
𝑀
𝑁

)

1
2

+ ∫ {𝑊 (
𝑁

𝑀
)

1
2

− (
𝑀

𝑁
)

1
2

}

4

d𝐹(𝑊)
|𝑊−

𝑀
𝑁

|≥(
𝑀
𝑁

)

1
2

 

≤ E [𝑊𝑖𝑡 (
𝑁

𝑀
)

1
2

− (
𝑀

𝑁
)

1
2

]

2

+ E [𝑊𝑖𝑡 (
𝑁

𝑀
)

1
2

− (
𝑀

𝑁
)

1
2

]

4

 

=
𝑁

𝑀
⋅

𝑀(𝑁 − 1)

𝑁2
+ (

𝑁

𝑀
)

2

⋅
3𝑀(𝑀 − 2)(𝑁 − 1)2

𝑁4
 

=
𝑁 − 1

𝑁
+

3(𝑀 − 2)

𝑀
⋅ (

𝑁 − 1

𝑁
)

2

, 

and therefore, lim
𝑁→∞

{𝑁/(𝑁 − 1)}1+𝛿/2E|𝑊𝑖𝑡(𝑁/𝑀)1/2 − (𝑀/𝑁)1/2|
2+𝛿

< 4 . Note that in the above 

derivation, we implicitly assume that 𝛿 < 1 (Rao (1973, pp. 127–128) presents the special case where 𝛿 = 1, 

but here 𝛿 can be arbitrarily small to reduce the moment conditions). Then, since lim
𝑁→∞

∑ E|𝜀𝑖 − 𝜇𝑁|2+𝛿𝑁
𝑖 /

(∑ 𝜎𝑖
2𝑁

𝑖 )
1+𝛿/2

= lim
𝑁→∞

∑ E|𝜀𝑖|2+𝛿𝑁
𝑖 /(∑ 𝜎𝑖

2𝑁
𝑖 )

1+𝛿/2
= 0, we also have lim

𝑁→∞
∑ E|𝜀𝑖́|

2+𝛿𝑁
𝑖=1 /(∑ 𝜎𝑖

2𝑁
𝑖=1 )

1+𝛿/2
=

0, indicating that the Lindeberg condition is satisfied (see White, 2001, p. 119).  

The mean and variance of 𝑁−1 ∑ 𝜀𝑖́
𝑁
𝑖=1   are E[𝑁−1 ∑ 𝜀𝑖́

𝑁
𝑖=1 ] = 0  and Var[𝑁−1 ∑ 𝜀𝑖́

𝑁
𝑖=1 ] =

𝑁−2 ∑ 𝜎𝑖
2𝑁

𝑖=1 , respectively, and thus by the Lyapunov CLT, 

{
∑ 𝜎𝑖

2𝑁
𝑖=1

𝑁2
}

−
1
2 ∑ 𝜀𝑖́

𝑁
𝑖=1

𝑁
 

𝑑
→  N(0,1) 

as 𝑁 goes to infinity. Then, applying the Slutzky theorem, 𝜀𝑡̃ (= 𝑁−1/2 ∑ 𝜀𝑖́
𝑁
𝑖 ) converges in distribution to 

N(0, 𝜎0
2), where 𝜎0

2 = lim
𝑁→∞

𝑁−1 ∑ 𝜎𝑖
2𝑁

𝑖=1 . 

 

A.5. Derivation of Eq. (4) 

Let 𝑦̃𝑡 be an outcome at the 𝑡-th resampling stage in the RBML data construction, which can be expressed as 

𝑦̃𝑡 = √
𝑁𝑀

𝑁 − 1
(

1

𝑀
∑ 𝑦𝑗𝑡

𝑀

𝑗=1

− 𝑦̅𝑁
∗ ) = √

𝑁𝑀

𝑁 − 1
(

1

𝑀
∑ ∑ 𝑤𝑖𝑗𝑡𝑦𝑖

𝑀

𝑗=1

𝑁

𝑖=1

−
1

𝑁
( ∑ 𝑦𝑖

𝑦𝑖∈ 𝒴0

+ ∑ 𝑦𝑖

𝑦𝑖∈ 𝒴1

)) 

= √
𝑁𝑀

𝑁 − 1
{

1

𝑀
( ∑ ∑ 𝑤𝑖𝑗𝑡𝑦𝑖

𝑀

𝑗=1𝑦𝑖∈ 𝒴0

+ ∑ ∑ 𝑤𝑖𝑗𝑡𝑦𝑖

𝑀

𝑗=1𝑦𝑖∈ 𝒴1

) − (𝑛𝑁,0𝑦̅𝑁,0 + 𝑛𝑁,1𝑦̅𝑁,1)} ,        

where for 𝑎 ∈ {0,1} , 𝒴𝑎 = {𝑦𝑖| 𝑖 = 1, ⋯ , 𝑁 & 𝑑𝑖 = 𝑎} , 𝑦̅𝑁,𝑎 = 𝑁𝑎
−1 ∑ 𝑦𝑖𝑦𝑖∈ 𝒴𝑎

 , 𝑛𝑁,𝑎 = 𝑁𝑎/𝑁 , and 𝑁𝑎 =
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#[𝒴𝑎] (the number of observations in the original sample for which 𝑑𝑖 = 𝑎). Then, defining 𝛾𝑡 as 

𝛾𝑡 = 𝑁−
1
2 ∑ {(

𝑁 − 1

𝑁2𝑀
)

−
1
2

(
∑ 𝑤𝑖𝑗𝑡

𝑀
𝑗=1

𝑀
−

1

𝑁
) (𝑦𝑖 − 𝑦̅𝑁,0)}

𝑦𝑖∈{0}

+ 𝑁−
1
2 ∑ {(

𝑁 − 1

𝑁2𝑀
)

−
1
2

(
∑ 𝑤𝑖𝑗𝑡

𝑀
𝑗=1

𝑀
−

1

𝑁
) (𝑦𝑖 − 𝑦̅𝑁,1)}

𝑦𝑖∈{1}

, 

the above equation for 𝑦̃𝑡 is rewritten as 

𝑦̃𝑡 = 𝛾𝑡 + √
𝑁𝑀

𝑁 − 1
{𝑚0,𝑡𝑦̅𝑁,0 + 𝑚1,𝑡𝑦̅𝑁,1 − (𝑛0𝑦̅𝑁,0 + 𝑛1𝑦̅𝑁,1)} 

                                     = 𝛾𝑡 + √
𝑁𝑀

𝑁 − 1
{(1 − 𝑚1,𝑡)𝑦̅𝑁,0 + 𝑚1,𝑡𝑦̅𝑁,1 − ((1 − 𝑛𝑁,1)𝑦̅𝑁,0 + 𝑛𝑁,1𝑦̅𝑁,1)} 

= 𝛾𝑡 + √
𝑁𝑀

𝑁 − 1
(𝑚1,𝑡 − 𝑛𝑁,1)(𝑦̅𝑁,1 − 𝑦̅𝑁,0),                    (A-6) 

where for 𝑎 ∈ {0, 1}, 𝑚𝑎,𝑡 = 𝑀𝑎,𝑡/𝑀 (𝑀𝑎,𝑡 is the number of draws from 𝒴𝑎 at the 𝑡-th resampling stage). 

