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Recently, with the advance of research and improved design methods, a big overflow of 

design procedures of reinforced concrete (RC) structures has been proposed in the 

context of performance based design. These design procedures are in many cases based 

on concrete mechanics and are applied by the nonlinear analysis. On the other hand, 

with recent seismic events and developments in the field of earthquake engineering, a 

new shift in the seismic evaluation of RC structures has occurred and the specifications 

in many countries try to keep up with the most recent developments in this field.  

 

With the advent of three dimensional (3D) analytical methods, the seismic performance 

in can now consider the effects of combination of bilateral bending, shear and torsion 

that actual structures are subjected to during actual earthquakes. However with all these 

developments little attention has been paid to geometrical particularities of RC members 

such as circular cross-section geometry. On the other hand, is seismic design, while the 

new keywords revolve around performance evaluation, there is lack of clarity on the 

meaning of performance based design in some cases, and especially when performance 

is based on the numerical verification of damage conditions. 

 

With the above in mind, the aim of this study is to generally propose the 3D lattice 

model which has been enhanced from a 2D lattice model to assess the seismic 

performance of RC structures. In order to do that, two conceptual categories were used: 

first is the development of a 3D lattice model aimed at circular-cross section columns. 

In this conceptual part, issues of performance are evaluated based on response of RC 

members and analysis of criteria related to force and displacement. In order to achieve 

that, a multi-directional polygonal 3D lattice model is proposed and the applicability to 

discretize and correctly represent the structural response is verified by performing static 

and dynamic analyses in RC columns. 

 

In seismic events, after cracking of concrete, there is a change in the gross shear 

resisting area capacity of concrete as well as degradation of stiffness. In the modeling 

using the multi-directional polygonal 3D lattice model these two important issues are 

studied .The applicability of the multi-directional polygonal 3D lattice model is further 

extended to perform cumulative seismic damage evaluation in RC columns. In seismic 

events, RC structures are subjected in many times to multiple sequences of motion; 

therefore it is important to study this effect from the force and displacement point of 

view, as well as understanding the effect of residual displacement in every new loading 

of RC structures, and in this study that is carried out by the multi-directional polygonal 
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3D lattice model. 

 

On the other hand in this study, performance evaluation of RC structures under seismic 

motion is evaluated from the energy approach. A numerical verification method of 

performance of RC structures in seismic analysis is proposed by performing damage 

evaluation of existing RC structures from the material point of view. One of the key 

points from the fracture mechanics is that the global structural behavior of a structure is 

affected first and foremost by the material behavior. On the other hand in the mechanics 

of solids it is said that the strain energy density of the material can inform us about the 

nature and behavior of the material, whether that is a brittle material or ductile. In this 

study based on that a choice was made to perform damage evaluation from the material 

point of view based on the energy dissipation criteria. 

 

One of the key characteristics about the way the discretization of structure is performed 

using the lattice model is that it allows the individual analysis of stress-strain 

relationship of each element. That means that the strain energy density can be evaluated 

individually and from that the global behavior of structure understood. Based on that, a 

damage index can be proposed from the stress-strain relationship of each one of these 

elements. 

 

The way the proposed damage index works, is by establishing a ratio between ultimate 

energy dissipation capacity of a RC member and the accumulated energy dissipation 

that is captured from the response under seismic motion. In the analysis special 

attention is given to concentration of damage in the RC structures. The method is 

verified by performing numerical verification of RC columns that have been subjected 

to cyclic loading and also by performing dynamic analysis of RC column that has been 

tested by a shake-table test. 

 

In order to extend the concept of energy based damage evaluation proposed in this study, 

the nonlinear analysis using the 3D dynamic lattice model is performed on actual RC 

structures. The target used in the analysis is actual rigid-frame RC viaducts damaged at 

1995 Hyogo-ken Nanbu Earthquake. Tis RC viaduct has slight damage with diagonal 

cracks and the buckling of longitudinal reinforcement. The results of dynamic analysis 

are compared with actual damages of RC viaducts. The comparison reveals the 

reliability of the 3D dynamic lattice model at the structural system level. It is also found 

that the analysis can predict the damage conditions. 
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1.1. Background 

