論文

I. 原著論文

1. Assignment of the Fe-Ne(His F8) stretching band in the resonance Raman spectra of deoxymyoglobin, Kitagawa, T., K. Nagai, and M. Tsubaki, FEBS Lett., 104, 376-378, (1979).

2. Effect of removal of a salt-bridge on the oxygen binding properties and the electronic structure of heme in cobalt-iron hybrid hemoglobin, Tsubaki, M. and K. Nagai, J. Biochem., 86, 1029-1035, (1979).

3. Resonance Raman spectra of myoglobins reconstituted with spirographis and isospirographis hemes and iron 2,4-diformylprotoporphyrin IX. Effect of formyl substitution at the heme periphery, Tsubaki, M., K. Nagai, and T. Kitagawa, Biochemistry, 19, 379-385, (1980).

4. Resonance Raman spectra of manganese myoglobin and its azide complex. Assignment of a new charge-transfer band to azide(p) - porphyrin (p*) transition, Yu, N.-T. and M. Tsubaki, Biochemistry, 19, 4647-4653, (1980).

5. Temperature dependence of resonance Raman spectraof metmyoglobin and methemoglobin azide. Detection of resonance-enhancedbound azide vibrations and iron-azide stretch, Tsubaki, M., R. B. Srivastava, and N.-T. Yu. Biochemistry, 20, 946-952, (1981).

6. Resonance Raman investigation of dioxygen bondingin oxycobaltmyoglobin and oxycobalt-hemoglobin: Structural implication of splittings of the bound O-O stretching vibration, Tsubaki, M. and N.-T. Yu.. Proc. Natl. Acad. Sci. USA, 78, 3581-3585, (1981).

7. Resonance Raman investigation of carbon monoxide bonding in (carbonmonoxy) hemoglobin and -myoglobin: Detection of Fe-CO stretching and Fe-C-O bending vibrations and influence of the quaternary structure change, Tsubaki,M., R. B. Srivastava, and N.-T. Yu, Biochemistry, 21, 1132-1140, (1982).

8. Resonance Raman investigation of nitric oxide bonding in nitrosylhemoglobin A and -myoglobin: Detection of bound N-O stretching and Fe-NO stretching vibrations from the hexacoordinated NO-heme complex, Tsubaki, M. and N.-T. Yu, Biochemistry, 21, 1140-1144, (1982).

9. Resonance Raman studies of Co-O2 and O-O stretching vibrations in oxy-cobalt hemes, Mackin,H. C., M. Tsubaki, and N.-T. Yu, Biophys. J., 41, 349-357, (1983).

10. Organ-specific properties of cytochromes P-450s21 (steroid 21-hydroxylases) of liver and adrenocortical microsomes, Ichikawa, Y., A. Hiwatashi, and M. Tsubaki, FEBS Lett., 167, 131-136,(1984).

11. Resonance Raman detection of a n(Fe-CO) stretching frequency in cytochrome P-450scc from bovine adrenocortical mitochondria, Tsubaki, M. and Y. Ichikawa, Biochim. Biophys. Acta, 827, 268-274, (1985).

12. Isolation and characterization of two constitutive forms of microsomal cytochrome P-450 from a single bovine liver, Tsubaki, M. and Y. Ichikawa, Biochim. Biophys. Acta, 830, 244-257,(1985).

13. Effects of cholesterol and adrenodoxin binding on the heme moiety of cytochrome P-450scc:A resonance Raman study, Tsubaki, M., A. Hiwatashi, and Y. Ichikawa, Biochemistry, 25, 3563-3569, (1986).

14. Characterization of two cysteine residues in cytochrome P-450scc: chemical identification of the heme-binding cysteine residue, Tsubaki, M., S. Tomita, Y. Tsuneoka, and Y. Ichikawa, Biochim. Biophys. Acta, 870, 564-574, (1986).

15. Effects of cholesterol analogues and inhibitors on the heme moiety of cytochrome P-450scc: A resonance Raman study, Tsubaki, M., A. Hiwatashi, and Y. Ichikawa, Biochemistry, 26, 4535-4540, (1987).

16. Electron paramagnetic resonance study of ferrouscytochrome P-450scc-nitric oxide complexes: Effects of cholesterol and itsanalogues, Tsubaki, M., A. Hiwatashi, Y. Ichikawa, and H. Hori, Biochemistry, 26, 4527-4534, (1987).

17. Influence of heme-surrounding amino acid residues on the manganese(V)-nitrido bond in manganese-substituted hemoproteins: Resonance Raman evidence for porphyrin core expansion and reduction of themanganese(V)-nitrido stretching force constant, Tsubaki, M., H. Hori, T. Hotta, A. Hiwatashi, Y. Ichikawa, and N.-T. Yu, Biochemistry, 26, 4980-4986, (1987).

18. Existence of multiple forms of cytochrome P-450scc purified from bovine adrenocortical mitochondria, Tsubaki, M., H. Ohkubo, Y. Tsuneoka, S. Tomita, A. Hiwatashi, and Y. Ichikawa, Biochim. Biophys. Acta, 914, 246-258, (1987).

19. Electron paramagnetic resonance study of ferrous cytochrome P-450scc-nitric oxide complexes: Effects of 20(R),22(R)-dihydroxycholesterol and reduced adrenodoxin, Tsubaki, M., A. Hiwatashi, Y. Fujimoto, N. Ikekawa, Y. Ichikawa, and H. Hori, Biochemistry, 27, 4856-4862, (1988) .

20. Crystallization of cytochrome P-450scc from bovine adrenocortical mitochondria, Iwamoto, Y., M. Tsubaki, A. Hiwatashi, and Y. Ichikawa, FEBS Lett., 233, 31-36,(1988).

21. Inhibition of electron transfer from adrenodoxinto cytochrome P-450scc by chemical modification with pyridoxal 5'-phosphate: Identification of adrenodoxin-binding site of cytochrome P-450scc, Tsubaki, M., Y. Iwamoto, A. Hiwatashi, and Y. Ichikawa, Biochemistry, 28, 6899-6907, (1989).

22. Conformational change of the heme moiety of ferrous cytochrome P-450scc-phenylisocyanide complex upon binding of reduced adrenodoxin, Tsubaki, M., A. Hiwatashi, and Y. Ichikawa, Biochemistry, 28, 9777-9784, (1989).

