TAXONOMIC REVISION OF THE AGARACEAE WITH A DESCRIPTION OF NEOAGARUM GEN. NOV. AND REINSTATEMENT OF THALASSIOPHYLLUM

Hiroshi Kawai, Takeaki Hanyuda, Xu Gao, Makoto Terauchi
Kobe University Research Center for Inland Seas, 1-1 Rokkodai, Kobe 657-8501, Japan

Masahiko Miyata
Natural History Museum & Institute, Chiba 955-2 Aobacho, Chiba 260-8662, Japan

Sandra C. Lindstrom
Department of Botany & Beaty Biodiversity Museum, University of British Columbia, #3529-6270 University Blvd., Vancouver, BC, Canada V6T 1Z4

Nina G. Klochkova
Kamchatka State Technical University, Klyuchevskaya Str. –3, 683003 Petropavlovsk-Kamchatsky, Russia

and Kathy Ann Miller
Silva Center for Phycological Documentation, University Herbarium, University of California, 1001 Valley Life Sciences Building #2465, Berkeley, California 94720, USA

We confirmed the monophyly of the Agaraceae based on phylogenetic analyses of six mitochondrial and six chloroplast gene sequences from Agarum, Costaria, Dictyoneurum, and Thalassiophyllum species, as well as representative species from other laminarialean families. However, the genus Agarum was paraphyletic, comprising two independent clades, A. clathratum/A. turneri and A. fimbriatum/A. oharaense. The latter clade was genetically most closely related to Dictyoneurum spp., and morphologically, the species shared a flattened stipe bearing fimbriae (potential secondary haptera) in the mid- to upper portion. The phylogenetic position of Thalassiophyllum differed between the two datasets: in the chloroplast gene phylogeny, Thalassiophyllum was included in the A. clathratum/A. turneri clade, but in the mitochondrial gene phylogeny, it formed an independent clade at the base of the Agaraceae, the same position it took in the phylogeny when the data from both genomes were combined despite a larger number of bp being contributed by the chloroplast gene sequences. Considering the remarkable morphological differences between Thalassiophyllum and other Agaraceae, and the molecular support, we conclude that Thalassiophyllum should be reinstated as an independent genus. Dictyoneurum reticulatum was morphologically distinguishable from D. californicum due to its midrib, but because of their close genetic relationship, further investigations are needed to clarify species-level taxonomy. In summary, we propose the establishment of a new genus Neoagarum to accommodate A. fimbriatum and A. oharaense and the reinstatement of the genus Thalassiophyllum.

Key index words: Agaraceae; Laminariales; molecular phylogeny; Neoagarum gen. nov.; taxonomy

Traditionally, the order Laminariales has been characterized by a heteromorphic life history alternating between large parenchymatous sporophytes with an intercalary growth zone and filamentous, oogamous gametophytes (Kylin 1916, Sauvageau 1916, Fritsch 1945, Bold and Wynne 1985, Kawai 2014). Genera were traditionally classified into four families: Alariaceae Setchell et Gardner 1925, Chordaceae Dumortier 1822, Laminariaceae Bory 1827, and Lessoniaceae Setchell et Gardner 1925. Later, Kawai and Kurogi (1985) added the Pseudochordaceae. Using a molecular phylogenetic approach with 18S rDNA sequencing, Boo et al. (1999) confirmed the monophyly of derived Laminariales including members of the Laminariaceae, Lessoniaceae, and Alariaceae and suggested that the Pseudochordaceae was sister to the laminarialean lineage that leads, through the Chordaceae, to the derived Laminariales. Kawai and Sasaki (2001) added Akkesiphycaceae Kawai et Sasaki 2001 to the Laminariales on the basis of rbcL gene, 18S, and ITS rDNA sequences and extended the definition of the order to include a taxon with plano-anisogamy (Kawai 1986). Yoon et al. (2001) using rbcL spacer and ITS rDNA sequences showed a strong