Note that 𝛾𝑡  ~
𝑖.𝑖.𝑑.

 N(0, 𝑛𝑁,0𝜎𝑁,0
2 + 𝑛𝑁,1𝜎𝑁,1

2 ) , where 𝜎𝑁,𝑎
2 = 𝑁𝑎

−1 ∑ (𝑦𝑖 − 𝑦̅𝑁,𝑎)
2

𝑦𝑖∈ 𝒴𝑎
  for 𝑎 ∈ {0,1} . If 

{𝑦𝑖| 𝑖 = 1, ⋯ , 𝑁} are i i d , applying Proposition 1 with the finite variance assumption (Var[𝑦𝑖] < ∞), we 

obtain the result that 𝛾𝑡  
𝑑
→  N(0, 𝑛0𝜎0

2 + 𝑛1𝜎1
2)  as 𝑁 → ∞ , where 𝜎𝑎

2 = Var(𝑦𝑖| 𝑑𝑖 = 𝑎) , and 𝑛𝑎  is the 

proportion of observations in the population for which 𝑑𝑖 = 𝑎 . In addition, when {𝑦𝑖| 𝑖 = 1, ⋯ , 𝑁}  are 

independent and not identically distributed (i n i d), by applying Proposition A1 with the additional 

assumption that lim
𝑁→∞

∑ E|𝑦𝑖|2+𝛿𝑁
𝑖=1 /(∑ Var(𝑦𝑖)𝑁

𝑖=1 )
1+𝛿/2

= 0 , we have 𝛾𝑡  
𝑑
→  N(0, 𝑛0𝜎0

2 + 𝑛1𝜎1
2)  as 𝑁 →

∞, where 𝜎𝑎
2 = lim

𝑁→∞
𝑁𝑎

−1 ∑ Var(𝑦𝑖)𝑦𝑖∈ 𝒴𝑎
 for 𝑎 ∈ {0,1}.  

The last expression in Eq. (A-6) implies that when 𝑦̃𝑡 > 𝛾𝑡 , since 𝑦̅𝑁,1 > 0 > 𝑦̅𝑁,0 , we have 

(𝑚1,𝑡 − 𝑛𝑁,1) > 0, which means that more observations are taken from 𝒴1 = {𝑦𝑖  | 𝑖 = 1, ⋯ , 𝑁 & 𝑑𝑖 = 1} at 

the 𝑡-th resampling stage than those in the sample, and therefore 𝑑̃𝑡 > 0. On the other hand, when 𝑦̃𝑡 ≤ 𝛾𝑡, 

we have (𝑚1,𝑡 − 𝑛𝑁,1) ≤ 0 and 𝑑̃𝑡 ≤ 0. Therefore, the introduction of a threshold variable 𝛾𝑡 yields Eq. (4). 
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Tables & Figures 

 

Table 1. Model description 

A) Model 1: Linear regression model 

Dependent variable: 𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑧𝑖 + 𝜀𝑖 

Regressors: 𝑥𝑖 , 𝑧𝑖~χ2(16)/8 

Parameters: 𝛽0 = 0 and 𝛽1 = 𝛽2 = 1 

Error: 

(a) Standard normal: 𝜀𝑖~N(0, 1) 

(b) Normal mixture (left skewed, leptokurtic): 

𝜀𝑖~0.6N(−0.3, 1.225) + 0.4N(0.45, 0.325)  

(c) Normal with heteroscedasticity: 

𝜀𝑖~N (0,
(𝛽1𝑥𝑖+𝛽2𝑧𝑖)𝟐

E[(𝛽1𝑥𝑖+𝛽2𝑧𝑖)𝟐]
)  

(d) Student’s 𝑡: 𝜀𝑖~T(2) 

B) Model 2: Binary choice model 

Dependent variable: 𝑑𝑖 = 1[𝑦𝑖 > 0] = 1[𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑧𝑖 + 𝜀𝑖 > 0] 
Regressors: 

𝑥𝑖 , 𝑧𝑖  ~ {

(i)-(vi)      χ2(𝑎)/2√𝑎                   
(vii)           N(3, 0.5)                        

(vii)-(xi)  Beta(𝑏, 𝑏) × √4𝑏 + 2

, 

where 𝑎 ∈ {3,4,6,8,12,24} and𝑏 ∈ {4.5,1.5,0.5,10−10} 

Parameters: 𝛽0 = −Med(𝛽1𝑥𝑖 + 𝛽2𝑧𝑖) and 𝛽1 = 𝛽2 = 1 

Error: Same as Model 1 (See Panel A above) 

C) Model 3: Binary choice model with perfect prediction problem 

Dependent variable: 𝑑𝑖 = 1[𝑦𝑖 > 0] = 1[𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑧𝑖 + 𝜀𝑖 > 0] 
Regressors: 

𝑥𝑖 = 1[𝑎𝑖 > 1/2] and 𝑧𝑖 ~ N(0,0.2), 

where 𝑎𝑖  ~ Uniform(0,1) 

Parameters: 

𝛽0 = 0, 𝛽2 = 1, and 

𝛽1 = {
(i) nearly perfect prediction: Φ−1(0.99) ≈ 2.326               
(ii) fully perfect prediction: |Min(𝛽0 + 𝛽2𝑧𝑖 + 𝜀𝑖)| + 0.01

  

Error: Normal: 𝜀𝑖~N(0,0.8) 
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Table 2. Simulation results for Model 1 (linear regression model) 

 (1)  (2)  (3)  (4) 

Error design: (a) Standard normal  
(b) Normal mixture 

(left skewed, 

leptokurtic) 

 
(c) Normal with 

heteroscedastic 

variance 

 (d) Student’s 𝑡 

Estimator Bias RMSE  Bias RMSE  Bias RMSE  Bias RMSE 

RBML (𝑀 = 100,000, 
𝑇 = 1,000) 

𝛽1 −0.0035 0.0770  −0.0033 0.0794  −0.0008 0.0838  −0.0214 0.2967 

𝛽2 −0.0019 0.0780  −0.0045 0.0825  −0.0059 0.0849  −0.0150 0.3144 

RBML (𝑀 = 100,000, 
𝑇 = 10,000) 

𝛽1 −0.0026 0.0657  −0.0030 0.0664  −0.0035 0.0720  −0.0317 0.2310 

𝛽2 −0.0021 0.0678  −0.0044 0.0704  −0.0035 0.0764  −0.0037 0.2408 

RBML (𝑀 = 𝑇 =
100,000) 

𝛽1 −0.0026 0.0642  −0.0033 0.0643  −0.0033 0.0707  −0.0295 0.2219 

𝛽2 −0.0017 0.0658  −0.0034 0.0684  −0.0015 0.0756  −0.0018 0.2349 

OLS 
𝛽1 −0.0025 0.0642  −0.0031 0.0639  −0.0030 0.0705  −0.0288 0.2218 

𝛽2 −0.0018 0.0659  −0.0035 0.0682  −0.0016 0.0754  −0.0019 0.2344 

Notes: “RMSE” stands for the root mean square error and “RBML” is the resampling-based ML proposed in this paper. 