23. Studies of the immunohistochemical and biochemical localization of the cytochrome P-450scc-linked monooxygenase system inthe adult rat brain, Iwahashi, K., H. S. Ozaki, M. Tsubaki,J. Ohnishi, Y. Takeuchi, and Y. Ichikawa, Biochim. Biophys. Acta, 1035,182-189, (1990).

24. Active site of bovine adrenocortical cytochrome P-45011b studied by resonance Raman and electron paramagnetic resonance spectroscopies: Distinction from cytochrome P-450scc,Tsubaki, M., Y. Ichikawa, Y. Fujimoto, N.-T. Yu, and H. Hori, Biochemistry, 29, 8805-8812,(1990).

25. Purification and comparative characterization ofcytochrome P-450scc from porcine adrenocortical mitochondria, Iwahashi,K., M. Tsubaki, A. Miyatake, and Y. Ichikawa, Int. J. Biochem., 23, 901-909, (1991).

26. Light absorption, electron paramagnetic resonance and resonance Raman characteristics of nitridochromium(V) protoporphyrin-IX and its reconstitutedhemoproteins, Hori, H., M.Tsubaki,N.-T. Yu, and T. Yonetani, Biochim. Biophys. Acta, 1077, 392-399, (1991).

27. Cytochrome P-45011b in rat brain, Ozaki, H. S., K. Iwahashi, M. Tsubaki, Y. Fukui, Y. Ichikawa, and Y. Takeuchi, J. Neuroscience Res., 28, 518-524, (1991).

28. Catalytic properties of cytochrome P-450scc frombovine and porcine adrenocortical mitochondria: Effect of Tween 20 concentration, Iwahashi, K., M. Tsubaki, A. Miyatake, S. Miura, K. Hosokawa, and Y. Ichikawa, J. Steroid Biochem. Mol. Biol., 38, 727-731, (1991).

29. Electronic and stereochemical characterization of intermediates in the photolysis of ferric cytochrome P450scc nitrosyl complexes. Effects of cholesterol and its analogues on ligand binding structures, Hori, H., F. Masuya, M. Tsubaki, S. Yoshikawa, and Y. Ichikawa, J. Biol. Chem., 267, 18377-18381, (1992).

30. Effects of cholesterol side-chain groups and adrenodoxin binding on the vibrational modes of carbon monoxide bound to cytochrome P-450scc: Implications of the productive and nonproductive substrate bindings, Tsubaki, M., S. Yoshikawa, Y. Ichikawa, and N.-T. Yu, Biochemistry, 31, 8991-8999, (1992).

31. Effects of crystallization on the heme-carbon monoxide moiety of bovine heart cytochrome c oxidase carbonyl, Tsubaki, M., K. Shinzawa, and S. Yoshikawa, Biophys. J., 63, 1564-1571,(1992).

32. Absorbance spectral change of the cytochrome P-450S21-phenylisocyanide complex upon binding of reduced NADPH-cytochrome P-450 reductase, Iwamoto, Y., M. Tsubaki, S. Miura, and Y. Ichikawa, Biochim. Biophys. Acta, 1159, 122-128, (1992).

33. Fourier-transform infrared study of cyanide binding to Fea3-CuB binuclear site of bovine heart cytochrome c oxidase: Implication of the redox-linked conformational change at the binuclear site, Tsubaki, M, Biochemistry, 32, 164-173, (1993).

34. Fourier-transform infrared study of azide binding to Fea3-CuB binuclear site of bovine heart cytochrome c oxidase: New evidence for the redox-linked conformational change at the binuclear site, Tsubaki, M., Biochemistry, 32, 174-182, (1993).

35. Structure of the heme-copper binuclear center ofthe cytochrome bo complex of Escherichia coli: EPR and Fourier-transform infrared spectroscopic studies, Tsubaki, M., T. Mogi, Y. Anraku, and H. Hori, Biochemistry, 32, 6065-6072, (1993).

36. Identification of the functional domains in heme O synthase: Site-directed mutagenesis studies on the cyoE gene of the cytochrome bo operon in Escherichia coli, Saiki, K., T. Mogi, H. Hori, M. Tsubaki, and Y. Anraku, J. Biol. Chem., 268, 26927-26934, (1993).

37. Cytochrome d axial ligand of the bd-type terminal quinol oxidase from Escherichia col,Tsubaki, M., T. Uno, H. Hori, T. Mogi, Y. Nishimura, and Y. Anraku, FEBS Lett., 335, 13-17, (1993).

38. Resonance Raman and Fourier-transform infrared studies on the subunit I histidine mutants of the cytochrome bo complex in Escherichia coli: Molecular structure of redox metal centers, Uno, T., T. Mogi, M. Tsubaki, Y. Nishimura, and Y. Anraku, J. Biol. Chem., 269, 11912-11920, (1994).

39. Purification and comparative characterization ofcytochrome P-450scc (CYP XIA1) from sheep adrenocortical mitochondria, Miyatake, A., M. Tsubaki, H. Hori, and Y. Ichikawa, Biochim. Biophys. Acta,1215, 176-182, (1994).

40. EPR studies on the photoproducts of ferric cytochromeP450cam (CYP101) nitrosyl complexes: Effects of camphor and its analogues on ligand-bound structures, Masuya, F., M. Tsubaki, R. Makino, and H. Hori, J. Biochem., 116, 1146-1152, (1994).

41. Molecular structure of redox metal centers of the cytochrome bo complex from Escherichia coli: Spectroscopic characterization of the subunit I histidine mutant oxidases, Tsubaki, M.,T. Mogi, H. Hori, T. Ogura, S. Hirota, T. Kitagawa, and Y. Anraku. J. Biol. Chem. 269, 30861-30868, (1994).

42. Tryptophan 2,3-dioxygenase in Saccharomyces cerevisiae, Iwamoto, Y., I. S. Matsui-Lee, M. Tsubaki, and R. Kido, Can. J. Microbiol., 41, 19-26, (1995).

43. Electron paramagnetic resonance investigation ofcytochrome P450c21 from bovine adrenocortical microsomes: a new enzymatic activity, Tsubaki, M., K. Morimoto, S.Tomita, S. Miura, Y. Ichikawa, A. Miyatake, F. Masuya, and H. Hori, Biochim. Biophys. Acta, 1259, 89-98, (1995).

44. Cyanide-binding site of bd-type ubiquinoloxidase from Escherichia coli, Tsubaki, M., H. Hori, T. Mogi, and Y. Anraku, J. Biol. Chem., 270, 28565-28569, (1995).