1Received 17 May 2016. Accepted 17 November 2016.
2Author for correspondence: e-mail kawai@kobe-u.ac.jp.
Editorial Responsibility: C. Lane (Associate Editor)
monophyly of the genera Agarum, Costaria, Dictyoneurum, and Thalassiophyllum, that Egregia was the sister taxon to the remaining derived Laminariales, and suggested the necessity of systematic revision of the taxa. Lane et al. (2006) reexamined the phylogeny of derived Laminariales using ITS and 26S rDNA, rbcL-rbcS, and nad6 gene sequences and suggested that derived Laminariales consists of three major lineages roughly corresponding to Alariaceae (“Group-1"), a newly proposed Costariaceae C.E.Lane, C.Mayes, Druehl et G.W.Saunders (“Group-2"), and Laminariaceae/Lessoniaceae (“Group-3”). As to the notion of the basalmost position of Egresia, Lane et al. (2006) concluded that this was an artifact of biased taxon sampling. Subsequently, Kawai et al. (2013) described a new family Aureophycaceae H. Kawai & L. M. Ridgway based on the recently described species Aureophyllum aleuticus H.Kawai, T.Hanyuda, M.Lindeberg et S.C.Lindstrom (Kawai et al. 2008). They suggested that Aureophycaceae represents the first diverged lineage in the derived Laminariales on the basis of their multigene molecular phylogeny and the reproductive morphology of A. aleuticus. Thus, at present, the Laminariales consists of three basal families and four derived families. Silberfeld et al. (2014) pointed out that the family Agaraceae Postels and Ruprecht (1840) (as Agarum) of Agarum clade of Laminariales consists of three basal families and four derived families. Silberfeld et al. (2014) pointed out that the family Agaraceae Postels and Ruprecht (1840) (as Agaroideae) has priority over Costariaceae (Lane et al. 2008). They suggested that Aureophycaceae housed in the UC and UBC (The University of British Columbia) herbaria as well as the Phycology Herbarium of the Moss Landing Marine Laboratories were also examined (Appendix S1 in the Supporting Information).

Molecular phylogeny. Genomic DNA was extracted from fresh or silica gel-dried algal tissue of field-collected specimens and unialgal culture strains housed in the Kobe University Macroalgae Culture Collection (KU-MACC; Table S1 in the Supporting Information) using a DNaseasy Plant Mini Kit (Qiagen, Hilden, Germany) or Blood & Cell Culture DNA Mini Kit (Qiagen) following the manufacturer’s instructions. Polymerase chain reaction (PCR) amplifications of the chloroplast atpB, psaA, psaB, psbA, psbC, and rbcL; mitochondrial cox1, cox3, nad2, nad4, nad5, and nad6 protein-coding genes; and nuclear ITS2 rDNA region and 28S rRNA gene were carried out using the KOD FX (Toyobo, Osaka, Japan) PCR enzyme and the TaKaRa PCR Thermal Cycler Dice (Takara Bio, Kusatsu, Japan). Primers used for PCR and/or sequencing are listed in Table S2 in the Supporting Information. After PEG purification (Lis 1980), PCR products were sequenced using the CE DTCS Quick Start Kit (Beckman Coulter, Fullerton, CA, USA) and the CEQ8000 DNA analysis system (Beckman Coulter) according to the manufacturer’s instructions. Sequencing reactions were performed using an ABI PRISM 3730 Genetic Analyzer (Applied Biosystems, Foster City, CA, USA) with the BigDye terminator kit (Perkin Elmer, Foster City, CA, USA) and reamplified products were sequenced by Biochemistry Institute, RIKEN (Wako, Japan) or by service company (Ajinomoto Co. Inc., Kawasaki, Japan) using the KOD FX (Toyobo) or TaKaRa PCR Thermal Cycler Dice (Takara Bio). Molecular phylogenetic analysis was performed using MEGA7 (Kumar et al. 2016) with default parameters. Bootstrap values (0–100) were calculated from 1000 replications.

Materials and Methods

Morphological observations. The gross morphology of sporophytes (i.e., blade shape, presence/absence of a midrib, splitting, and perforations; stipe shape, presence/absence of splitting and hornia or secondary haptera) of representative taxa of Agaraceae (Agarum spp., Costaria costata, Dictyoneurum spp., and Thalassiophyllum clathrus) was examined using field-collected specimens and voucher specimens including the type specimen of A. oharaense (in SAP, the Herbarium of the Graduate School of Science, Hokkaido University) and specimens of D. reticulatum (UC 936291 and UC 1260995 in the University Herbarium, University of California, Berkeley). General collections of Agarum spp. and Dictyoneurum spp. housed in the University Herbarium, University of California, Berkeley).