In the last few decades, a considerable number of very strong earthquakes have occurred 

in many parts of the world. That has been the case in the United States of America with 

the Loma Prieta Earthquake in 1989 and the Northridge Earthquake in 1994. In the 

People`s Republic of China the 2008 Sichuan Earthquake caused great damage to social 

infrastructure, in New-Zealand the Christchurch Earthquake in 2011 caused great social 

and financial damage and in japan, a country very vulnerable to earthquakes, a number 

of strong seismic events such as the Great Hanshin Earthquake (Kobe Earthquake) in 

1995, the Great Eastern Japan Earthquake (Tohoku Earthquake) in 2011 and more 

recently the Kumamoto Earthquake in 2016 exposed the vulnerabilities that social 

infrastructures are subjected to in the event of strong seismic actions. 

 

With such potential to cause financial damage and destruction of social infrastructure, 

the effect earthquakes have on public infrastructures such as water and gas pipelines, 

roads and viaducts should be object of close attention to the Civil Engineering 

community. In the event of earthquakes, reinforced concrete (RC) structures are very 

vulnerable to damage in general, but that is particularly the case of RC bridges and 

viaducts. Because of the complexity of different earthquakes and the response that 

different RC structural members tend to show under seismic excitation, the study and 

analysis of seismic response is inherently highly nonlinear. In recent times, design 

engineers are encouraged by design codes to address these nonlinearities during the 

design process. In japan the benchmark to this shift in the design process occurred after 

the Great Hanshin Earthquake in 1995. For structural design, the standard specifications 

for seismic performance verification of concrete structures (JSCE 2002) have been 

extensively revised. The core concept in this revision was that considerable inelastic 

deformation of RC structures is possible after the longitudinal reinforcement yield. This 

concept moved from the previous consideration of only the elastic behavior when the 

structure is subjected to strong earthquake motion. Furthermore in these revisions, the 

ductility design criterion is adopted, replacing the criterion for load carrying capacity to 

determine the deformation capacity of RC structures. It is also noteworthy that under 

these revisions, the designers are required to perform verifications using dynamic 

analysis. The applicability of this requirement has been greatly enhanced by the recent 

developments in the field of earthquake engineering, which allowed the use of the input 

ground motion that has been recorded during actual earthquakes. 

1. GENERAL INTRODUCTION 



2 
 

The upgrade in the design requirements of concrete structures has been made possible 

by important contributions in analysis technology and methods. For example the 

structural response in dynamic analysis for RC columns is considered analyzing the 

principal axes of structural systems, but in reality the actual ground-motion is applied in 

three-dimensional (3D) way in the actual structures from different directions of its 

principal axes. Under these conditions, the behavior becomes more complex that under 

uniaxial motion and 3D analysis is indispensable to clarify the seismic performance of 

RC columns subjected to multi-directional ground motion (Miki 2004). In the current 

research for advanced analytical technology where 3D constitutive models with special 

focus on cracking of concrete applied to nonlinear analysis are the target, nonlinear 

finite element analysis using the solid element has been proposed (Hauke et al. 2000, 

Maekawa et al. 2001, Tsuchiya et al. 2002) and nonlinear analysis using 

three-dimensional lattice model (Miki and Niwa 2004) has also been proposed. The 

principal merit of the mentioned analysis tools is that they can reliably capture the 

response of RC structures. However the 3D finite solid element analysis requires 

powerful computational capability and the computation times is quite large due to the 

large number of degrees of freedom, which contrasts with the nonlinear analysis using 

three-dimensional lattice model where due to its simple and efficient 3D numerical 

approach the analysis difficulties are tackled with more ease. 

 

Based on the outcome of recent research on design of RC structures, a new era is 

inaugurated which is focus on the notion of performance based design of structures. 