45. Infrared and EPR studies on cyanide-binding to the heme-copper binuclear center of cytochrome bo-type ubiquinol oxidase from Escherichia coli. Release of a CuB1+-cyano complex in the partially reduced state, Tsubaki, M., T. Mogi, H. Hori, M. Sato-Watanabe, and Y. Anraku, J. Biol. Chem., 271, 4017-4022, (1996).

46. EPR study of NO complex of bd-type ubiquinol oxidase from Escherichia coli: The proximal axial ligand of heme d is nitrogenous amino acid residue, Hori, H., M. Tsubaki, T. Mogi, and Y. Anraku, J. Biol. Chem. 271, 9254-9258, (1996).

47. A tryptophan pyrrole-ring cleavage enzyme in the most primitive eukaryote, Iwamoto, Y.,I. S. Lee, M. Tsubaki, and R. Kido, Adv. Exp. Med. Biol. 398, 441-447, (1996).

48. Exploring subunit-subunit interactions in the Escherichia coli bo-type ubiquinol oxidase by extragenic suppressor mutation analysis, Saiki, K.,T. Mogi, M. Tsubaki, H. Hori, and Y. Anraku, J. Biol. Chem. 272, 14721-14726, (1997).

49. A novel chloride-binding site modulates the heme-copper binuclear center in the Escherichia coli bo-type ubiquinoloxidase, Hirano, T., T. Mogi, M. Tsubaki, H. Hori, Y. Orii, and Y. Anraku, J. Biochem., 122, 430-437, (1997).

50. Existence of two heme B centers in cytochrome b561 from bovine adrenal chromaffin vesicles as revealed by a new purification procedure and EPR spectroscopy, Tsubaki, M., M. Nakayama, E. Okuyama, Y. Ichikawa, and H. Hori, J. Biol. Chem. 272, 23206-23210, (1997).

51. Resonance Raman, FT-IR and EPR investigation on the binuclear site structure of the heme-copper ubiquinol oxidase from Acetobactor aceti: Effect of the heme peripheral group substitution, Tsubaki, M., K. Matsushita, O. Adachi, S. Hirota, T. Kitagawa, and H. Hori, Biochemistry, 36, 13034-13042, (1997).

52. Glutamate-286 mutants of cytochrome bo-type ubiquinol oxidase from Escherichia coli: Influence of mutations on the binuclear center structure revealed by FT-IR and EPR spectroscopies, Tsubaki, M., H. Hori, and T. Mogi, FEBS Lett., 416, 247-250, (1997).

53. 20b-Hydroxy-C21-steroid 20b-oxidase activities of cytochrome P450c21 purified from bovine adrenocortical microsomes, Tsubaki, M., N. Matsumoto, S. Tomita, Y. Ichikawa, and H. Hori, Biochim. Biophys. Acta, 1390, 197-206, (1997).

54. Substitutions of conserved aromatic amino acid residues in subunit I perturb the metal centers of the Escherichia coli bo-type ubiquinol oxidase, Mogi, T., J. Minagawa, T. Hirano, M. Sato-Watanabe, M. Tsubaki, T. Uno, H. Hori, H. Nakamura, Y. Nishimura, and Y. Anraku, Biochemistry, 37, 1632-1639, (1998).

55. Structural basis for the electron transfer across the chromaffin vesicle membranes catalyzed by cytochrome b561: Analyses of cDNA nucleotide sequences and visible absorption spectra, Okuyama, E., R. Yamamoto, Y.Ichikawa, and M. Tsubaki, Biochim. Biophys.Acta 1383, 269-278, (1998).

56. Distinct roles of two heme centers for transmembrane electron transfer in cytochrome b561 from bovine adrenal chromaffin vesicles as revealed by pulse radiolysis, Kobayashi, K., M.Tsubaki, and S. Tagawa, J. Biol. Chem. 273, 16038-16042, (1998).

57. Fourier-transform infrared studies on azide binding to the binuclear center of the Escherichia coli bo-type ubiquinol oxidase, Tsubaki, M., M. Mogi, and H. Hori, FEBS Lett., 449, 191-195, (1999).

58. Fluoride-binding to the Escherichia coli bd -type ubiquinol oxidase studied by visible absorption and EPR spectroscopies, Tsubaki, M., M. Mogi, and H. Hori, J. Biochem.,126, 98-103, (1999).

59. Azide- and cyanide-bindings to the Escherichia coli bd-type ubiquinol oxidase studied by visible absorption, EPR and FTIR spectroscopies, Tsubaki, M., M. Mogi, and H. Hori, J. Biochem.,126, 510-519, (1999).

60. Diethylpyrocarbonate-modification abolishes fast electron accepting ability of cytochrome b561 from ascorbate but does not influence on electron donation to monodehydroascorbate radical: Identification of the modification sites by mass spectrometric analyses, Tsubaki, M., K. Kobayashi, T. Ichise, F. Takeuchi, and S. Tagawa, Biochemistry, 39, 3276-3284, (2000).

61. Active site structure of SoxB-type cytochrome bo3 oxidase from thermophilic Bacillus, Uchida, T., M. Tsubaki, T. Kurokawa, H. Hori, J. Sakamoto, T. Kitagawa, N. Sone, J. Inorg. Biochem. 82, 65-72, (2000).

62. Ascorbate inhibits the carbethoxylation of two histidyl and one tyrosyl residues indispensable for the transmembrane electron transfer reaction of cytochrome b561, Takeuchi, F., K. Kobayashi, S. Tagawa, and M. Tsubaki, Biochemistry, 40,4067-4076, (2001).

63. Unusual spin state equilibrium of azide metmyoglobin induced by core deformed heme, Neya, S.,Tsubaki, M., Hori, H., Yonetani, T., and Funasaki, N., Inorg. Chem., 40, 1220-1225, (2001).

64. Adrenodoxin-cytochrome P450scc interaction as revealed by EPR spectroscopy: Comparison with putidaredoxin-cytochrome P450cam system, Takeuchi, K., Tsubaki, M., Futagawa, J., Masuya, F. and Hori, H., J. Biochem. 130, 789-797 (2001).

65. Planarian cytochrome b561: Conservation of a six transmembrane structure and localization along the central and peripheral nervous system, Asada, A., Kusakawa, T., Orii, H., Agata, K., Watanabe, K., and Tsubaki, M., J. Biochem. 131, 175-182 (2002).