Molecular phylogeny. Genomic DNA was extracted from fresh or silica gel-dried algal tissue of field-collected specimens and unialgal culture strains housed in the Kobe University Macroalgae Culture Collection (KU-MACC; Table S1 in the Supporting Information) using a DNaseasy Plant Mini Kit (Qiagen, Hilden, Germany) or Blood & Cell Culture DNA Mini Kit (Qiagen) following the manufacturer’s instructions. Polymerase chain reaction (PCR) amplifications of the chloroplast atpB, psaA, psaB, psbA, psbC, and rbcL; mitochondrial cox1, cox3, nad2, nad4, nad5, and nad6 protein-coding genes; and nuclear ITS2 rDNA region and 28S rRNA gene were carried out using the KOD FX (Toyobo, Osaka, Japan) PCR enzyme and the TaKaRa PCR Thermal Cycler Dice (Takara Bio, Kusatsu, Japan). Primers used for PCR and/or sequencing are listed in Table S2 in the Supporting Information. After PEG purification (Lis 1980), PCR products were sequenced using the CE DTCS Quick Start Kit (Beckman Coulter, Fullerton, CA, USA) and the CEQ8000 DNA analysis system (Beckman Coulter) according to the manufacturer’s instructions. Sequencing reactions were performed using an ABI PRISM 3730 Genetic Analyzer (Applied Biosystems, Foster City, CA, USA) with the BigDye terminator kit (Perkin Elmer) and reamplified products were sequenced by Biochemistry Institute, RIKEN (Wako, Japan) or by service company (Ajinomoto Co. Inc., Kawasaki, Japan) using the KOD FX (Toyobo) or TaKaRa PCR Thermal Cycler Dice (Takara Bio). Molecular phylogenetic analysis was performed using MEGA7 (Kumar et al. 2016) with default parameters. Bootstrap values (0–100) were calculated from 1000 replications.
contigs derived from the chloroplast and mitochondrial genomes were detected using BLASTn searches (e-value threshold: E−5) against the NCBI nucleotide database and used for the subsequent sequence analysis.

The molecular phylogenetic analyses used published and newly determined sequence data for the Laminariales (Tables S1 and S3 in the Supporting Information). Alignments were prepared using the program MAFFT v.6 (Katoh and Toh 2008) and then manually adjusted prior to phylogenetic analyses. Numbers of phylogenetically informative sites in the gene sequences were calculated by DIVEIN (Deng et al. 2010). Substitution saturation at the third codon position in the gene sequences was calculated by DAMBE v.6.1.17 (Xia 2013) using default parameters. Molecular phylogenetic trees for three datasets (dataset 1: 27 OTUs, six chloroplast genes, total 8,473 bp; dataset 2: 27 OTUs, six mitochondrial genes, total 6,193 bp; dataset 3: 27 OTUs, combined six mitochondrial genes and six chloroplast genes, total 14,666 bp) were constructed by maximum likelihood (ML) and Bayesian (BI) analysis. Furthermore, for reference, ML trees based on the individual DNA sequences of 12 genes (27 OTUs), the cox3 gene sequences (29 OTUs, 718 bp) including the data of Boo et al. (2011) and the ITS2 rDNA sequences (180TUs, 306 bp; 19 OTUs, 299 bp), and 28S rRNA gene sequences (7 OTUs, 1,733 bp) were constructed. For ML analysis, we used RAxML GUI v.1.31 (Silvestro and Michalak 2012), conducting 10,000 Rapid Bootstrap searches followed by an ML search, with the GTR + G model for each codon position of each organellar gene or for each position of each nuclear region. We compared the ML trees with the GTR + G model based on the first and second codon positions and that based on the third codon position, and the tree topologies were essentially the same (data not shown). Bayesian analysis was run using MrBayes v.3.2.2 (Ronquist et al. 2012), with the GTR + G model for each codon position of each gene. The Bayesian analysis was initiated with a random starting tree, and four chains of Markov chain Monte Carlo iterations were run simultaneously for 10,000,000 or 15,000,000 generations, keeping one tree every 100 generations. The first 25,000 or 37,500 trees sampled were discarded as “burn-in,” based on the stationarity of ln L as assessed using Tracer v.1.6 (Ramault and Drummond 2013). Consensus topology and posterior probability (PP) values were calculated from the remaining trees. Shimodaira–Hasegawa tests (SH test, Shimodaira and Hasegawa 1999) and approximately unbiased tests (AU test; Shimodaira 2002) were performed based on the 12 gene sequences with RAxML and CONSEL (Shimodaira and Hasegawa 2001) to test tree topologies.

RESULTS

Morphological observations. Agarum oharaense (Fig. 1, a and b) and A. fimbriatum (Fig. 1, c and d) shared a flattened stipe and secondary haptera (fimbriae); A. oharaense has a decumbent habit, whereas A. fimbriatum does not. Agarum yakishirense has a flattened stipe and fimbriae in its mid- to basal portion (Fig. 1e). Thalassiothrix clathrata has a peculiar asymmetric developmental pattern: Only one side of the merismatic margin of the young sporophyte continues to develop, forming an inrolled blade that extends to form fan-shaped blades (Fig. 1f). Examination of the gross morphology of Dictyoneurum and Dictyoneuropsis specimens housed in the UC and UBC herbaria showed that Dictyoneurum californicum and D. reticulatum were distinguishable by the presence/absence of a midrib as previously described. D. californicum lacks a midrib and is reticulated throughout the entire thallus (Fig. 1, g–i, k). A large proportion of the specimens housed in UC herbarium had characteristic splitting of the blade into two blades following the formation of a longitudinal slit (Fig. 1, g–i). In contrast, D. reticulatum has a midrib (Fig. 1j) and generally lacks such slits. One of the two specimens labeled as isotypes of D. reticulatum (as Costaria reticulata D.A.Saunders) sent by De Alton Saunders to Setchell had the characteristic morphology of D. reticulatum, with a midrib (UC 936291; Fig. 1j), but the other specimen (UC 1260995; Fig. 1k) lacked a midrib and therefore is morphologically assignable to D. californicum.