Many propositions have been made. At the core of it are the damage evaluation models, 

which generally state that performance verification of RC structures is realized though 

the evaluation of seismic damage of RC structures. Early models tended to evaluate 

seismic damage in terms of deformation capacity, but notably Park and Ang (1985) 

conveyed that seismic damage on a structure is centered around the earthquake energy 

input and the structural mechanical dissipated energy, therefore in their proposition, the 

Park-Ang damage model, damage is evaluated by a combination of excessive 

deformation and a ratio of plastic strain energy.  More and more the research on the 

performance evaluation of RC structures under seismic motion recognizes the 

importance of energy based criteria for analysis as well as the need to reduce the 

complexities of analysis by combining efficient but powerful analytical tools for the 

analysis of the behavior of RC structures with simple but practical methods to perform 

damage evaluation of RC structures under seismic motion and ultimately performance 

evaluation and performance based design. 
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1.2. Literature Review 

1.2.1. 3D nonlinear analysis of concrete structures 

In order to perform structural analysis of concrete structures, the target structure should 

be discretized using one of many modeling tools currently developed. On the modeling 

process it is important to clarify the scale or level in which the discretization takes place. 

Generally three levels are recognized in the analytical modeling that is: macro-level, 

meso-level and micro-level. Furthermore in recent literature, a very strong focus on 3D 

modeling has emerged. In these 3D models two major issues are at the center: the first is 

treating structural members in 3D space which has implications in geometry of the 

structures and loading conditions and second is expressing the stress field by means of 

full 3D solid elements. Below a brief description of 3D nonlinear analysis research is 

given. 

 

(a) Fiber model 

According to Feng et al. (2012) in fiber-based models, materials have only 

uni-directional strength and stiffness whose behavior is defined in terms of its 

stress-strain response. Fiber sections are assumed to remain plane throughout the 

analysis. In reinforced concrete structures, the fiber section is assembled with 

pre-defined concrete and steel materials. The section is divided into a number of 

concrete patches where the steel fiber will be located. Strain compatibility between 

reinforcement and surrounding concrete is assumed. The sectional reactions under force 

and moment are in terms of axial strain at mid-section and curvature. A unique solution 

of this deformation combination will be obtained based on the moment-curvature 

analysis of the section. Spacone et al. (1996a, 1996b) proposed the formulation of a 

fiber beam-column element for nonlinear static and dynamic analysis of RC frames. In 

their work flexibility-based formulations that allowed a more accurate description of the 

force within the element have been presented. The flexibility-based model offers a clear 

and reliable procedure for their implementation in finite element analysis.  

 

(b) Finite element analysis of concrete structures 

The finite element method is a powerful computational tool, which allows complex 

analyses of the nonlinear response of RC structures to be carried out in a routine fashion. 

In their study Ngo and Scordelis (1967) analyzed with a finite element model simple 

beams in which concrete and reinforcing steel were represented by constant strain 

triangular elements, and a special bond link element was used to connect the steel to the 

concrete and describe the bond-slip effect. Nilson (1972) introduced nonlinear material 
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properties for concrete and steel and a nonlinear bond-slip relationship into the analysis 

and used an incremental load method of nonlinear analysis. Four constant strain 

triangular elements were combined to form a quadrilateral element by condensing out 

the central node. Cracking was accounted for by stopping the solution when an element 

reached the tensile strength, and reloading incrementally after redefining a new cracked 

structure. More recently Hauke and Maekawa (2000) have presented a 3D constitutive 

model for nonlinear finite element analysis of RC members with special attention to 

cracking. In their research, post-cracking formulations derived from uniaxial tension 

tests are generalized into spatially arbitrarily inclined cracks in multiple directions. The 

development of computing allowed more recently the performance of nonlinear 3D 

analysis using solid elements and Noguchi et al. (2001, 2002) conducted the 3D finite 

element analysis for performance verification of steel beam-RC joints. These analyses 

are largely dependent of the computational capabilities due to large degree of degrees of 

freedom. From that the lattice model (Niwa et al. 1995, Miki et al. 2003a, 20003b) has 

been proposed, based on decreased degrees of freedom which shortens computing time 

and is also more practical while remaining accurate in the prediction of RC structural 

behavior considering material nonlinearity. 

 

1.2.2. Damage Evaluation of RC Structures 

Structural damage characterization under seismic loading has extensively been studied 

in recent years and many models with different concepts have been proposed. One of 

the relatively simplest one was the prediction of damage in terms of ductility demands. 