66. Cytochrome b561 is not fatty acylated but acetylated at the amino terminus in the chromaffin vesicle membranes: An approach for identification of the post-translational modification of membranous proteins, Nakamura M., Takeuchi F., and Tsubaki, M., Protoplasma 221, 41-46 (2003).

67. Stopped-flow analyses for the reaction of ascorbate with cytochrome b561 purified from bovine chromaffin vesicle membranes, Takigami, T., Takeuchi, F., Nakagawa, M., Hase, T., and Tsubaki, M., Biochemistry 42, 8110-8118 (2003).

68. Reversely-oriented cytochrome b561 in reconstituted vesicles catalyzes transmembrane electron transfer and supports extravesicular dopamine b-hydroxylase activity, Seike, Y., Takeuchi, F., and Tsubaki, M., J. Biochem. 134,859-867 (2003).

69. Properties of two distinct heme centers of cytochrome b561 from bovine chromaffin vesicles studied by EPR, resonance Raman, and ascorbate reduction assay, Takeuchi, F., Hori, H., Obayashi, E., Shiro, Y., and Tsubaki, M., J. Biochem. 135,53-64 (2004).

70. Planarian peptidylglycine-hydroxylating monooxygenase, a neuropeptide processing enzyme,colocalizes with cytochrome b561 along the central nervous system. Asada, A., Orii, H., Watanabe, K., Tsubaki, M., FEBS Journal, 272, 942-955 (2005).

71. Cytochrome b561 protein family: Expanding roles and versatile transmembrane electron transfer abilities as predicted by a new classification system and protein sequence motif analyses, M. Tsubaki, F. Takeuchi, and N. Nakanishi, Biochim. Biophys. Acta, 1753, 174-190 (2005).

72. Selective perturbation of the intravesicular heme center of cytochrome b561 by cysteinyl modification with 4,4'-dithiodipyridine, F. Takeuchi, H. Hori, and M. Tsubaki, J. Biochem., 138, 751-762 (2005).

73. Protein-protein interaction of cytochrome b561 in chromaffin vesicle membranes studied by two-dimensional blue-native/sodium dodecyl sulfate gel electrophoresis and co-immunoprecipitation analysis, Takeuchi, F., Yamamoto, Y., Nishimura, Y., Park, S.-Y., and Tsubaki M., Acta Biologica Szegediensis, 50, 83-87 (2006).

74. Characterization of heme-coordinating histidyl residues of cytochrome b5 based on the reactivity with diethylpyrocarbonate: A mechanism for the opening of axial imidazole rings, N. Nakanishi, F. Takeuchi, H. Okamoto, A. Tamura, H. Hori and M. Tsubaki, J. Biochem. 140, 561-571 (2006).

75. Interaction of tail-anchored proteins with liposomes in different cholesterol content: Initial steps for the fabrication of artificial neuroendocrine vesicles, Jun Hamada, Nobuyuki Nakanishi, Fusako Takeuchi, Sam-Yong Park, and Motonari Tsubaki, 2006 International Symposium on Micro-NanoMechatronics and Human Science, IEEE, pp.1-6 (2006); DOI: 10.1109/MHS.2006.320250

76. Histidine cycle mechanism for the concerted proton/electron transfer from ascorbate to the cytosolic heme b center of cytochrome b561: A unique machinery for the biological transmembrane electron transfer, Nobuyuki Nakanishi, Fusako Takeuchi, and Motonari Tsubaki, J. Biochem., 142, 553-560 (2007).

77. Purification and biochemical analyses of Zea mays cytochrome b561 heterologously expressed in Pichia pastoris, Motiur Md. Rahman, Nobuyuki Nakanishi, Tadakazu Takigami, Toshiharu Hase, Sam-Yong Park, and M. Tsubaki, 2007 International Symposium on Micro-NanoMechatronics and Human Science, IEEE, pp.108-112, (2007); DOI: 10.1109/MHS.2007.4420835

78. Characterization of heme-coordinating histidyl residues of an engineered six-coordinated myoglobin mutant based on the reactivity with diethylpyrocarbonate, mass spectrometry and EPR spectroscopy, Nobuyuki Nakanishi, Fusako Takeuchi, Sam-Yong Park, Hiroshi Hori, Kohei Kiyota, Tadayuki Uno, and Motonari Tsubaki, J. Biosci. Bioeng.,, 105, 604-613 (2008).

79. Importance of the conserved lysine 83 residue of Zea mays cytochrome b(561) for ascorbate-specific transmembrane electron transfer as revealed by site-directed mutagenesis studies. Nakanishi N, Rahman MM, Sakamoto Y, Takigami T, Kobayashi K, Hori H, Hase T, Park SY, Tsubaki M, Biochemistry. 2009 Nov 10;48(44):10665-10678.

80. Inhibition of electron acceptance from ascorbate by the specific N-carbethoxylations of maize cytochrome b561: a common mechanism for the transmembrane electron transfer in cytochrome b561 protein family. Nakanishi N, Rahman MM, Sakamoto Y, Miura M, Takeuchi F, Park SY, Tsubaki M.,J Biochem. 2009 Dec;146(6):857-866. Epub 2009 Sep 16.

81. Functional expression and characterization of human 101F6 protein, a homologue of cytochrome b561 and a candidate tumor suppressor gene product. Recuenco MC, Fujito M, Rahman MM, Sakamoto Y, Takeuchi F, Tsubaki M.,Biofactors, 2009;34(3):219-230.

82. Structural and mechanistic roles of three consecutive Pro residues of porcine NADH-cytochrome b(5) reductase for the binding of beta-NADH. Nishimura Y, Shibuya M, Muraki A, Takeuchi F, Park SY, Tsubaki M.,J Biosci Bioeng. 2009 Oct;108(4):286-292.

83. Preparation of cytochromes b5 with an extended COOH-terminal hydrophilic segment: Interaction of modified tail-anchored proteins with liposomes in different cholesterol content. Y. Sakamoto, F. Takeuchi, M. Miura, S.-Y., Park, and M. Tsubaki., MHS2009 International Synmposium on Micro-NanoMechatoronics and Human Science. 2009;IEEE:225-230.