Molecular phylogeny based on six mitochondrial genes. The ratio of phylogenetically informative sites in six individual genes ranged from 24.9% (cox1) to 39.7% (nad5) (average, 32.4%) across all 27 OTUs (Table S4 in the Supporting Information). In the ML molecular phylogenetic tree based on the concatenated six mitochondrial genes (cox1, cox3, nad2, nad4, nad5, and nad6; genes; total 6,193 bp; Fig. 2 and Fig S1 in the Supporting Information), the four derived families of the order (i.e., Aureophyceae, Agaraceae, Alariaceae, and Laminariaceae/Lessoniaceae) each formed monophyletic clades supported, respectively, by high bootstrap (MLB)/PP values (87%–98% in ML and 0.99–1.0 in BI). Aureophyceus diverged before the members of the other three families. In contrast, the statistical support for the branching order of the other three families was low (53%–64% in ML).

Members of the family Agaraceae (Agarum, Costaria, Dictyoneurum, and Thalassiothrix) formed monophyletic clades supported by high MLB values. Within the Agaraceae, T. clathrata was sister to the remaining genera, and species in the genus Agarum were separated into two distinct clades supported by full statistical values. Agarum clathratum, the type of the genus, grouped with A. turneri, whereas A. fimbriatum and A. oharaense formed a clade that was sister to D. reticulatum and D. californicum. Costaria costata was sister to the clade containing Dictyoneurum spp., A. oharaense, and A. fimbriatum, although the MLB value was moderate (69%). Phylogenetic relationships within Agaraceae based on the individual mitochondrial genes were similar to those based on concatenated sequences of six mitochondrial genes (Fig S2, g–l in the Supporting Information). The genus Agarum was polyphyletic in five of six trees, and Thalassiothrix was located at the basal position in five of six trees. The sequence divergences among the specimens of D. californicum and D. reticulatum were 0.24%–0.88% in the six mitochondrial genes.

Molecular phylogeny based on six chloroplast genes. The ratios of phylogenetically informative sites in the individual chloroplast genes ranged from 8.7% (rbcL) to 27.4% (psbC; average, 18.5%)
FIG. 1. Sporophyte morphology of selected agaracean species. (a and b) Type of Agarum oharaense. (a) Gross morphology. (b) Secondary haptera (fimbriae) formed in upper part of the flat stipe (arrow). Collected by I. Ohno at Ohara, Chiba, Japan, in May 1932. SAP044797. (c and d) Agarum fimbriatum. (c) Gross morphology. (d) Fimbriae formed in upper part of the flat stipe (arrow). Collected by E. Y. Dawson at Santa Catalina I., CA, USA on December 1, 1948. SAP037255. (e) Type of Agarum yakishirinense Yamada. Flattened stipe has fimbriae (arrow) in its mid- to basal portions. (f) Thalassiophyllum clathrus. Field-collected young sporophyte showing inrolled meristematic margin of the blade (arrow). Collected by H. Kawai on August 6, 2015 at Avacha Bay, Kamchatka, Russia. (g) Habit of Dictyoneurum californicum showing longitudinal slit in the transitional zone (arrow). (h) Lectotype specimen of D. californicum photographed by I. Yamada at Komarov Botanical Institute. Arrow shows longitudinal slit. (i) Herbarium specimen of D. californicum showing longitudinal slits (arrows). UC 990296. Collected by M. A. Howe in July 1892. (j) Isotype of Dictyoneurum reticulatum. Note midrib (arrow). UC 936291. Collected by D.A. Saunders. (k) Specimen of D. californicum (without midrib) originally misidentified as D. reticulatum. UC 1260995. Collected by D.A. Saunders. [Color figure can be viewed at wileyonlinelibrary.com]
across all 27 OTUs (Table S4). Molecular phylogeny based on the six chloroplast genes (\textit{atpB}, \textit{psaA}, \textit{psaB}, \textit{psbA}, \textit{psbC}, and \textit{rbcL}; total 8,473 bp; Fig. 3 and Fig. S5 in the Supporting Information) gave tree topologies similar to those of the six mitochondrial genes (Fig. 2) but differed in the branching order of first diverging taxa and relationships among \textit{A. clathratum}, \textit{A. turneri}, and \textit{T. clathrus}. Within the family Agaraceae, \textit{A. clathratum} formed a clade with \textit{T. clathrus}, and \textit{A. turneri} was sister to the clade of \textit{A. clathratum} and \textit{T. clathrus}. The relationships among \textit{A. fimbriatum}/\textit{A. oharaense}, \textit{D. reticulatum}/\textit{D. californicum}, and \textit{C. costata} were basically the same as with the mitochondrial genes, and \textit{C. costata} was sister to the others although the MLB value was low (58%). Phylogenetic relationships within Agaraceae based on the individual chloroplast genes were similar to those based on concatenated sequences of six chloroplast genes (Fig. S2, a–f). \textit{Thalassiophyllum} formed a clade with \textit{A. clathratum} and/or \textit{A. turneri}. The sequence divergences among the specimens of \textit{D. californicum} and \textit{D. reticulatum} were 0%-0.57% for the six chloroplast genes. The index of the substitution saturation values for the third codon position was significantly smaller than the critical index of substitution saturation values for all genes examined, indicating that the influence of saturation at the third codon position is not significant (data not shown).