Although much effort has been spent on estimation of damage with ductility demand in 

reinforced concrete frames, there is still a large gap between the ductility demand and 

actual observed damage in experiments. Eventually, researchers constructed more 

realistic damage models with different parameters. In the light of these findings, 

different models have been proposed by researchers using either the classical definition 

of low-cycle fatigue or energy dissipation of a member during its inelastic response, or 

stiffness deterioration under reversed cyclic loading. 

 

(a) Damage models based on ductility concepts 

The development of damage models starting from the ductility concept led to the 

development of the first damage models. Newmark and Rosenblueth (1971), proposed 

the ductility factor as a mean to assess damage. The factor can be expressed either as a 

function of curvature, rotation or displacement. Using a similar approach as Newmark 

and Rosenblueth (1971), Lybas and Sozen (1977) came up with a similar damage 
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concept which correlates the initial elastic stiffness and maximum elastic stiffness do 

produce a damage index. Using the stiffness based damage index, Banon et al. (1981) 

presented a flexural damage index, computed according to the relation between the 

ultimate bending moment as resulting from a pushover analysis, maximum bending 

moment and corresponding curvatures. In this approach, cosndierations of ultimate 

displacement capacity, softening due to the buckling of longitudinal reinforcement are 

considered as shown in Figure 1.1. 

 

(b) Damage models based on energy concepts 

The benchmark moment in which energy based damage models became widely 

proposed is a study by Park and Ang (1985) which proposed a damage index as the 

linear combination of the maximum displacement and the dissipated energy namely. 

The Park and Ang index can take into account both maximum plastic displacement and 

plastic dissipated energy and is supported by a wide correlation with observed damage. 

Tembulkar and Nau (1987) carried out an analytical study on inelastic structures 

modelled as SDOF systems with two different hysteretic models, in order to investigate 

the role of models on seismic energy dissipation. They have stated that damage attained 

by a reinforced concrete member under dynamic action cannot be predicted adequately 

by response spectrum concepts. Therefore, a well-constructed hysteresis model should 

be constructed as a tool for the damage assessment of concrete structural members. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.1 Load-displacement relationship of a RC column 
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Stojadinovic and Thewalt (1996) proposed a pair of energy balanced hysteresis models 

based on experiments that were conducted on knee joint sub-systems. The proposed 

models were piecewise linear and segments on envelope curves were defined by some 

special points such as first crack, yield and ultimate resistance. 

 

 

1.2.3. Seismic Design Philosophies of RC Structures 

(a) Japan 

The Great Hanshin Earthquake in 1995, marked a turning point in terms of prescribed 

seismic design specifications is Japan due to elevated degree of damage sustained by 

RC structures. The most evident result of that was the publication of the Standard 

Specifications for Concrete Structures- Seismic Performance Verification (2002) by the 

Japan Society of Civil engineers (JSCE). In these specifications, the concept of 

performance-based design is nuclear which represented a major change from the 

specifications published in 1986 which was based on the limit state design method. In 

these new specifications, two levels of design earthquake ground motion are prescribed: 

Level 1 corresponds to an earthquake that is likely to occur a few times within the life 

of a structure and level 2 corresponds to a very rare strong earthquake. The Seismic 

performance level of a structure is verified considering three seismic performance 

levels: in seismic performance level 1 function of the structure is maintained without 

any repair after the earthquake, in seismic performance level 2 function of the structure 

can be restored within a short period after the earthquake and in seismic performance 

level 3 there is no overall collapse of the structure, however it does not remain 

functional after the earthquake. With that seismic design should be carried out so that 

the structure satisfies seismic performance 1 against level 1 earthquake ground motion 

and seismic performances 2 or 3 against level 2 earthquake ground motion. 