84. Direct electrochemical analyses of human cytochromes b5 with a mutated heme pocket showed a good correlation between their midpoint and half wave potentials. Aono T, Sakamoto Y, Miura M, Takeuchi F, Hori H, Tsubaki M., J Biomed Sci. 2010 Dec 4;17:90(15 pages),doi: 10.1186/1423-0127-17-90

85. Interaction of modified tail-anchored proteins with liposomes: effect of extensions of hydrophilic segment at the COOH-terminus of holo-cytochromes b5, Sakamoto Y, Miura M, Takeuchi F, Park SY, Tsubaki M. J. Biosci. Bioeng. 2012 Mar;113(3):322-331.

86. Functional characterization of the recombinant human tumor suppressor 101F6 protein, a cytochrome b561 homologue, Mariam C. Recuenco, Md. Motiur Rahman, Yoichi Sakamoto, Fusako Takeuchi, Hiroshi Hori, and Motonari Tsubaki (2013) J. Biochem., 153(2), 233-242, doi:10.1093/jb/mvs139

87. Roles of conserved Arg72 and Tyr71 in the ascorbate-specific transmembrane electron transfer reactions catalyzed by Zea mays cytochrome b561, Motiur Md. Rahman, Nobuyuki Nakanishi, Toshiharu Hase, Sam-Yong Park and Motonari Tsubaki, J. Biosci. Bioeng., 115(5), 497-506 (2013), doi:10.1016/j.jbiosc.2012.11.013

88. Physico-chemical properties of the putative tumor suppressor protein, 101F6, Alajos Berczi and Motonari Tsubaki, in "Tumor Suppressor Genes: Functions, Regulation and Health Effects", Chapter 1, pp. 1-16 (16 pages),Nova Science Publishers, Inc. by Mehmet Gunduz (Editor), Esra Gunduz (Editor) (ISBN: 978-1-62808-674-4)(Publication, October 1, 2013)(405 pages) (2013).

89. Electron transfer reactions of candidate tumor suppressor 101F6 protein, a cytochrome b561 homologue, with ascorbate and monodehydroascorbate radical, Mariam C. Recuenco, Md. Motiur Rahman, Fusako Takeuchi, Kazuo Kobayashi, and Motonari Tsubaki, Biochemistry, 52 (21), 3660-3668 (2013) DOI: 10.1021/bi301607s

90. Pulse radiolysis study of the dynamics of ascorbic acid free radicals within a liposomal environment, Kazuo Kobayashi,Yumiko Seike, Akinori Saeki, Takahiro Kozawa, Fusako Takeuchi, and Motonari Tsubaki, ChemPhysChem, 15(14):2994-2997 (2014), DOI: 10.1002/cphc.201402297

91. The radical S-adenosyl-L-methionine enzyme QhpD catalyzes sequential formation of intra-protein sulfur-to-methylene carbon thioether bonds, Tadashi Nakai, Hiroto Ito, Kazuo Kobayashi, Yasuhiro Takahashi, Hiroshi Hori, Motonari Tsubaki, Katsuyuki Tanizawa, and Toshihide Okajima, J. Biol. Chem. 290 (17), 11144-11166 (2015), doi:10.1074/jbc.M115.638320

92. Study on the photoinduced nitric-oxide-releasing ability of 4-alkoxy furoxans, Ryosuke Matsubara, Saori Takazawa, Akihiro Ando, Masahiko Hayashi, Rei Tohda and Motonari Tsubaki, Asian J. Org. Chem., 6, 619-626 (2017) DOI: 10.1002/ajoc.201700030

93. Photosensitization of fluorofuroxans and its application to the development of visible light-triggered nitric oxide donor, Christopher Peter Seymour, Rei Toda, Motonari Tsubaki, Masahiko Hayashi and Ryosuke Matsubara, J. Org. Chem., 82 (18), 9647-9654 (2017) DOI: 10.1021/acs.joc.7b01709

94. Reaction intermediates of nitric oxide synthase from Deinococcus radiodurans as revealed by pulse radiolysis: Evidence for intramolecular electron transfer from biopterin to FeII-O2 complex, Yuko Tsutsui, Kazuo Kobayashi, Fusako Takeuchi, Motonari Tsubaki, and Takahiro Kozawa, Biochemistry, 57(10), 1611-1619, (2018) DOI: 10.1021/acs.biochem.7b00887

95. Mechanistic insights into the activation of soluble guanylate cyclase by carbon monoxide: A multi-step mechanism proposed for the BAY 41-2272-induced formation of 5-coordinate CO-heme, Ryu Makino, Yuji Obata, Motonari Tsubaki, Tetsutaro Iizuka, Yuki Hamajima,Yasuyuki Kato-Yamada, Keisuke Mashima, and Yoshitsugu Shiro, Biochemistry 57(10), 1620-1631, (2018) DOI: 10.1021/acs.biochem.7b01240

96. A fluorescent naphthalenediimide-alkoxyfuroxan photoinduced nitric oxide donor, Seymour, Christopher Peter, Nakata, Akito, Tsubaki, Motonari , Hayashi, Masahiko, Matsubara, Ryosuke, Bull. Chem. Soc. Jpn., 92 (1), 162-169, (2019), doi: 10.1246/bcsj.20180219

97. 9-Aryl-3-aminocarbazole as an environment- and stimuli-sensitive fluorogen and applications in lipid droplet imaging, Ryosuke Matsubara, Tomoaki Kaiba, Akito Nakata, Tatsushi Yabuta, Masahiko Hayashi, Motonari Tsubaki, Takashi Uchino, and Eri Chatani, J. Org. Chem., 84(9), 5535-5547, DOI: 10.1021/acs.joc.9b00493 (2019)

98. Elucidation of molecular functions of human tumor suppressor protein 101F6 by reconstitution into phospholipid bilayer nanodiscs, Mohammed El Behery, Akikazu Asada, Fusako Takeuchi, Tetsunari Kimura, Eri Chatani, and Motonari Tsubaki, 34th Philippine Chemistry Congress, The Journal of the Kapisanang Kimika ng Pilipinas (KKP), 30(1), 1-3, (2019), https://doi.org/10.26534/kimika.v30i1.1-3

99. Direct measurements of ferric reductase activity of human 101F6 and its enhancement upon reconstitution into phospholipid bilayer nanodisc, Mohammed El Behery; Mika Fujimura; Tetsunari Kimura, Motonari Tsubaki; Biochem. Biophys. Reports, (2020), 21, 100730, https://doi.org/10.1016/j.bbrep.2020.100730

100. Biogenic silver nanoparticles induce apoptosis in Ehrlich ascites carcinoma, Abosharaf, H. A., Salah, M., Diab, T., Tsubaki, M., and Mohamed T. M., Biomed. Res. Ther., (2020), 7(10), 4100-4113, DOI : 10.15419/bmrat.v7i11.647