Source: Author’s estimates using simulated data. 
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(A) Error design (a): Normal distribution 

 

(B) Error design (b): Normal mixture 

 

(C) Error design (c): Normal with heteroscedasticity 

 

(D) Error design (d): Student’s 𝑡 distribution 

 

Figure 1. Simulation results for Model 2 (binary choice model) 

Notes: The thick lines represent the root mean square errors (RMSEs), and the thin lines represent the biases. 

“RBML” is the resampling-based ML proposed in this study, “Kernel ML” is Klein and Spady’s (1993) 

Nadaraya–Watson kernel ML, “sieve ML” is Gallant and Nychka’s (1987) Hermite polynomial sieve ML, and 

“SLS” is Ichimura’s (1993) semiparametric least squares. 

Source: Author’s estimates using simulated data.  
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(A) Nearly perfect prediction 

 

(B) Fully perfect prediction 

 

Figure 2. Simulation results for Model 3 (binary model with perfect prediction problem) 

Notes: The figures show the distributions of the estimation errors. “RBML” is the resampling-based ML 

proposed in this paper, “sieve ML” is Gallant and Nychka’s (1987) Hermite polynomial sieve ML, “Kernel 

ML” is Klein and Spady’s (1993) Nadaraya–Watson kernel ML, and “SLS” is Ichimura’s (1993) 

semiparametric least squares. 

Source: Author’s estimates using simulated data. 
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Online Supplementary Material for  

“Resampling-Based Maximum Likelihood Estimation” 

 

Takahiro Ito 

 

I. Stata program for the RBML estimators 

This supplement describes how to obtain and use the estimation programs for the resampling-based maximum 

likelihood (RBML) estimators. The programs were written for Stata by the author and are available at 

http://www2.kobe-u.ac.jp/~takahiro/stata, using the –net– command, as follows. 

First, in the Stata command line, specify the URL as: 

 

 

Then, the description of the package is obtained: 

 
 Graduate School of International Cooperation Studies, Kobe University, 2–1, Rokkodai-cho, Nada-ku, Kobe 

657-8501, Japan. E-mail: takahiro.ito@lion.kobe-u.ac.jp, Phone: +81-78-803-7148 
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Finally, the program package can be installed as follows: 

 

 

After installing the program, please see the help file for the syntax. The examples in the help file describe 

how to estimate the linear regression, binary choice and ordered response models via the RBML method. 

 

II. The validity of the random threshold (𝛾𝑡) assumption 

In this appendix, the validity of the assumption that 𝛾𝑡 is independent of 𝐱̃𝑡 and 𝜀𝑡̃ is discussed. In the absence 

of this assumption, we must consider the correlation among them. Specifically, we must calculate the conditional 

distribution of the new error component 𝛿𝜏 = (𝛾𝑡 − 𝜀𝑡̃) given 𝐱̃𝑡 when estimating the log-likelihood in Eq. (5): 

𝛿𝜏|𝐱̃𝑡 ~ N(𝐱̃𝑡𝚺𝐱̃𝐱̃
−1𝚺𝐱̃𝛿 , 𝜐2), 

where 𝚺𝐱̃𝐱̃ = E𝑤[𝐱̃𝑡
′ 𝐱̃] , 𝚺𝐱̃𝛿 = E𝑤[𝐱̃𝑡

′ 𝛿𝑡] , and 𝜐2 = 𝜎𝛿
2 − 𝚺𝐱̃𝛿

′ 𝚺𝐱̃𝐱̃
−1𝚺𝐱̃𝛿 . Since 𝐱̃𝑡  and 𝜀𝑡̃  can be decomposed into 



iii 

two parts, similar to Eq. (B-1), we have 

𝐱̃𝑡 = 𝛄𝐱,𝑡 + √𝑀′(𝑚1,𝑡 − 𝑛1)(𝐱̅1 − 𝐱̅0), 

𝜀𝑡̃ = 𝛾𝜀,𝑡 + √𝑀′(𝑚1,𝑡 − 𝑛1)(𝜀1̅ − 𝜀0̅), 

where 𝛄𝐱,𝑡 ~ N(𝟎, 𝑛0𝚺𝑁,0 + 𝑛1𝚺𝑁,1) , 𝚺𝑁,𝑑 = 𝑁𝑑
−1 ∑ (𝐱𝑖,𝑡 − 𝐱̅𝑑)

2
𝑖∈{𝑑}  , 𝑀′ = 𝑁𝑀/(𝑁 − 1) , 𝐱̅𝑑 = 𝑁𝑑

−1 ∑ 𝐱𝑖𝑖∈{𝑑}  , 

γ𝜀,𝑡 ~ N(𝟎, 𝑛0𝜎𝑁,𝜀1
2 + 𝑛1𝜎𝑁,𝜀0

2 ) , 𝜎𝑁,𝜀𝑑
2 = 𝑁𝑑

−1 ∑ (𝜀𝑖,𝑡 − 𝜀𝑑̅)
2

{𝑑}  , and 𝜀𝑑̅ = 𝑁𝑑
−1 ∑ 𝜀𝑖𝑖∈{𝑑}   (for 𝑑 ∈ {0,1} ). Thus, 

𝛿𝑡 is expressed as: 

𝛿𝑡 = 𝛾𝑡 − 𝜀𝑡̃ = (𝛄𝐱,𝑡𝜷 + 𝛾𝜀,𝑡) − 𝜀𝑡̃ 

= 𝛄𝐱,𝑡𝜷 + {𝜀𝑡̃ − √𝑀′(𝑚1,𝑡 − 𝑛1)(𝜀1̅ − 𝜀0̅)} − 𝜀𝑡̃ 

= 𝛄𝐱,𝑡𝜷 − √𝑀′(𝑚1,𝑡 − 𝑛1)(𝜀1̅ − 𝜀0̅). 

Note that 𝑀𝑚1,𝑡 can be regarded as a random number drawn from a binomial distribution Bin(𝑀, 𝑛1), 

which is approximated by N(𝑛1𝑀, 𝑛0𝑛1𝑀)  when 𝑀  (the number of draws in each resampling stage) is 

sufficiently large. Therefore, 

                   𝚺𝐱̃𝛿 = E𝑤[𝐱̃𝑡
′ 𝛿𝑡] = E𝑤 [{𝛄𝐱,𝑡 + √𝑀′(𝑚1,𝑡 − 𝑛1)(𝐱̅1 − 𝐱̅0)}

′
{𝛄𝐱,𝑡𝜷 − √𝑀′(𝑚1,𝑡 − 𝑛1)(𝜀1̅ − 𝜀0̅)}]

= 𝚺𝛄𝛄𝜷 − 𝜉(𝐱̅1 − 𝐱̅0)′(𝜀1̅ − 𝜀0̅), 

where 𝚺𝛄𝛄 = E𝑤[𝛄𝐱,𝑡
′ 𝛄𝐱,𝑡] = 𝑛0𝚺𝑁,0 + 𝑛1𝚺𝑁,1 , and 𝜉 = 𝑁(𝑁 − 1)−1𝑛0𝑛1 . The second equality comes from 

