Poster presentations

	Poster presentations							
Poster no.	Presenter	Affiliation	Country	Category	Title			
P-1	Biwen Wang	U Amsterdam	NL	Evolution and mobile genetic	Transposon insertion sequencing of a minimal			
• •	Diwen wang	o Amsterdam		elements	Bacillus subtilis genome			
P-2	Biwen Wang	U Amsterdam	NL	Biotechnology	Induction of CtsR-regulated chaperones			
					improves xylanase production in Bacillus Gintool: Transcriptome analysis using			
P-3	Biwen Wang	U Amsterdam	NL	Others	regulation directionality information Lethal ROS production upon membrane			
P-4	Biwen Wang	U Amsterdam	NL	Antimicrobials and toxins	depolarization of dormant Bacillus subtilis			
P-5	Ryosuke Kadoya	Sugiyama Jogakuen	JP	Antimicrobials and toxins	Development of probiotic agents containing Bacillus natto against Campylobacter food			
					poisoning Aberrant Bacillus subtilis cell's morphology			
P-6	Valentina Andrea Floccari	U Ljubljana	SI	Microbial interaction	emerges as consequence of active			
P-7	Romain Briandet	INRAE Jouy	FR	Microbial interaction	lysogeny Tracking Bacilli swimmers in microalgae			
P-8	Virginie Grosboillot	U Ljubljana	SI	Microbial interaction	SPbeta-like viruses trigger changes in Bacillus subtilis behaviour under defined			
					environmental conditions The potential of membrane vesicles as			
P-9	Yotaro Isamu	Tsukuba U	JP	Microbial interaction	immunostimulant modulating Clostridioides difficile colonization			
					Isolation and characterization of bacterial-			
P-10	Miku Matsushita	Tsukuba U	JP	Microbial interaction	derived extracellular membrane vesicles in			
P-11	Polonca Stefanic	U Ljubljana	SI	Microbial interaction	Kin discrimination and cooperative			
P-11	Pololica Stelallic		31		behaviours in Bacillus subtilis			
P-12	Stephen Lander	Northwestern U	USA	Microbial interaction	Secreted nuclease facilitates extracellular DNA (eDNA) repurposing during biofilm			
P-13	Anne-Gaëlle Planson		FR	Microbial interaction	Construction and directed evolution of B.			
P-13	Anne-Gaelle Planson	INRAE Jouy	FK	Micropial interaction	subtilis synthetic consortia			
D 14	Vordenne Mari	Kaball	10	Distashuslasu	Luciferase luminescence of colonies to assess			
P-14	Yuzheng Wu	Kobe U	JP	Biotechnology	NADPH levels in Bacillus subtilis cells			
					Metabolic Engineering Design Based on Flux			
P-15	Nunthaphan Vikromvarasiri	RIKEN	JP	Biotechnology	Balance Analysis to Improve			
					Bio-production from Glycerol in Bacillus Analysis of segmented filamentous bacteria			
P-16	Koki Tanaka	Tokyo Agri U	JP	Biotechnology	genome function in Bacillus subtilis Introduction and heterologous expression of			
P-17	Katsumi Amano	Tokyo Agri U	JP	Biotechnology	heliobacterial			
					photosynthetic gene cluster in Bacillus subtilis Gene expression profile of CyanoBacillus,			
P-18	Satoru Watanabe	Tokyo Agri U	JP	Biotechnology	carrying chimeric genome of Bacillus subtilis			
					and cyanobacterium Synechocystis sp. PCC Development of the genetic engineering			
P-19	Takahiro Morita	Tokyo Agri U	JP	Biotechnology	methods of Cyanobacillus			
					Genome analysis of Bacillus			
P-20	Hirotaka Matsubara	Amano enzyme	JP	Biotechnology	amyloliquefaciens industrial strains and its			
					application to heterologous protein stablishment of gene introduction into			
					alkaliphilic bacteria using conjugation system			
P-21	Junko Yamamoto	Shinshu U	JP	Biotechnology	consisting with Type IV secretion system			
					(T4SS) and conjugative factor RP4 Determination of the oriT minimum region in			
P-22	Taiki Kanzaki	Shinshu U	JP	Biotechnology	conjugation			
					between Escherichia coli and Bacillus subtilis.			
P-23	Claudia Borgmeier	BRAIN Biotech	DE	Biotechnology	Modulation of a built environment microbiome by a B. subtilis strain			
P-24	Wakana Suda	Tokyo Agri U	JP	Biotechnology	Effect of restriction/modification on plasmid			
		, 0		0,	transfer in Bacillus subtilis natto Elucidation of the poly-γ-L-glutamic acid (γ-L-			
D 25	Dine Negeri	Kaball	ID	Diotochnology	PGA)			
P-25	Rina Nogami	Kobe U	JP	Biotechnology	synthesis mechanism and its mutational			
					impacts in Bacillus subtilis			
	The second states in		55	Distantes	Unravelling the potential of thermophilic			
P-26	Thomas Konjetzko	FZ Jülich	DE	Biotechnology	Geobacillus spp. as chassis organisms for			
				- · · · ·	bioplastic upcycling OSIRIS: Orthogonal Sigma for Internal			
P-27	Etienne Dervyn	INRAE Jouy	FR	Biotechnology	Resources Implementation towards Synthesis			