101. Multistep changes in amyloid structure induced by cross-seeding on a rugged energy landscape, Yuzu, Keisuke; Yamamoto, Naoki; Noji, Masahiro; So, Masatomo; Goto, Yuji; Iwasaki, Tetsushi; Tsubaki, Motonari; Chatani, Eri, Biophys. J., (2021), 120(2), 284-295, doi: https://doi.org/10.1016/j.bpj.2020.12.005

102. Functional assembly of Caenorhabditis elegans cytochrome b-2 (Cecytb-2) into phospholipid bilayer nanodisc with enhanced iron reductase activity, Abosharaf, Hamed A.; Sakamoto, Yuki; Radwan, Aliaa M.; Yuzu, Keisuke, Fujimura, Mika; Diab, Thoria; Mohamed, Tarek M.; Chatani, Eri; Kimura, Tetsunari; Tsubaki, Motonari, Biomolecules, (2021), 11, 96 (14 pages), doi: https://doi.org/10.3390/biom11010096



II. 総説類

1. "ヘムタンパク質のヘム配位子と蛋白の相互作用", 堀洋、鍔木基成, 生物物理、22、151-159, (1982).

2. "赤外分光法によるヘム・銅末端酸化酵素の構造解析", 鍔木基成, 生物物理、35, 107-112, (1995).

3. Two terminal quinol oxidase families in Escherichia coli: Variations on molecular machinery for dioxygen reduction, Mogi, T., M. Tsubaki, H. Hori, H. Miyoshi, H. Nakamura, and Y. Anraku, J. Biochem. Mol. Biol. Bioiphys., 2, 79-110, (1998).

4. Probing molecular structure of dioxygen reduction site of bacterial quinol oxidases through ligand binding to the redox metal centers, Tsubaki, M., H. Hori, T. Mogi, J. Inorg. Biochem. 82, 19-25, (2000).

5. Transmembrane electron transfer catalyzed by cytochrome b561: Conserved properties and extending roles, Tsubaki, M. and F. Takeuchi, Rec. Res. Devel. Biochem., 4, 39-52, (2003).

6. Transmembrane electron transfer in the neuroendocrine vesicles: The ascorbate-cytochrome b561 system, Tsubaki, M., T. Takigami, Y. Seike and F. Takeuchi, Curr. Topics Biochem. Res., 5, 91-103,(2003).




III. 著書

1. Multiple molecular forms and immunochemical properties of iron-sulfur proteins of mitochondria from bovine tissues, Ichikawa, Y., I. Hamamoto, N. Waki, K. Iwahashi, A. Hiwatashi, and M. Tsubaki, In "Iron-Sulfur Protein Research". H. Matsubara, editors, Japan Sci. Soc. Press, Tokyo, Springer-Verlag, Berlin, pp. 97-105, (1986).

2. Chemical modification of cytochrome P-450scc with pyridoxal 5'-phosphate: Inhibition of electron transfer from adrenodoxin, Tsubaki, M., K. Iwahashi, A. Hiwatashi, and Y. Ichikawa, In "Cytochrome P-450: Biochemistry and Biophysics". I. Schuster, editors. Taylor & Francis, London. pp. 387-390, (1989).

3. Effects of cholesterol side-chain groups and adrenodoxin-bindings on the vibrational modes of carbon monoxide bound to cytochrome P-450scc: Implications of the productive and nonproductive substrate bindings, Tsubaki, M., S. Yoshikawa, and N.-T. Yu, In "Cytochrome P-450: Biochemistry and Biophysics" A.I. Archakov and G.I. Bachmanova, editors. INCO-TNC Joint Stock Company, Moscow.pp. 177-179, (1991).

4. Fourier transform infrared study of cyanide binding to iron and copper sites of bovine heart cytochrome c oxidase, Tsubaki, M. and S. Yoshikawa.. In "Spectroscopy of Biological Molecules". R.E. Hester and R.B. Girling, editors. The Royal Society of Chemistry, Cambridge. pp. 269-270, (1991).

5. Resonance Raman study on the Escherichia coli terminal oxidases, cytochrome bo and bd complexes.T. Uno, M. Tsubaki, T. Mogi, Y. Nishimura, and Y. Anraku, Proceedings of the Fourteenth International Conference on Raman Spectroscopy, John Wiley & Sons Ltd., pp. 116-117, (1994).
6. Heme-steroid interaction in cytochrome P450c21 studied by EPR and FTIR spectroscopies, Tsubaki, M., In "Molecular Steroidogenesis" M. Okamaoto, Y. Ishimura, H. Nawata, editors, Universal Academy Press, Inc., Tokyo, Japan, pp. 69-72, (2000).

7. Interaction of tail-anchored proteins with liposomes in different cholesterol content: Initial steps for the fabrication of artificial Neuroendocrine Vesicles, Jun Hamada, Nobuyuki Nakanishi, Fusako Takeuchi, Sam-Yong Park, and Motonari Tsubaki, 2006 International Symposium on Micro-NanoMechatronics and Human Science Symposium "Micro- and Nano-Mechatronics for Information-Based Society", The 21st Century COE Program, Nagoya University (M6048) (2006)

8. 「シトクロムb5」,「シトクロムb561」,「NADPH-フェリヘモプロテインレダク ターゼ」,「シトクロムP450」,「シトクロムレダクターゼ(系)」,「ミクロソー ム電子伝達系」,合計6項目の分担執筆 生化学辞典(第4版)(今堀和友、山川 民夫 監修)(株)東京化学同人(2007)




IV. プロシーディング等

1. Multichannel-detected resonance Raman spectra of manganese myoglobin and its azide complex, M. Tsubaki and N.-T. Yu, Proceedings VIIth international conference on Raman spectroscopy. (W.F. Murphy, editors) North-Holland, Amsterdam, New York, pp. 570-571, (1980).

2. " ヘモグロビン、ミオグロビンにおけるヘム-配位子結合の共鳴ラマン散乱法による研究:CO, CNの結合を中心として", 鍔木基成、Nai-Teng Yu, R. B. Srivastava, 第 33回タンパク質構造討論会要旨集(大阪), pp. 41-44, (1982).

3. Resonance Raman spectra of cytochrome P-450scc from bovine adrenal cortex, M. Tsubaki, K. Matsusaka, and Y. Ichikawa, Proceedings of the IXth international conference on Raman spectroscopy, The Chemical Society of Japan,, Tokyo, pp. 752-753, (1984).