E[√𝑀′(𝑚1,𝑡 − 𝑛1)]
2

= 𝑀′ E[𝑚1,𝑡 − 𝑛1]
2

= 𝑀′ Var[𝑚1,𝑡] = 𝑁(𝑁 − 1)−1𝑛0𝑛1 = 𝜉  and E𝑤[𝛄𝐱,𝑡
T√𝑀′(𝑚1,𝑡 −

𝑛1)] = 0 . Therefore, we have 𝚺𝐱̃𝐱̃
−1𝚺𝐱̃𝛿 = 𝚺𝐱̃𝐱̃

−1𝚺𝛄𝛄𝜷 − 𝜉𝚺𝐱̃𝐱̃
−1(𝐱̅1 − 𝐱̅0)′(𝜀1̅ − 𝜀0̅) , 𝜎𝛿

2 = E𝑤[𝛿𝑡
2] = 𝜷′𝚺𝛄𝛄𝜷 +

𝜉(𝜀1̅ − 𝜀0̅)2, and 

𝜐2 = 𝜎𝛿
2 − 𝚺𝐱̃𝛿

′ 𝚺𝐱̃𝐱̃
−1𝚺𝐱̃𝛿 

= 𝜷′𝚺𝛄𝛄(𝐈𝐾 − 𝚺𝐱̃𝐱̃
−1𝚺𝛄𝛄)𝜷 − 2𝜉𝜷′𝚺𝛄𝛄𝚺𝐱̃𝐱̃

−1(𝐱̅1 − 𝐱̅0)′(𝜀1̅ − 𝜀0̅) 

+𝜉(𝜀1̅ − 𝜀0̅)2{1 + 𝜉(𝐱̅1 − 𝐱̅0)𝚺𝐱̃𝐱̃
−1(𝐱̅1 − 𝐱̅0)′}                (II-1) 

Then, we eventually derive the following log-likelihood function: 

ln 𝐿(𝜽𝜐| 𝐝̃, 𝐗̃) 

= ∑ [1[𝑑̃𝑡 ≤ 0] ln Φ (−
𝐱̃𝑡(𝜷 − 𝚺𝐱̃𝐱̃

−1𝚺𝐱̃𝛿)

𝜐
)

𝑇

𝑡=1

+1[𝑑̃𝑡 > 0] ln Φ (
𝐱̃𝑡(𝜷 − 𝚺𝐱̃𝐱̃

−1𝚺𝐱̃𝛿)

𝜐
)] 

= ∑ [1[𝑑̃𝑡 ≤ 0] ln Φ (−𝐱̃𝑡 {(𝐈𝐾 − 𝚺𝐱̃𝐱̃
−1𝚺𝛄𝛄)𝜽𝜐 + 𝜉𝚺𝐱̃𝐱̃

−1(𝐱̅1 − 𝐱̅0)′
(𝜀1̅ − 𝜀0̅)

𝜐
})

𝑇

𝑡=1

 

+ 1[𝑑̃𝑡 > 0] ln Φ (𝐱̃𝑡 {(𝐈𝐾 − 𝚺𝐱̃𝐱̃
−1𝚺𝛄𝛄)𝜽𝜐 + 𝜉𝚺𝐱̃𝐱̃

−1(𝐱̅1 − 𝐱̅0)′
(𝜀1̅ − 𝜀0̅)

𝜐
})] 

= ∑ [1[𝑑̃𝑡 ≤ 0] ln Φ (−𝜉𝐱̃𝑡𝚺𝐱̃𝐱̃
−1(𝐱̅1 − 𝐱̅0)′ {(𝐱̅1 − 𝐱̅0)𝜽𝜐 +

(𝜀1̅ − 𝜀0̅)

𝜐
})

𝑇

𝑡=1

 

+1[𝑑̃𝑡 > 0] ln Φ (𝜉𝐱̃𝑡𝚺𝐱̃𝐱̃
−1(𝐱̅1 − 𝐱̅0)′ {(𝐱̅1 − 𝐱̅0)𝜽𝜐 +

(𝜀1̅ − 𝜀0̅)

𝜐
})] , 

where 𝜽𝜐 = 𝜷/𝜐 . The third equality comes from (𝐈𝐾 − 𝚺𝐱̃𝐱̃
−1𝚺𝛄𝛄) = 𝚺𝐱̃𝐱̃

−1(𝚺𝐱̃𝐱̃ − 𝚺𝛄𝛄) = 𝜉𝚺𝐱̃𝐱̃
−1(𝐱̅1 − 𝐱̅0)′(𝐱̅1 −

𝐱̅0). Therefore, when estimating the log-likelihood in Eq. (5): 
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ln 𝐿(𝜼 | 𝐝̃, 𝐗̃) = ∑[1[𝑑̃𝑡 ≤ 0] ln Φ(−𝐱̃𝑡𝜼) + 1[𝑑̃𝑡 > 0] ln Φ(𝐱̃𝑡𝜼)]

𝑇

𝑡=1

, 

we have the following relationship between 𝜼 and 𝜽𝜐: 

𝜼 = 𝜉𝚺𝐱̃𝐱̃
−1(𝐱̅1 − 𝐱̅0)′{(𝐱̅1 − 𝐱̅0)𝜽𝜐 + (𝜀1̅ − 𝜀0̅)/𝜐}.      (II-2) 

Note that (𝜀1̅ − 𝜀0̅)/𝜐 in the above equation can be calculated from Eq. (II-1) as: 

𝑒(𝜽) =
(𝜀1̅ − 𝜀0̅)

𝜐
=

𝑏 ± √𝑏2 − 𝑎𝑐

𝑎
, (II-3) 

where 𝑎 = 1 + 𝜉(𝐱̅1 − 𝐱̅0)𝚺𝐱̃𝐱̃
−1(𝐱̅1 − 𝐱̅0)′, 𝑏 = 𝜽′𝚺𝛄𝛄𝚺𝐱̃𝐱̃

−1(𝐱̅1 − 𝐱̅0)′, and 𝑐 = {𝜽′𝚺𝛄𝛄(𝐈𝐾 − 𝚺𝐱̃𝐱̃
−1𝚺𝛄𝛄)𝜽 − 𝟏}/𝜉. 

In summary, if the random threshold assumption is true, the parameter to be estimated is 𝜽𝜏 (= 𝜷/𝜏), 

and it can be determined based on the above log-likelihood with 𝜼 = 𝜽𝜏. On the other hand, if the assumption 

does not hold, the parameter to be estimated is 𝜽𝜐 (= 𝜷/𝜐). Therefore, we need to estimate the parameter based 

on Eq. (II-2). Unfortunately, however, 𝜽𝜐  cannot be identified without an additional assumption because 

Rank[(𝐱̅1 − 𝐱̅0)′(𝐱̅1 − 𝐱̅0)] = 1 (≠ 𝐾) and 𝜉 𝚺𝐱̃𝐱̃
−1 (𝐱̅1 − 𝐱̅0)′(𝐱̅1 − 𝐱̅0) is not invertible. Thus, it is impossible 

to obtain 𝐾 solutions from one independent equation. A natural example of such an assumption to identify 𝜽𝜐 is 

Assumption II-1 below. 

 

Assumption II-1: Proportionality between 𝜼 and 𝜽𝝊 

𝜃𝑘 is proportional to 𝜂𝑘 in the same ratio for all 𝑘 = 1, ⋯ 𝐾: 

𝜌𝜼 = 𝜽𝜐, ∃ 𝜌 ∈ ℝ. 