\textbf{Molecular phylogeny based on the combined six mitochondrial and six chloroplast genes.} Molecular phylogeny based on combined sequences of the six mitochondrial genes and the six chloroplast genes (Fig. 4 and Fig. S4 and Supporting Information) gave essentially the same tree topology as that of the concatenated six mitochondrial genes alone, and all nodes connecting the genera and species of the Agaraceae were supported by higher MLB values (297%). Especially the MLB value of the node connecting the clade of \textit{Dicyoneurum}/\textit{A. oharaense}/\textit{A. fimbriatum}/\textit{Costaria} with other agaracean members significantly improved from 58(chloroplast)/69 (mitochondria) to 97%. SH and AU tests comparing the tree topologies of figures 3 and 4 rejected the hypothesis that \textit{T. clathrus} forms a clade with \textit{A. clathratum}. B-values were 0.009 (SH test) and 0.007 (AU test).

\textbf{Molecular phylogeny based on mitochondrial cox3 gene.} Molecular phylogeny based on mitochondrial cox3 gene sequences supported the polyphyly of the genus \textit{Agarum} and the basal position of the genus \textit{Thalassiophyllum} within Agaraceae (Fig. S5 in the Supporting Information).

\textbf{Molecular phylogeny based on nuclear ITS2 rDNA and 28S rDNA sequences.} Molecular phylogeny based on the sequence of ITS2 rDNA (Fig. S6 in the Supporting Information) supported the independence of \textit{A. oharaense}/\textit{A. fimbriatum} from \textit{A. clathratum} and \textit{A. turneri}, although the MLB values were low (50%–52%). The relationship between \textit{T. clathrus} and \textit{A. clathratum}/\textit{A. turneri} was somewhat different between the trees using one and two species of Laminariaceae (\textit{Laminaria digitata} in Fig. S6a and \textit{L. digitata} and \textit{Saccharina japonica} in Fig. S6b) as outgroups in the analyses. In the former tree using only \textit{L. digitata} as outgroup, \textit{Thalassiophyllum} was nested in the \textit{A. clathratum}/\textit{A. turneri} clade, whereas independent in the latter tree adding \textit{S. japonica} as a second outgroup taxon, although the MLB values were low (<81%). In anyway, the resolution of the molecular phylogeny based on ITS2 rDNA sequences was considered to be low, because \textit{S. japonica} occurred in a clade with \textit{C. costata} when both \textit{L. digitata} and \textit{S. japonica} were used as outgroups (Fig. S6b), and the monophyly of Agaraceae was not supported.
The resolution of the molecular phylogeny based on 28S rDNA sequences was also considered to be low (Fig. S7, a and b in the Supporting Information). When two outgroup taxa (Ecklonia radiata and L. digitata) were included in the analysis, the monophyly of Agaraceae was not supported (Fig. S7b).

DISCUSSION

The molecular phylogenetic analyses using multigene mitochondrial and chloroplast DNA sequences revealed that Agarum species were paraphyletic, forming two independent clades comprising an A. clathratum/A. turneri clade and an A. fimbriatum/ A. oharaense clade. The A. fimbriatum/A. oharaense clade was sister to Dictyoneurum spp., and Costaria was sister to the clade of A. fimbriatum/A. oharaense and Dictyoneurum spp. in both mitochondrial and chloroplast gene trees. The phylogenetic position of Thalassiophyllum differed between the analyses based on mitochondrial and chloroplast genes: Thalassiophyllum was independent from the two Agarum clades in the tree of mitochondrial genes but was included in the A. clathratum/A. turneri clade in the tree of chloroplast genes. It is difficult to resolve the phylogenetic relationships between Agarum and Thalassiophyllum based solely on available genetic data, even using the relatively long, multigene concatenated sequences. However, in the combined gene phylogeny of all 12 mitochondrial and chloroplast

Fig. 3. Maximum likelihood (ML) tree based on the concatenated DNA sequences of chloroplast atpB, psaA, psaB, psbA, psbC, and rbcL genes. Numbers on the branches indicate bootstrap values (%) from ML analysis (left) and posterior probabilities from Bayesian analysis (right). Asterisk (*) indicates 100% bootstrap (ML) and 1.00 posterior probability (Bayesian) values. Only bootstrap values >50% and posterior probabilities >0.90 are shown.