4. Resonance Raman detection of manganese-nitrogen triple bond. Formation of nitridomanganese(V) proto-porphyrin IX in manganese myoglobin, M. Tsubaki, H. Hori, T. Hotta, A. Hiwatashi, Y. Ichikawa, and N.-T. Yu, Proceedings of the Tenth International Conference on Raman Spectroscopy, University of Oregon, the University Printing Department, Eugene, Oregon, pp. 1-24 - 1-25, (1986)

5. "共鳴ラマン散乱法によるシトクロムP-450sccの活性中心の構造と機能の研究", 鍔木基成、樋渡敦夫、市川佳幸, 第13回生体分子の構造と機能に関する討論会要旨集(岡崎), pp.45-46, (1986).

6. "シトクロムP-450 水酸化酵素系活性中心(ヘム)の物理化学的研究 ", 鍔木基成, 内藤記念科学振興財団研究報告集 昭和61年度版、pp.90-91, (1986).

7. "シトクロムP-450scc(Fe2+-NO)複合体とコレステロール、アドレノドキシンとの相互作用:EPRによる研究", 鍔木基成、樋渡敦夫、市川佳幸、堀洋, 第14回生体分子の構造と機能に関する討論会要旨集(東京), pp.57-58, (1987).

8. "トロンボキサンA合成酵素阻害薬の分子レベルにおける阻害機構:シトクロムP-450としての酵素的性質", 鍔木基成, 持田記念財団研究成果報告集, 4, 153-157, (1988).

9. "大腸菌シトクロムbo複合体とミトコンドリアシトクロム酸化酵素の反応中心の類似性:赤外スペクトルによる解析", 鍔木基成、茂木立志、吉川信也、安楽泰宏, 日本生体エネルギー研究会第17回討論会要旨集(東京), pp. 32-33, (1991).

10. "大腸菌シトクロムbo複合体複核反応中心の構造:EPRと赤外スペクトルによる解析", 鍔木基成、吉川信也、堀 洋、茂木立志、安楽泰宏, 日本生体エネルギー研究会第18回討論会要旨集(東京), pp. 152-153, (1992).

11. "FT-IRとEPRによる末端酸化酵素プロトンポンプの機構の解明", 鍔木基成, 日本生体エネルギー研究会第19回討論会要旨集(豊中), pp. 86-87, (1993).

12. "EPR測定により新たに見出されたシトクロムP450c21によるステロイドオキシダーゼ活性", 鍔木基成、森本幸嗣、富田修平、三浦成敏、市川佳幸、桝屋太志、堀洋, 第21回生体分子の構造と機能に関する討論会要旨集(東京), pp. 13-14, (1994).

13. Resonance Raman study on the Escherichia coli terminal oxidases, cytochrome bo and bd complexes.T. Uno, M. Tsubaki, T. Mogi, Y. Nishimura, and Y. Anraku, Proceedings of the Fourteenth International Conference on Raman Spectroscopy, John Wiley & Sons Ltd., pp. 116-117, (1994).

14. "FT-IR とEPRによる末端酸化酵素プロトンポンプ機構の解明", 鍔木基成、堀洋、茂木立志、安楽泰宏, 日本生体エネルギー研究会第20回討論会要旨集(豊中), pp. 66-67. (1994).

15. "FT-IR とEPRによる末端酸化酵素プロトンポンプ機構の解明", 鍔木基成, 日本生体エネルギー研究会第21回討論会要旨集(名古屋), pp. 62-63, (1995).

16. "クロマフィン小胞膜に存在するシトクロムb561のcDNAクローニングと機能活性部位の解析", 鍔木基成、中山雅登、奥山英策、市川佳幸、堀 洋, 第24回生体分子科学討論会要旨集(岡崎), pp. 66-67, (1997).

17. "副腎髄質クロマフィン小胞膜に存在するチトクロムb561とアスコルビン酸との電子伝達反応", 鍔木基成、一瀬智子、武内総子、堀 洋、小林一雄、田川精一, 第25回生体分子科学討論会要旨集(西宮), pp. 78-79, (1998).

18. "MALDI-TOF-MS法による副腎クロマフィン小胞由来チトクロムb561とアスコルビン酸との電子伝達機構の解析", 鍔木基成、武内総子, 第26回生体分子科学討論会要旨集(横浜), pp. 54-55, (1999).

19. "神経内分泌小胞膜に特異的に存在する電子伝達系の構造と機能", 鍔木基成, 財団法人ひょうご科学技術協会 平成10年度学術研究支援事業 研究成果報告書,  33-41, (1999).

20. "MALDI-TOF-MS法によるcytochrome b561-アスコルビン酸電子伝達機構の解析"、鍔木基成、武内総子、小林一雄、田川精一、第27回生体分子科学討論会講演要旨集(仙台), pp44-45, (2000).

21. "神経内分泌小胞におけるcytochrome b561-アスコルビン酸電子伝達機構"、鍔木基成、武内総子、小林一雄、田川精一、堀 洋,第28回生体分子科学討論会講演要旨集(金沢), pp56-57, (2001).

22. "再構成リポソームによる神経内分泌小胞cytochrome b561-電子伝達系の解析"、清家夕美子、中村真理子、武内総子、鍔木基成, 第29回生体分子科学討論会講演要旨集(岡崎), pp56-57, (2002).

23. "Stopped-flow法によるアスコルビン酸とcytochrome b561との電子伝達反応機構の解析" 瀧上忠一、武内総子、中川将司、長谷俊治、鍔木基成
第30回生体分子科学討論会(京都), pp.28-29, (2003)

24. "Diethyl pyrocarbonate処理に伴うcytochrome b5のredox変化"
中西伸行、武内総子、堀 洋、鍔木基成
第31回生体分子科学討論会(水戸、茨城),pp.57-58 (2004)

25. Interaction of Tail-anchored Proteins with Liposomes in Different Cholesterol Content: Initial Steps for the Fabrication of Artificial Neuroendocrine Vesicles, Jun Hamada, Nobuyuki Nakanishi, Fusako Takeuchi, Sam-Yong Park, and Motonari Tsubaki; Summarized Report of Symposium on System Cell Engineering by Multi-scale Manipulation at MHS2006 & Micro-COE Symposium, pp. 82-87 (2006).