Then, based on the above assumption, we can solve for 𝜽𝜐  by, for example, the Newton–Raphson 

method as follows. 

 

Iteration with the Newton–Raphson method 

Step 1. Let 𝜌𝑠 be the 𝑠-th value such that 𝜌𝑠𝜼 = 𝜽𝜐,𝑠, where 𝜽𝜐,𝑠 is the 𝑠-th guess of 𝜽𝜐. Compute the 

next guess (𝜌𝑠+1) based on: 

𝜌𝑠+1 = 𝜌𝑠 − 𝐾−1 ∑
𝑔𝑘(𝜌𝑠𝜼)

𝐽𝑘(𝜌𝑠𝜼)

𝐾

𝑘=1

, 

where 𝑔𝑘(𝜌𝑠𝜼)  is the 𝑘 -th row of 𝒈(𝜌𝑠𝜼) = 𝜼 − 𝜉𝚺𝐱̃𝐱̃
−1(𝐱̅1 − 𝐱̅0)′{(𝐱̅1 − 𝐱̅0)𝜌𝑠𝜼 − 𝑒(𝜌𝑠𝜼)}  and 

𝐽𝑘(𝜌𝑠𝜼) is the 𝑘-th row of 𝑱(𝜌𝑠𝜼) = 𝜕𝒈(𝜌𝑠𝜼)/𝜕𝜌𝑠. Note that 𝑒(𝜌𝑠𝜼) is calculated based on Eq. (I-3). 

Step 2. Repeat Step 1 until |𝜌𝑠+1 − 𝜌𝑠| ≤ 𝜖, where 𝜖 is a stopping criterion (𝜖 > 0). 

Finally, I examine the validity of the random threshold assumption using simulated data from one of the 

designs presented in Section 4.1. Table II-1 reports 𝜏  and 𝜐  (and corresponding theoretical values of the 

parameters, i.e., 𝜷/𝜏 and 𝜷/𝜐) in a large sample (𝑁 = 5,000,000) when the regressors are mesokurtic and the 

error is normal (specifically, 𝑑𝑡 = 1[𝛽0 + 𝛽1𝑥𝑡 + 𝛽2𝑧𝑡 + 𝜀𝑡 > 0] , where 𝑥𝑡 , 𝑧𝑡~N(3, 0.5) , 𝜀𝑡~N(0,1) , 𝛽0 =

−Med(𝛽1𝑥𝑡 + 𝛽2𝑧𝑡), and 𝛽1 = 𝛽2 = 1). Recall that 𝜏 is calculated as √𝑛0𝜎𝑁,0
2 + 𝑛1𝜎𝑁,1

2 + 𝜎𝑁,𝜀
2 , which is the 
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standard deviation of the error component (𝛿𝑡 = 𝛾𝑡 − 𝜀𝑡) when the random threshold assumption is true (i.e., 𝛾𝑡 

is independent of 𝐱̃𝑡𝜷 and 𝜀𝑡̃), and 𝜐 = √𝜎𝛿
2 − 𝚺𝐱̃𝛿

′ 𝚺𝐱̃𝐱̃
−1𝚺𝐱̃𝛿 when the assumption is not true (i.e., 𝛾𝑡 is dependent 

on 𝐱̃𝑡𝜷 and 𝜀𝑡̃). 

Columns 1 and 4 in the table report the theoretical values of 𝜏 and 𝜐 in this simulation, showing that 𝜏 

is, as expected, larger than 𝜐: 1.318 for the former and 0.477 for the latter. Consequently, 𝜃𝑘
𝜏 (= 𝛽𝑘/𝜏) should be 

larger than 𝜃𝑘
𝜐 (= 𝛽𝑘/𝜐). However, Columns 3 and 6, which report the average of the estimates with and without 

the random threshold assumption (500 trials with a sample size of 500), respectively, show that the average of 

𝜃𝑘
𝜐  estimated by the above procedure is smaller than that of 𝜃𝑘

𝜏  estimated in the Monte Carlo simulation in 

Section 4. Additionally, 𝜌̂ is, on average, 0.595 (the stopping criterion 𝜖 was set to 10−5, resulting in an average 

Euclidean norm of 𝒈(𝜌𝜼) of 0.0048). Importantly, while 𝜃𝑘
𝜐 differs significantly from its theoretical value, 𝜃𝑘

𝜏 is 

close to its theoretical value, implying that the random threshold assumption holds. Also note that 𝜃𝑘
𝜏 is 9.4% 

smaller than 𝜃𝑘
𝜏, a small but nonnegligible difference. This may be due to the presence of positive or negative 

errors present in each trial due to the small sample size (𝑁 = 500). Since 𝜏 is the standard deviation (of 𝛿𝑡) 

calculated as 𝜏 = √𝜏2, both types of errors may result in an increase in 𝜏, while their effects on 𝛽 are averaged 

out. 

 

Table II-1. Simulation results for 𝜏 and 𝜐 

 (1) (2) (3)  (4) (5) (6) (7) 

 With the random threshold assumption  Without the random threshold assumption 

Model: 

𝑑𝑡 = 1[−6 + 𝑥𝑡 + 𝑧𝑡 + 𝜀𝑡 > 0] , 

where 𝑥𝑡, 𝑧𝑡 ~ N(3, 0.5) , and 

𝜀𝑡~N(0,1) 

Theoretical value (𝑁 =
10,000,000) 

Ave. of estimates 

(500 trials with 

𝑁 = 500) 

 
Theoretical value 

(𝑁 = 10,000,000) 

Ave. of estimates 

(500 trials with 

𝑁 = 500) 

𝜏 
𝜃𝑘

𝜏 
(= 1/𝜏) 

𝜃𝑘
𝜏  𝜐 

𝜃𝑘
𝜐 

(= 1/𝜏) 
𝜃𝑘

𝜐 (𝜌̂) 

1.318 0.759 0.688  0.447 2.236 0.410 (0.595) 

Source: Author’s estimation using simulated data. 

 

III. The asymptotic efficiency for the binary choice model 

For the binary choice model in Section 3.2, the limit variance matrix of √𝑁(𝜽̂RB − 𝜽0), where 𝜽 = 𝜷/𝜏, is 

−E[∇𝜃𝜃 ln 𝑓(𝑧̃𝑡| 𝜃0)]−1 = lim
𝑁→∞

(
∑ 𝐺(𝐱̃𝑡𝜽0)𝐱̃𝑡

′ 𝐱̃𝑡
𝑇
𝑡

𝑇
)

−1

 

 = lim
𝑁→∞

(
∑ 𝐺(𝐱̃𝑡𝜽0)𝑇

𝑡

𝑇

∑ 𝐺(𝐱̃𝑡𝜽0)𝐱̃𝑡
′ 𝐱̃𝑡

𝑇
𝑡

∑ 𝐺(𝐱̃𝑡𝜽0)𝑇
𝑡

)