Fig. 4. Maximum likelihood (ML) tree based on the concatenated DNA sequences of mitochondrial cox1, cox2, nad2, nad4, nad6, and nad8 genes and chloroplast atpB, psaA, psaB, psbA, psbC, and rbcL genes. Numbers on the branches indicate bootstrap values (%) from ML analysis (left) and posterior probabilities from Bayesian analysis (right). Asterisk (*) indicates 100% bootstrap (ML) and 1.00 posterior probability (Bayesian) values. Only bootstrap values >50% and posterior probabilities >0.90 are shown.
genes, the tree topology agreed with that suggested in the mitochondrial gene phylogeny despite a larger number of bp being contributed by the chloroplast genome.

Boo et al. (2011) suggested synonymizing Thalassiophyllum with Agarum, because T. clathrus was included in the Agarum clade. However, we consider that this result was an artifact of the inappropriate selection of Costaria as outgroup. In the present analyses including more laminarialean taxa covering all derived families, adding Dictyoneurum spp., and using taxa of sister families as outgroups, the paraphyly of Agarum as well as the more distant relationship of Thalassiophyllum became clearer.

Agarum fimbriatum and A. oharaense resemble A. clathratum and A. turneri in blade gross morphology, sharing a midrib and perforations (Table 1). However, A. fimbriatum and A. oharaense have characteristic fimbriae (secondary haptera in A. oharaense) on both sides of the mid- to upper part of the flattened stipe (Fig. 1, a and b), frequently isolated from basal haptera. In contrast, A. clathratum and A. turneri have terete or somewhat compressed stipes and lack such fimbriae although A. yakishiriense has a flattened stipe. Agarum fimbriatum and A. oharaense tend to have undulations at the margins of the blades, whereas Agarum clathratum and A. turneri generally have entire (smooth) margins. A. clathratum and A. turneri form haptera radially so that the thalli grow more or less perpendicularly to the substrate, but A. oharaense tends to grow in a decumbent fashion, and A. oharaense may secondarily form haptera from the mid- to upper portion of the stipe, which initially appear as fimbriae.

Boo et al. (2011) detected no differences in rbc spacer sequences between Asian A. clathratum (A. clathratum subsp. clathratum) and A. yakishiriense, whereas A. clathratum from the North Atlantic, American North Pacific, and Kamchakta shared the same sequence and were separate from them. This result contrasted with the data from ITS2 rDNA, cox1, and cox2, in which A. yakishiriense was independent from the others. We consider that the closer relationship implied by rbc spacers is due to insufficient resolution of the region for discriminating phylogenetic relationships among the taxa. On the other hand, despite the very close phylogenetic relationship between A. yakishiriense and Japanese A. clathratum, there is no sign of hybrid formation in the sequence data because no individuals showing intermediate types between the two taxa were observed in the nuclear ITS2 rDNA tree. Agarum yakishiriense (as A. rugosum f. rishiriense in Yamada 1974) resembles A. fimbriatum and A. oharaense in having stipes flattened through their length and forming secondary haptera in their mid- to upper portions, thus making it distinct from A. clathratum and A. turneri, whose stipes are terete at the basal portion and form radial haptera solely at the base. Further study is needed to clarify the taxonomic position of this species.

The genus level as well as species-level taxonomy of Dictyoneurum reticulata has been controversial. Dictyoneurum reticulata was first described as C. reticulata D.A. Saunders 1895, but Setchell (1896) considered that the species was conspecific with D. californicum. Later, Smith (1944) distinguished C. reticulata from D. californicum chiefly by the presence of a midrib, and he proposed the establishment of a new genus Dictyoneuropsis for C. reticulata.

Table 1. Comparisons of morphological features in genera of Agaraceae.