26. "生体系のパルスラジオリシス1: 植物の膜貫通電子伝達反応におけるアスコルビン酸の生理的役割: アスコルビン酸及びモノデヒドロアスコルビン酸ラジカルとトウモロコシ由来cytochrome b561との反応メカニズム", 小林一雄、田川誠一、中西伸行、Motiur Md Rahman、鍔木基成、大阪大学産業科学研究所加速器量子ビーム実験室成果報告書(平成18年度)3-12 (2007).

27. "植物Zea mays cytochrome b561の電子伝達活性と変異体解析"; 中西伸行、Motiur Md. Rahman, 堀 洋、長谷俊治、小林一雄、鍔木基成, 第34回生体分子科学討論会講演要旨集、pp.19-20, (2007) 東北大学(2007.6.22).

28. "Zea mays cytochrome b561によるアスコルビン酸特異的電子伝達反応における保存性Tyr71及びArg72残基の役割”, Rahman Md. Motiur, 藤戸優充、中西伸行、長谷俊治、朴三用、鍔木基成、第35回生体分子科学討論会講演要旨集、pp.31-32, (2008) 兵庫県立先端科学技術支援センター(2008.6.26).

29. “マイクロ秒ミリ秒パルスラジオリシス法における放射線化学の研究  植物の膜貫通電子伝達反応におけるアスコルビン酸の生理的役割: アスコルビン酸及びモノデヒドロアスコルビン酸ラジカルとトウモロコシ由来cytochrome b561との反応メカニズム”, 小林 一雄, 田川 誠一, 藤戸 優充, 中西 伸行, Motiur Md Rahman, 鍔木 基成, 大阪大学産業科学研究所 量子ビーム科学研究施設 平成20年度報告書, pp.15-16 (2008 ).

30.“アスコルビン酸特異的膜貫通電子伝達に関与するZea mays cytochrome b561の細胞質側保存性残基の役割” 鍔木基成、Md. Motiur Rahman、中西伸行、坂本洋一、長谷 俊治、小林一雄、朴三用、第19回金属の関与する生体関連反応シンポジウム講演要旨集、page 41, 大阪大学、(吹田、大阪、2009.6.12)

31.“Kinetic analyses on the electron transfer reactions of the candidate tumor suppressor protein 101F6 with ascorbate and monodehydroascorbate radical”, Mariam C. Recuenco, Md. Motiur Rahman, Yoichi Sakamoto, Kazuo Kobayashi, and Motonari Tsubaki, 第36回生体分子科学討論会講演要旨集、pp.80-81 北海道大学(札幌、2009.6.19-20)

32. "線虫C. elegansにおけるcytochrome b561ホモログの機能解析”, 三浦雅央、鍔木基成、第37回生体分子科学討論会講演要旨集、pp.42-43, (2010) 山口大学 大学会館(2010.6.18).

33. "Cytochrome b5のtail-anchor domainの膜結合様式”, 坂本洋一、○三浦雅央、武内総子、鍔木基成、第38回生体分子科学討論会講演要旨集、pp.94-95, (2011) つくば大学 大学会館国際会議場(2011.6.24).

34. "膜貫通部位特異的変異体を用いた植物cytochrome b561の電子伝達機構解析”, ○三浦雅央、田中涼、亀井美奈、藤戸優充、小林一雄、鍔木基成、第39回生体分子科学討論会講演要旨集、pp.22-23, (2012) 東北大学 片平さくらホール(2012.6.8).

35.“キノヘムプロテイン・アミン脱水素酵素生合成に関与するラジカルSAMタンパク質の機能解析”小林一雄、古澤孝弘、伊藤寛人、中井忠志、岡島俊英、谷澤克行、堀洋、鍔木基成、大阪大学産業科学研究所付属量子ビーム科学研究施設年度報告書(平成24年度) pp.13-14 (2013).

36.“マイクロ秒ミリ秒パルスラジオリシス法における放射線化学の研究II 線虫C. elegansのcytochrome b561 (Cecytb-2)の電子伝達反応”小林一雄、古澤孝弘、三浦雅央、岡野弘明、鍔木基成 大阪大学産業科学研究所付属量子ビーム科学研究施設年度報告書(平成24年度)pp.17-18 (2013).

37.“バイオナノ空間場における反応活性種のダイナミクス”, 鍔木基成、岡野弘明、田中涼、三浦雅央、古家圭人、堀洋、小林一雄、谷澤克行、物質・デバイス領域共同研究拠点 研究成果報告書(平成24年度)(課題番号2011B11) pp.855-856 (2013)

38.“選択的スプライスングによって生ずる新規[2Fe-2S]型フェレドキシンとその細胞内局在”, 古家圭人、堀洋、鍔木基成、第40回生体分子科学討論会講演要旨集、pp. 40-41,大阪大学 (銀杏会館、2013.6.7-8)(2013).

39.“パルスラジオリシス法を用いた人工小胞内アスコルビン酸ラジカルのダイナミックス”、 小林一雄、清家裕美子、佐伯昭紀、古澤孝弘、武内総子、鍔木基成、大阪大学産業科学研究所付属量子ビーム科学研究施設年度報告書(平成25年度)pp.40-41 (2014).

40.“Cytochrome b561の構造と機能”、小林一雄、古澤孝弘、鍔木基成、大阪大学産業科学研究所付属量子ビーム科学研究施設年度報告書(平成25年度)pp.42-43 (2014).

41.“レドックス機能を付与したリポソーム内での反応活性種のダイナミクス”、鍔木基成、田中涼、古家圭人、堀洋、武内総子、小林一雄、古澤孝弘 物質・デバイス領域共同研究拠点 研究成果報告書(平成25年度)(課題番号2013B20)(2014)

42.“ヒト癌抑制遺伝子候補101F6による細胞死誘導メカニズムの解析”、 山添貴子、岡野弘明、朝田晃一、小林一雄、古澤孝弘、鍔木基成、第41回生体分子科学討論会講演要旨集、pp.76-77(九州大学西新プラザ、2014.6.6~7)(2014)

43.“レドックス機能を付与したリポソーム内での反応活性種のダイナミクス h101F6及びhb561-3の細胞内局在、酸素活性種との反応、電子伝達機構”、鍔木基成、高橋優馬、山添貴子、古家圭人、堀 洋、武内総子、小林一雄、古澤孝弘 物質・デバイス領域共同研究拠点 研究成果報告書(平成26年度)(課題番号2013B20)(2015)










戻る