−1

= lim
𝑁→∞

(𝜇𝐺̃ ⋅ 𝚺𝐱̃
𝑤)−1, 

where 𝐺(𝐱̃𝜽0) = 𝜙2(𝐱̃𝜽0)[Φ(𝐱̃𝜽0){1 − Φ(𝐱̃𝜽0)}]−1 , 𝜇𝐺̃ = 𝑇−1 ∑ 𝐺(𝐱̃𝑡𝜽0)𝑇
𝑡  , and 𝚺𝐱̃

𝑤 =

{∑ 𝐺(𝐱̃𝑡𝜽0)𝑇
𝑡 }−1 ∑ 𝐺(𝐱̃𝑡𝜽0)𝐱̃𝑡

′ 𝐱̃𝑡
𝑇
𝑡 . Again, note that 𝑇 = 𝑇′ + 𝑁 and 𝑇 → ∞ when 𝑁 → ∞. Therefore, when 𝑁 

is large, the variance of the RBML estimator is approximated by (𝑁 ⋅ 𝜇𝐺̃ ⋅ 𝚺𝐱̃
𝑤)−1. 
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Meanwhile, the Cramér–Rao lower bound for the binary choice model in Eq. (3) with the normality 

assumption is 

{∑ 𝐺(𝐰𝑖)(1 𝐱𝑖)′(1 𝐱𝑖)

𝑁

𝑖

}

−1

, 

where 𝐺(𝐰𝑖) = 𝜙2(𝐰𝑖)[Φ(𝐰𝑖){1 − Φ(𝐰𝑖)}]−1  and 𝐰𝑖 = 𝛼0 + 𝐱𝑖𝜷0 . Then, when 𝑁  is large, the variance of 

the probit ML estimator (𝜷̂P) is approximated by 

[∑ 𝐺(𝐰𝑖)𝐱𝑖
′𝐱𝑖

𝑁

𝑖

−
∑ 𝐺(𝐰𝑖)𝐱𝑖

′𝑁
𝑖 ∑ 𝐺(𝐰𝑖)𝐱𝑖

𝑁
𝑖

∑ 𝐺(𝐰𝑖)
𝑁
𝑖

]

−1

 

= [∑ 𝐺(𝐰𝑖)

𝑁

𝑖

⋅ {
∑ 𝐺(𝐰𝑖)𝐱𝑖

′𝐱𝑖
𝑁
𝑖

∑ 𝐺(𝐰𝑖)𝑁
𝑖

−
∑ 𝐺(𝐰𝑖)𝐱𝑖

′𝑁
𝑖

∑ 𝐺(𝐰𝑖)𝑁
𝑖

⋅
∑ 𝐺(𝐰𝑖)𝐱𝑖

𝑁
𝑖

∑ 𝐺(𝐰𝑖)𝑁
𝑖

}]

−1

 

= [∑ 𝐺(𝐰𝑖)

𝑁

𝑖

⋅
∑ [𝐺(𝐰𝑖){𝐱𝑖

′𝐱𝑖 − (𝛍𝐱
𝑤)′𝛍𝐱

𝑤}]𝑁
𝑖

∑ 𝐺(𝐰𝑖)𝑁
𝑖

]

−1

= (𝑁 ⋅ 𝜇𝐺 ⋅ 𝚺𝐱
𝑤)−1, 

where 𝛍𝐱
𝑤 = {∑ 𝐺(𝐰𝑖)

𝑁
𝑖 }−1 ∑ 𝐺(𝐰𝑖)𝐱𝑖

𝑁
𝑖  , 𝜇𝐺 = 𝑁−1 ∑ 𝐺(𝐰𝑖)𝑁

𝑖  , and 𝚺𝐱
𝑤 = {∑ 𝐺(𝐰𝑖)

𝑁
𝑖 }−1  ∑ [𝐺(𝐰𝑖){𝐱𝑖

′𝐱𝑖 −𝑁
𝑖

(𝛍𝐱
𝑤)′𝛍𝐱

𝑤}]. Therefore, when the “average weight” (𝜇) and “weighted variance” (𝚺𝑤) components are equivalent 

between the RBML and probit estimators (i.e., 𝜇𝐺̃ = 𝜇𝐺 and 𝚺𝐱̃
𝑤 = 𝚺𝐱

𝑤), the RBML estimator appears to attain 

the Cramér–Rao lower bound for the binary choice model. However, this is not true because the parameters to 

be estimated in the RBML estimation are different from those in the probit estimation (i.e., 𝜃0 = 𝛽0/𝜏0 ≠ 𝛽0/𝜎0). 

Therefore, it is meaningless to compare their variance–covariance estimators directly. Then, focusing on the 

scale-normalized parameter, I conduct numerical simulations to compare the asymptotic variance and discuss 

the asymptotic efficiency of the RBML estimator for the binary choice model. 

The model considered here is expressed as follows: 

𝑑𝑖 = 1[𝑦𝑖 > 0] = 1[𝛼0 + 𝛽0𝑥𝑖 + 𝛾0𝑧𝑖 + 𝜀𝑖 > 0] = 1[𝛼0 + 𝐱𝑖𝜷𝟎 + 𝜀𝑖 > 0], 

where 𝛼0 = −Median(𝐱𝑖𝜷𝟎) , 𝛽0 = 𝛾0 = 1 , 𝜀𝑖|𝐱𝑖~ N (0, 𝜎0
2) , and 𝜎0

2 = 1 . For the regressors, because the 

variance estimator depends on the data distribution (i.e., the mean, variance, skewness, kurtosis, and other 

characteristics of 𝐱𝑖𝜷𝟎) and the error distribution, I consider eight different cases: 𝑥𝑖 , 𝑧𝑖  ~
𝑖.𝑖.𝑑.

 (a) χ2(𝑘)/2√𝑘 (𝑘 ∈

{1, 2, 4, 8, 16}, (b) N(0,0.5), and (c) Beta(𝑘, 𝑘) × √4𝑘 + 2 (𝑘 ∈ {2.5, 0.5, 10−10}). Note that 𝐱𝜷𝟎 is designed to 

have unit variance and zero skewness in all cases for the sake of simplicity. Since the probit estimate is 𝜷̂P =

𝜷0/𝜎0̂ and the RBML estimate is 𝜷̂RB = 𝜷0/𝜏0̂, I compare the asymptotic variance of the scale-normalized 

estimate for 𝛽𝑚, that is, 𝜁𝑚 = 𝛽̂𝑚 × 2 × |𝛽̂𝑚 + 𝛾̂𝑚|
−1

 (𝑚 = PR, RB). Then, the delta method implies that the 

variance of the normalized parameter estimate is Var(𝜁𝑚) =
𝜂𝑚

2

4
{Var(𝛽̂𝑚) + Var(𝛾̂𝑚)}, where 𝜂P

2 = 𝜎0
2 = 1 and 

𝜂RB
2 = 𝜏0

2. 
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Table III-1 reports the simulation results for the variance of the probit and RBML estimators in large 

samples. The results indicate that the variance of the probit estimator varies according to the data distribution 

through the average weight (𝜇𝐺) and weighted variance (Σ𝑤). As shown in the table, as the kurtosis of 𝐱𝑖𝜷0 

increases, 𝜇𝐺  increases and Σ𝑤  decreases. Regarding 𝜇𝐺 , 𝐺(𝐰𝑖) = 𝜙2(𝐰𝑖)[Φ(𝐰𝑖){1 − Φ(𝐰𝑖)}]−1  becomes 

large as 𝐰𝑖 (= 𝛼0 + 𝐱𝑖𝜷0) approaches zero. In this simulation, when the kurtosis is large, the distribution of 𝐰𝑖 

is concentrated around zero; therefore, 𝜇𝐺 increases as the kurtosis of 𝐱𝑖𝜷0 increases. Conversely, Σ𝑤 decreases 

when the distribution becomes sharper. The asymptotic variance of the probit estimator increases primarily due 

to the latter effect. (It is also worth noting that the effect of skewness is very limited, although not examined in 

this appendix. As described above, 𝐱𝑖𝜷0 is adjusted to have zero skewness, but even if I allow the skewness of 

𝐱𝑖𝜷0 to vary, the results remain unchanged.) 