<table>
<thead>
<tr>
<th>Agarum</th>
<th>Neoagarum gen. nov.</th>
<th>Thalassiophyllum</th>
<th>Costaria</th>
<th>Dictyoneurum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blade morphology</td>
<td>Symmetric, elliptical to ovate, flat, or bullate with perforations</td>
<td>Symmetric, elliptical to ovate, flat, or bullate with perforations</td>
<td>Asymmetric, involuted at the lower portions, fan-shaped, with perforations</td>
<td>Symmetric, linear to ovate with 5 percurrent longitudinal narrow ribs, bullate in regions between ribs, frequently with perforations</td>
</tr>
<tr>
<td>Stipe morphology</td>
<td>Terete at least at the base, forming haptera radially and basally</td>
<td>Flattened, sometimes decumbent, forming haptera at the base, and fimbriae or secondary haptera in mid-/upper portion</td>
<td>Terete, branched, twisted, forming haptera radially at the basal part</td>
<td>Flattened, branched, decumbent, forming secondary haptera in mid-/upper portion</td>
</tr>
<tr>
<td>Distributional range</td>
<td>Northern Pacific (Korea and Japan to Washington); NW Atlantic</td>
<td>Northern Pacific (Japan and Alaska to Mexico)</td>
<td>Northern Pacific (Korea and Japan to California)</td>
<td>NE Pacific (Alaska to British Columbia to Mexico)</td>
</tr>
</tbody>
</table>
Lane et al. (2006) reported that they found no sequence difference in the rDNA ITS region between the two taxa. They also referred to Setchell and Gardner (1925) who stated that there was little difference in blade morphology and suggested merging *D. reticulata* with *D. californicum*. Silva (in Pedroche et al. 2008) held that the species were different and proposed the combination of *D. reticulatum* (D.A.Saunders) P.C.Silva.

Examination of the gross morphology of *Dictyoneurum/Dictyoneuropsis* specimens housed in UC, UBC, and the Moss Landing Marine Laboratories confirmed that *D. californicum* and *D. reticulatum* are distinguishable by the presence/absence of a midrib, as previously described (Saunders 1895, Smith 1944, Abbott and Hollenberg 1976). The blade of *D. californicum* lacks a midrib and is reticulated over its entire surface. A large portion of the specimens have the characteristic division of the blade into two blades following the formation of a longitudinal slit, whereas *D. reticulatum* has a midrib, and relatively few specimens have such slit.

Saunders (1895) did not designate a holotype for *C. reticulata*. G. M. Smith (1942, p. 652), when transferring the species to his new genus *Dictyoneuropsis*, stated “Type locality ‘Monterey Bay near Pacific Grove, Cal’. Type specimen in Farlow Herbarium, Harvard University.” The Farlow Herbarium (FH) has five Saunders specimens, two of which are part of their type collection (FH00805999 and FH00805600). These have “Type” on the handwritten labels, are dated August 1894, and are from Pacific Grove, California. All the FH specimens have a midrib, as described by Saunders (1895). We choose FH00805600 (Fig. 5) as lectotype as it is the specimen that most closely matches the illustration in Saunders (1895). Other Saunders specimens with the same locality and date are in UC. One of these (UC1260995) has a label identical to the Farlow specimens and is labeled “Type.” This specimen, however, lacks a midrib and is attributable to *D. californicum*. The International Code of Nomenclature for algae, fungi, and plants (Melbourne Code) has made a provision for just such cases. Article 9.14 states, “When a type (herbarium sheet or equivalent preparation) contains parts belonging to more than one taxon (see Art. 9.11), the name must remain attached to the part (specimen as defined in Art. 8.2) that corresponds most nearly with the original description or diagnosis.” We think that UC1260995 represents a lapsus committed during the preparation of many specimens, and it has no standing as type material of *C. reticulata*. The other UC specimen (UC936291) is accompanied by a letter from Saunders to Setchell (dated May 10, 1895, after publication of the species in February 1895) that identifies the specimen, which was trimmed and remounted with a UC label, as a duplicate specimen of *C. reticulata* and asks Setchell’s opinion about it.

Although Setchell labeled it *D. californicum*, he attached a note: “This, fide Saunders, is the *C. reticulata* Saunders.” Paul Silva, a student of Smith, annotated both specimens as isotypes of *C. reticulata* in 1951. However, only UC 936291 should be considered an isotype of that species.

Dictyoneurum is characterized by the peculiar process of vegetative division of the sporophytes into two individuals: A longitudinal slit is formed in the transition zone of the blade (growth zone), and during the growth of the blade, the splitting broadens both upward and downward to separate the blade and stipe, and eventually dividing the thallus into two individuals. Such a process is less common in *D. reticulatum*, which has a midrib, but still does occasionally occur as illustrated in Smith (1942). However, considering their close phylogenetic relationship, it is possible that they form hybrids that show this intermediate morphology.

Although Saunders and Druehl (1993) and Lane et al. (2006) reported that *D. californicum* and *D. reticulatum* had identical DNA sequences, they were genetically independent in our analyses based on 10 of 12 gene sequences (except for *psaA* and *psbA*) with sequence divergences of 0.18%–0.57%.
for the other four chloroplast genes (Fig. S2, a, c, e and f) and 0.24%–0.88% for the six mitochondrial genes (Fig. S2, g–l). However, the genetic divergence among the local populations of each morphological type has not yet been elucidated, and further study is needed to clarify their species-level taxonomy. The use of microsatellite markers as employed by Geoffroy et al. (2015) to differentiate two sympatric species of “Pyraula littoralis” in northern France offers a promising approach to emulate.

