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Abstract

Rotations in four dimensional (4-D) space has six degrees of freedom. An example set of the six
Euler angles in 4-D rotations is derived.

1 Rotations in Four Dimensional Space

It was shown in the 19th century by Cole that a rotation in four dimensional (4-D) space is reduced to
a combination of two rotations whose fixed planes are absolutely perpendicular each other [1]. Here we
derive the result in a concise way—Cole’s paper is 20 pages long.

Because a 4-D rotation R is a unitary transformation, it is represented by a diagonal matrix R =
diag(σ0, σ1, σ2, σ3), under (normalized) complex eigenvectors ui. Here σi are complex eigenvalues: Rui =
σiui, with |σi| = 1 and ⟨ui,uj⟩ = δij . The angle brackets denote the inner product of complex vectors.

Complex conjugate of this equation means that u†
i is an eigenvector of R with eigenvalue σ†

i , where the
dagger denotes a complex conjugate. When σi is real, it is ±1. We exclude negative determinant cases
such as R = diag(σ0, σ

†
0, 1,−1). Then we can assume, without loss of generality, that R is represented as

R = diag(σ0, σ
†
0, σ2, σ

†
2) on the basis vectors {u0,u

†
0,u2,u
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2}. Now we define real vectors
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The factor 1/
√
2 is introduced to satisfy the orthonormal relations: ⟨ei,ej⟩ = δij . Inversely,{
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Denoting σ0 = eiα, and using eqs. (1) and (2), The real vector e0 is transformed by R as

Re0 =
σ0u0 + σ†

0u
†
0√

2
=

σ0(e0 + ie1) + σ†
0(e0 − ie1)

2
= cosα e0 − sinα e1 (3)

Similarly,
Re1 = sinα e0 + cosα e1 (4)

Also, denoting σ2 = eiβ , we get Re2 = cosβ e2 − sinβ e3,and Re3 = sinβ e2 + cosβ e3.Therefore, on the
basis vectors {e0, e1, e2,e3}, the rotation matrix R is represented as

R01,23(α, β) =


cosα − sinα 0 0
sinα cosα 0 0
0 0 cosβ − sinβ
0 0 sinβ cosβ

 . (5)

This is called double rotation. The subscripts of R01,23 stand for rotations in the e0–e1 plane and in the
e2–e3 plane.
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Note that a double rotation is a commutable product of two rotations

R01(α) =


cosα − sinα 0 0
sinα cosα 0 0
0 0 1 0
0 0 0 1

 , (6)

and

R23(β) =


1 0 0 0
0 1 0 0
0 0 cosβ − sinβ
0 0 sinβ cosβ

 . (7)

These are called simple rotations. The subscripts of R01 indicate that it is a rotation in the e0–e1 plane.
The e2–e3 plane is called the fixed plane for this rotation. The double rotations are a combination of two
simple rotations around two fixed planes that are absolutely perpendicular each other [2]. The simple
rotations are special case when one of the two angles in the double rotation is zero.

2 Euler Angles in 4-D

Any 4-D rotation can be represented by a series of simple rotations of six in maximum, under a fixed
coordinate system. It is proved as follows: Suppose that unit vectors {ex,ey, ez, ew} along each axis of a
four dimensional x–y–z–w space are rotated to {e′x,e′y,e′z, e′w} by a rotation R. We can always construct
simple rotations Rwy, Ryx, and Rwz in such a way that their product RwyRyxRwz reverts e′w to the
original direction ew. The other three vectors {e′x, e′y, e′z} are then in the three dimensional x–y–z space
and they can be reverted to the original directions {ex, ey, ez} by the standard (extrinsic) Euler angles
Ryx, Ryz, and Rxz. Therefore, RyxRyzRxzRwyRyxRwzR = I, where I is the identity matrix. In other
words, R is represented by six simple rotations: R = RzwRxyRywRzxRzyRxy, since R

−1
ij = Rji. Note that

R can also be represented by two double rotations and two simple rotations: R = Rzw,xyRyw,zxRzyRxy.
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