In contrast, the asymptotic variance of the RBML estimator is stable across the regressor distributions. 

Surprisingly, when the kurtosis of 𝐱𝑖𝜷0 is six, the RBML estimator outperforms the probit estimator in terms of 

the variance of the scale-normalized parameter. Although a kurtosis of six seems unlikely in reality, it is important 

that when comparing the scale-normalized estimates, a case exists in which a semiparametric estimator with no 

distributional assumption can be comparable to the probit estimator in terms of efficiency when the probit is the 

correct model. The Monte Carlo simulations in Section 4 compare the small sample performance of the probit 

and RBML estimators for a binary choice model when the error is normal or nonnormal. 
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Table III-1. Comparison of asymptotic variance for the scale-normalized parameter: RBML versus probit 

Model: 𝑑𝑖 = 1(𝛼0 + 𝐱𝑖𝜷0 + 𝜀𝑖 > 0)  Probit  RBML  
Variance for the normalized 

parameter, 𝑁 ⋅ Var(𝜁) 

(𝑁 = 10,000,000) 

Distribution of 𝑥𝑖 , 𝑧𝑖 
Kurtosis 

of 𝐱𝑖𝜷0 
 𝜇𝐺 Σ𝑥

𝑤 −H𝑥  𝜏0 𝜇𝐺̃ Σ𝑥̃
𝑤 −H𝑥̃  Probit RBML 

Relative 

efficiency 

χ2(1)/2 (kurtosis = 12.00) 6.000  0.522 0.228 0.119  1.354 0.537 0.426 0.229  4.203 4.005 1.024 

χ2(2)/2√2 (kurtosis = 6.000) 3.000  0.506 0.285 0.144  1.338 0.535 0.425 0.227  3.462 3.937 0.938 

χ2(4)/4 (kurtosis = 3.000) 1.500  0.495 0.329 0.163  1.327 0.533 0.424 0.226  3.071 3.893 0.888 

χ2(8)/4√2 (kurtosis = 1.500) 0.750  0.488 0.357 0.174  1.321 0.533 0.424 0.226  2.869 3.867 0.861 

χ2(16)/8 (kurtosis = 0.750) 0.375  0.485 0.373 0.181  1.318 0.532 0.423 0.225  2.767 3.853 0.847 

N(0, 0.5)  (kurtosis = 0,000) 0.000  0.481 0.390 0.188  1.318 0.532 0.423 0.225  2.665 3.852 0.832 

Beta(2.5, 2.5) ⋅ 2√3  

(kurtosis = −0.750) 
−0.375  0.476 0.424 0.202  1.310 0.531 0.423 0.225  2.479 3.827 0.805 

Beta(0.5, 0.5) ⋅ 2  

(kurtosis = −1.500) 
−0.750  0.471 0.468 0.220  1.306 0.531 0.423 0.224  2.272 3.806 0.773 

Beta(10−10, 10−10) ⋅ √2  

(kurtosis = −2.000) 
−1.000  0.467 0.500 0.233  1.303 0.530 0.422 0.224  2.141 3.770 0.754 

Notes: 𝛼0 is set to the negative median value of 𝐱𝑖𝜷0 (= 𝛽0𝑥𝑖 + 𝛾0𝑧𝑖) so that Pr(𝑑𝑖 = 1) = 0.5, 𝑥𝑖 and 𝑧𝑖 are adjusted to have variance of 0.5, 𝛽0 = 𝛾0 =

1, and 𝜀𝑖~N(0,1). In addition, when 𝑥𝑖 and 𝑧𝑖 are from the chi-square distribution, 𝑧𝑖 is multiplied by −1 (negative of chi-square random variable) so that 

𝐱𝑖𝜷0 has zero skewness. Therefore, for all regressor distributions, the skewness of 𝐱𝑖𝜷0 is zero. The scale-normalized parameter is defined as 𝜁𝑚 =

𝛽̂𝑚 × (𝛽0 + 𝛾0) |𝛽̂𝑚 + 𝛾̂𝑚|⁄  (𝑚 = PR, RB), whose variance is calculated based on the delta method. The relative efficiency is calculated as the ratio of the 

standard errors, √Var(𝜁PR)/ Var(𝜁RB). 

Source: Author’s estimates using simulated data. 
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IV. Data and estimation results in the simulation analysis 

This section provides supplementary information regarding the Monte Carlo simulation study (Section 4). Table 

IV-1 shows summary statistics of the simulated data used in a trial in the simulations for the linear regression 

model (Panel A), binary choice model (Panel B), and binary choice model with a perfect prediction problem 

(Panel C). Table IV-2 presents selected simulation results for the binary choice model with different regressors’ 

kurtoses and error designs. These tables also include summary statistics and results for the case where the error 

design is a right-skewed platykurtic normal mixture (referred to as error design (b’)). In addition, the estimation 

results for all regressor designs when the error distribution is this design (b’) are shown in Figure IV-1. 
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Table IV-1. Summary statistics of simulated data in a trial 

Variable Obs. Mean Std. Dev. Min Max 

A) Variables for linear regression model 

𝑥𝑖~χ2(16)/8  500 2.010 0.696 0.535 4.244 

𝑧𝑖~χ2(16)/8  500 1.967 0.654 0.541 4.162 

𝜀𝑖       

(a) Standard normal 500 0.015 0.954 −2.378 2.615 

(b) Normal mixture (left skewed, leptokurtic) 500 −0.007 0.968 −2.932 2.595 

(b’) Normal mixture (right skewed, platykurtic) 500 −0.012 0.995 −2.104 2.729 

(c) Normal with heteroscedastic variance 500 0.015 0.960 −3.306 3.283 

(d) Student’s 𝑡 500 0.054 1.865 −7.483 10.520 

𝑦𝑖 (= 𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑧𝑖 + 𝜀𝑖, where 𝛽0 = 0 and 𝛽1 = 𝛽2 = 1) 