The monophyly of Agaraceae is confirmed in the present molecular phylogeny based on both chloroplast and mitochondrial genes. The taxa in this family share simple anatomical features, lacking specialized mucilage-producing cells and frequently having perforated blades. The mechanism producing the perforations is not clear, but it is noteworthy that the characteristic longitudinal splitting of the thallus at the transition zone in Dictyoneurum may possibly occur by the same mechanism.

In conclusion, we consider that it was inappropriate to merge Thalassiphylum with Agarum as done by Boo et al. (2011). Furthermore, as indicated in analyses of both chloroplast and mitochondrial gene sequences, A. fimbriatum and A. oharaense do not belong to Agarum. We propose the establishment of the new genus Neoagarum to accommodate them. Species in the new genus Neoagarum are distinguishable from Agarum by the presence of fimbriae, which become secondary haptera in A. oharaense, in the mid- to upper part of the stipe and by DNA sequences.

Description and diagnosis. Neoagarum H.Kawai et T.Hanyuda *gen. nov.*

Sporophyte with holdfast comprising narrow, branched haptera. Stipe simple, compressed, often forming fimbriae, which can become secondary haptera, on the mid- to upper part of the stipe. Blade relatively thin, flat, or bullate, with a narrow to broad midrib and perforations in lateral wings. Sori forming broad patches on both surfaces of blade. The genus resembles Agarum in gross morphology but is distinguished by occurrence of fimbriae and by the DNA sequences of chloroplast *atpB, psaA, psaB, psbA, psbB, rbdL* and mitochondrial *cox1, cox3, nad2, nad4, nad5*, and *nad6* genes.

Type species: *Neoagarum fimbriatum* (Harvey) H.Kawai & T.Hanyuda comb. nov.

Additional species: *Neoagarum oharaense* (Yamada) H.Kawai, T.Hanyuda & M. Miyata comb. nov.

We are grateful to Dr. Eric Henry for providing useful comments, the University of British Columbia Herbarium, the University of California, Berkeley, the Phycology Herbarium of Moss Landing Marine Laboratories, and the Herbarium of the Graduate School of Science, Hokkaido University, for access to voucher specimens including type material and Jenn Burt, Gayle Hansen, Richard Moe, Michael Graham, Arley Muth, Diana Steller, and Heather Fulton-Bennett for their help in collecting field specimens. We thank the Farlow Herbarium of Harvard University, Cambridge, Massachusetts, for the image of the lectotype of *D. reticulatum*. A part of this work was supported by the JSPS Grants-in-Aid for Scientific Research (nos. 22370054 and 25291087) to HK.

Klokchova, N. G. 1998. An annotated bibliography of marine macroalgae on northwest coasts of the Bering Sea and the

Petros, A. & Ruprecht, F. 1840. Illustrationes algarum in itinere septemtrionale ad littora rossica asiatico-americana collectarum. Typis Eduardi Pratz, St. Petersburg, pp. [i-vii], [i]-iv, 1-28 [1-2, index], [Latin:] [i]-iv, [1]-22, [1-2, index], 40 pls.

Supporting Information

Additional Supporting Information may be found in the online version of this article at the publisher’s web site:

Figure S1. Bayesian consensus tree based on the concatenated DNA sequences of mitochondrial cox1, cox3, nad2, nad4, nad5, and nad6 genes.

Figure S2. Maximum likelihood (ML) trees based on individual chloroplast (a–f) and mitochondrial (g–i) gene sequences.

Figure S3. Bayesian consensus tree based on the concatenated DNA sequences of chloroplast atpB, psaA, psaB, psbA, psbC, and rbcL genes.

Figure S4. Bayesian consensus tree based on the concatenated DNA sequences of mitochondrial cox1, cox3, nad2, nad4, nad5, and nad6 and chloroplast atpB, psaA, psaB, psbA, psbC, and rbcL genes.

Figure S5. Maximum likelihood (ML) tree based on the DNA sequences of mitochondrial cox3 gene.

Figure S6. Maximum likelihood tree based on the sequence of nuclear ITS2 rDNA region.

Figure S7. Maximum likelihood tree based on the sequence of nuclear 28S ribosomal DNA region.

Appendix S1. List of herbarium specimens of agaracean species examined for gross morphology in the present study.

Table S1. Sources of samples and sequence data used for molecular analyses of chloroplast and mitochondrial genes, including their database accession numbers.

Table S2. List of primers used for PCR and sequencing.

Table S3. Sources of samples and sequence data used for molecular analyses of nuclear DNA sequences, including their database accession numbers.

Table S4. Comparison of number and ratio of phylogenetically informative sites in mitochondrial and chloroplast gene sequences used in the present study.