					Townshing downships company dation for
P-28	Ryosuke Fukuda	Tsukuba U	JP	Regulation	Temperature-dependent gene regulation for environmental adaptation in Clostridium perfringens
P-29	Mitsuo Ogura	Tokai U	JP	Regulation	Regulatory mechanism of the operon containing genes encoding 5-oxoprolinase
P-30	Ahmad Altoun	Marburg U	DE	Regulation	and manganese importer Regulation of bacterial transcription by 6S
P-31	Veronika Kočárková	Czech Academy of	CZ	Regulation	Novel transcription factors in Bacillus subtilis
P-32	Yuzuki Shimada	Science Saitama U	JP	Regulation	Analysis of sigl regulation via lipoteichoic acid
				-	synthase in Bacillus subtilis Global regulatory role of ParB through parS-
P-33	Ling Juan Wu	Newcastle U	UK	Regulation	mediated autoregulation and gene silencing Differentiation between old and new
P-34	Richard Daniel	Newcastle U	UK	Regulation	peptidoglycan is required for coordinated cell growth in Bacteria
P-35	Matthieu Jules	INRAE Jouy	FR	Regulation	(p)ppGpp sets the level of tRNA charging through continuous regulation of translation Greedy reduction of Bacillus subtilis genome
P-36	Anne-Gaëlle Planson	INRAE Jouy	FR	Regulation	yields emergent phenotypes of high resistance to a
D 27	Nacha Tauli	Kusta Sangua II	п	Degulation	DNA Isolation of novel translation arrest peptides
P-37	Naoko Tsuji	Kyoto Sangyo U	JP	Regulation	with RAPP and RGPP sequence motifs Analysis of the suppressor strain, which
P-38	Koichiro Masuda	Tokyo Agri U	JP	Regulation	recovered the survivability of Bacillus subtilis
D 20	Cari Ikawa		п	Degulation	sigma factor minimizing strain In vivo conparative analysis of SigA /RpoD
P-39	Sari Ikawa	Tokyo Agri U	JP	Regulation	family in Bacillus subtilis Analysis of regulatory mechanism of RNA
P-40	Miho Omote	Tokyo Agri U	JP	Regulation	polymerase expression under nutrient
				Coordation and	starvation conditions in Bacillus subtilis Effect of the acetylation state of 2-
P-41	Natsumi Kimura	Tokyo Agri U	JP	Sporulation and development	oxoglutarate dehydrogenase complex on sporulation in Bacillus subtilis.
P-42	Teppei Kawakami	Tokyo Agri U	JP	Sporulation and	Analysis of Arg phosphorylation site of SigA in
		longo ngh o	51	development	Bacillus subtilis sporulation initiation. Comparative Analysis of Thioflavin T and
P-43	Ritsuko Kuwana	Setsunan U	JP	Sporulation and	other Fluorescent Dyes for Fluorescent Staining of Bacillus subtilis Vegetative Cell,
				development	Sporulating Cell, and Mature Spore
P-44	Nozomu Obana	Tsukuba U	JP	Sporulation and development	A novel conserved protein complex controls sporulation in Clostridium
P-45	Nobuki Kuwabara	Hosei U	JP	Sporulation and	Non-secreted intercellular signal transduction
				development Sporulation and	during sporulation in Bacillus subtilis Identification of CgeA as a glycoprotein that
P-46	Tsutomu Sato	Hosei U	JP	development	anchors polysaccharides to the spore surface in Bacillus subtilis
P-47	Maja Popović	U Ljubljana	SI	Sporulation and	Disruption of phage integration gene leads to
		Institut de Biologie		development Sporulation and	unexpected changes in Bacillus subtilis The sporulation specific 3' exoribonuclease
P-48	Alexandre D'Halluin	Physico-Chimique	FR	development	KapD is involved in the spore crust and outer coat formation in B. subtilis
P-49	Daisuke Seo	Kanazawa U	JP	Stress response	nvestigation of a physiological role of the ferredoxin-NADP+ oxidoreductase paralog
					found in Bacillus subtilis Application of a High-Throughput Colony
P-50	Hiroko Fukuda	Shinshu U	JP	Stress response	Growth Measurement System to Bacillus
D E1	Yuma Okuba	Chiba U	п	Sporulation and	subtilis under Different pH Circumstances B. subtilis tRNAArg is indispensable for the
P-51	Yuma Okubo		JP	development	competence development Divergent cell shapes by a mutation in the IIA
P-52	Koichiro Akiyama	NIG	JP	Cell division	domain of MreB
P-53	Shota Suzuki	Rikkyo U	JP	Cell division	Adaptive evolution of oriC through in vitro propagation in RCR
P-54	Tomoaki Okado	Saitama U	JP	Others	Expression analysis of genes involved in propidium iodine in Bacillus subtilis
P-55	Kimihiro Abe	NIID	JP	Others	Spo0A-dependent membrane vesicle production in Bacillus subtilis
P-56	Ryuji Yamazawa	Setsunan U	JP	Others	YabG is a novel arginine-specific cysteine protease

P-57	Shigeki Kada	Meg Milk	JP	Others	Exploration of D-amino acid producing lactic acid bacteria by bioassay using Bacillus subtilis mutants.
P-58	Takashi Inaoka	NARO	JP	Others	Isolation of the suppressor mutations that restore the growth of zwf mutant in B. subtilis
P-59	Koya Sakuma	Nagoya U	JP	Others	Dual-wield NTPases: An uncharacterized protein family mined from AlphaFold Protein Database conserved among Bacilli and
P-60	Akiko Soma	Chiba U	JP	Others	Identification of a minimum set of tRNA repertoire in B. subtilis Comparative Analysis of Growth Retardation
P-61	Masakazu Furuta	Osaka Metro U	JP	Stress response	Effects on Bacillus subtilis Spores via Diverse Microbial Control Methods: Heat, Gamma- Rays, UV, and Essential Oils from Spices for
P-62	Shinya Kaneko	Titech	JP	Biotechnology	the Development of Optimal Combined Novel approach to the genome (giant DNA) synthesis