(a) Standard normal 500 3.993 1.368 0.562 8.204 

(b) Normal mixture (left skewed, leptokurtic) 500 3.970 1.373 0.008 8.071 

(b’) Normal mixture (right skewed, platykurtic) 500 3.965 1.380 0.786 8.349 

(c) Normal with heteroscedastic variance 500 3.992 1.369 1.244 9.158 

(d) Student’s 𝑡 500 4.031 2.132 −4.543 14.616 

B) Variables for binary choice model 

𝑥𝑖~Beta(4.5,4.5) ⋅ 2√5  500 2.209 0.681 0.448 4.006 

𝑧𝑖~Beta(4.5,4.5) ⋅ 2√5  500 2.251 0.695 0.239 3.945 

𝜀𝑖       

(a) Standard normal 500 −0.014 1.067 −3.378 2.615 

(b) Normal mixture (left skewed, leptokurtic) 500 0.011 1.049 −3.932 2.595 

(b’) Normal mixture (right skewed, platykurtic) 500 0.035 1.038 −2.692 3.388 

(c) Normal with heteroscedastic variance 500 0.001 1.075 −4.306 3.283 

(d) Student’s 𝑡 500 −0.015 3.028 −32.560 35.494 

𝑑𝑖 (= 1[𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑧𝑖 + 𝜀𝑖 > 0], where 𝛽0 = 0 and 𝛽1 = 𝛽2 = 1)) 

(a) Standard normal 500 0.494 
   

(b) Normal mixture (left skewed, leptokurtic) 500 0.506 
   

(b’) Normal mixture (right skewed, platykurtic) 500 0.480 
   

(c) Normal with heteroscedastic variance 500 0.474 
   

(d) Student’s 𝑡 500 0.498 
   

C) Variables for binary choice model with perfect prediction (PP) problem 

𝑥𝑖 (binary variable) 500 0.516 
   

𝑧𝑖 (normal random variable, N(0, 0.2)) 500 −0.020 0.465 −1.509 1.295 

𝑢𝑖 (normal random variable, N(0, 0.8)) 500 0.042 0.944 −2.914 2.944 

𝑑𝑖 (= 1[𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑧𝑖 + 𝜀𝑖 > 0]), where 𝛽0 = 0, and 𝛽2 = 1 

(i) Nearly PP, 𝛽1 = Φ−1(0.99) 500 0.790    

(ii) Fully PP, 𝛽1 = |Min(𝛽2𝑧𝑖 + 𝜀𝑖)| + 0.01 500 0.798    

Source: Author’s calculations using simulated data.
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Table IV-2. Selected simulation results for the binary choice model 

 (1)  (2)  (3)  (4)  (5) 

Error design: 
(a) Standard 

normal 

 
(b) Normal mixture 

(left skewed, 

leptokurtic) 

 

(b’) Normal 

mixture (right 

skewed, 

platykurtic) 

 

(c) Normal with 

heteroscedasticity 

 (d) Student’s 𝑡 

Estimator Bias RMSE  Bias RMSE  Bias RMSE  Bias RMSE  Bias RMSE 

A) The kurtosis of 𝑥𝑖 and 𝑧𝑖 is 2 (that of 𝐱𝑖𝜷 is 1) 

RBML (𝑀 = 𝑇 = 100,000) 0.0010 0.0655  −0.0016 0.0628  −0.0038 0.0622  0.0021 0.0690  0.0036 0.0828 

Probit 0.0000 0.0702  −0.0018 0.0669  −0.0044 0.0666  0.0020 0.0743  0.0030 0.0901 

Sieve ML (Gallant & Nychka, 1987) 0.0002 0.0727  −0.0008 0.0693  −0.0044 0.0643  0.0039 0.0701  0.0046 0.0928 

Kernel ML (Klein & Spady, 1993) −0.0051 0.0848  0.0027 0.0877  −0.0040 0.0753  0.0040 0.0995  −0.0004 0.1129 

SLS (Ichimura, 1993) 0.0035 0.0908  0.0008 0.0892  −0.0010 0.0828  0.0056 0.0838  0.0066 0.1065 

B) The kurtosis of 𝑥𝑖 and 𝑧𝑖 is 1 (that of 𝐱𝑖𝜷 is 0.5) 

RBML (𝑀 = 𝑇 = 100,000) 0.0008 0.0650  0.0017 0.0670  −0.0022 0.0698  0.0007 0.0662  0.0011 0.0828 

Probit 0.0012 0.0683  0.0027 0.0713  −0.0019 0.0725  0.0014 0.0692  0.0013 0.0876 

Sieve ML (Gallant & Nychka, 1987) 0.0008 0.0695  0.0036 0.0721  −0.0027 0.0704  0.0021 0.0687  −0.0001 0.0895 

Kernel ML (Klein & Spady, 1993) 0.0019 0.0807  0.0049 0.0835  −0.0046 0.0774  0.0025 0.0852  0.0042 0.1072 

SLS (Ichimura, 1993) 0.0053 0.0822  0.0042 0.0822  −0.0025 0.0807  0.0041 0.0811  0.0023 0.1011 

C) The kurtosis of 𝑥𝑖 and 𝑧𝑖 is 0 (that of 𝐱𝑖𝜷 is also 0) 

RBML (𝑀 = 𝑇 = 100,000) −0.0021 0.0637  −0.0035 0.0656  −0.0009 0.0691  −0.0025 0.0647  −0.0005 0.0813 

Probit −0.0023 0.0629  −0.0026 0.0644  0.0004 0.0674  −0.0015 0.0639  −0.0003 0.0819 

Sieve ML (Gallant & Nychka, 1987) −0.0029 0.0632  −0.0038 0.0648  −0.0009 0.0673  −0.0022 0.0632  −0.0003 0.0821 

Kernel ML (Klein & Spady, 1993) −0.0043 0.0711  −0.0044 0.0727  0.0007 0.0772  −0.0037 0.0716  −0.0026 0.0959 

SLS (Ichimura, 1993) 0.0000 0.0778  0.0013 0.0777  0.0013 0.0805  0.0007 0.0753  −0.0010 0.0973 

D) the kurtosis of 𝑥𝑖 and 𝑧𝑖 is −1 (that of 𝐱𝑖𝜷 is −0.5) 

RBML (𝑀 = 𝑇 = 100,000) 0.0011 0.0727  0.0006 0.0704  −0.0018 0.0748  0.0012 0.0696  −0.0013 0.0894 

Probit 0.0005 0.0641  −0.0003 0.0627  −0.0019 0.0669  0.0004 0.0617  0.0010 0.0838 

Sieve ML (Gallant & Nychka, 1987) 0.0004 0.0641  −0.0005 0.0626  −0.0022 0.0656  0.0009 0.0584  −0.0008 0.0831 

Kernel ML (Klein & Spady, 1993)  0.0010 0.0731  0.0015 0.0693  −0.0004 0.0755  0.0015 0.0608  0.0020 0.0926 

SLS (Ichimura, 1993) 0.0021 0.0759  0.0051 0.0728  0.0017 0.0779  0.0020 0.0663  0.0027 0.0956 

Source: Author’s estimates using simulated data.



xii 

 

Figure IV-1: Simulation results for the binary model when the error distribution is a normal mixture (right 

skewed and platykurtic) 

Notes: The thick lines represent the root mean square errors (RMSEs), and the thin lines represent the biases. 

“RBML” is the resampling-based ML proposed in this paper, “Kernel ML” is Klein and Spady’s (1993) 

Nadaraya–Watson kernel ML, “sieve ML” is Gallant and Nychka’s (1987) Hermite polynomial sieve ML, and 

“SLS” is Ichimura’s (1993) SLS. 

Source: Author’s estimates using simulated data. 
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