 

(b) United States of America 

In the United States of America a considerable number of design specifications exist 

from the federal level to the state level. However with all its diversity, the AASHTO 

Bridge Design Specifications (2012) and Caltrans (2015) give a very informative 

outlook on the design philosophies of RC Structures in the USA. The design 

philosophies of Caltrans (2013) are centered on the contributions of AASHTO Bridge 

Design Specifications (2012). In the design, the Load and Resistance Factor Design 

(LRFD) method is prescribed. With focus on seismic design of RC structural members, 

Caltrans (2013) states that columns, shafts, Pile/Shaft groups in soft or liquefiable soils, 
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pier walls, and pile/pile-extensions in slab bridges designed and detailed to behave in a 

ductile manner are designated as seismic-critical members. Seismic-critical members 

may sustain damage during a seismic event without leading to structural collapse or loss 

of structural integrity. Other bridge members such as dropped bent cap beams, outrigger 

bent cap beams, “C” bent cap beams, and abutment diaphragm walls shall be designed 

and designated as seismic-critical if they will experience any seismic damage as 

determined by the Project Engineer and approved during Type Selection. All other 

components not designated as seismic-critical shall be designed to remain elastic in a 

seismic event. 

 

For structural applications, seismic demand is represented using an elastic 5% damped 

response spectrum. In general, the Design Spectrum (DS) is defined as the greater of: a 

probabilistic spectrum based on a 5% in 50 years probability of exceedance (or 975-year 

return period); a deterministic spectrum based on the largest median response resulting 

from the maximum rupture of any fault in the vicinity of the bridge site and a statewide 

minimum spectrum defined as the median spectrum generated by a Magnitude 6.5 

earthquake on a strike-slip fault located 12 kilometers from the bridge site. 

 

(c) Europe 

In the context of the European Union (EU), member countries of the EU have umbrella 

codes which are the Eurocodes. On a country local level, the specifications are subject 

to adjustment; however the Eurocodes prescribes the global design philosophy in the 

EU space. According to Eurocode 8 (2004) which deals with seismic design of 

structures, the design of earthquake resistant concrete structures shall provide the 

structure with an adequate capacity to dissipate energy without substantial reduction of 

its overall resistance against horizontal and vertical loading.  

 

Structures in seismic regions shall be designed and constructed in such a way that the 

following requirements are met: No collapse requirement - the structure shall be 

designed and constructed to withstand the design seismic action without local or global 

collapse. Damage limitation requirement - the structure shall be designed and 

constructed to withstand a seismic action having a larger probability of occurrence than 

the design seismic action, without the occurrence of damage and the associated 

limitations of use. Seismic action is considered dividing the territories in seismic zones. 

The earthquake motion at a given point on the surface is represented by an elastic 

ground acceleration response spectrum called elastic response spectrum. 
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1.3. Scope and Objectives  

Currently, in the field of 3D nonlinear analysis of RC structures the 3D finite solid 

element analysis tends to be a dominant force. Constitutive models focused on cracking 

of concrete are applied to finite element analysis, with very accurate results. Although 

these developments mean more accuracy and better performance prediction, the fact of 

the matter is that the process remains very complex and sensitive to changes in the 

analytical input information, as well as the ability of the design engineer to deal with 

often complex FEM packages, which means that a simpler and yet effective method to 

perform nonlinear seismic performance analysis of RC structures in 3D space is 

indispensable. 

 

On the other hand the JSCE standard specifications for concrete structures state very 

important principles when it comes to seismic design and can be resumed as being 

important to carry seismic design not only to ensure the safety of structures throughout 

the occurrence of an earthquake, but also ensure the prevention of fatal damage 

affecting human life, on a social point of view and on an engineering point of view Miki 

(2004) refers that in order to obtain good performance of structures during earthquakes, 

it is essential to analyze in detail the dynamic characteristics of the actual 3D structural 

system, and clearly address the subjective nature of observations of seismic 

performance. 

 

Miki et al. (2004) developed the 3D lattice model concept for nonlinear analysis of RC 

structures, based on the 2D lattice model presented by Niwa et al. (1995), in order to 

enhance its capabilities. This 3D lattice developed, offers reasonable prediction of the 

shear carrying capacity of RC structural members, and by discretizing a RC structural 

member into truss elements, internal stress flows are easy to determine. 

 

With that, the main objective of this study is performance evaluation of existing RC 

structures subjected to seismic excitation using the 3D lattice model. In a more specific 

way, three conceptual phases are developed: one, detailed development of a 3D lattice 

model analysis for circular cross-section RC columns, two investigate and propose 

appropriate quantitative damage measurement index to induced seismic damage on an 

existing structures and three propose a seismic performance evaluation method for RC 

structures using the 3D Lattice model. 
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1.4. Contents of the Thesis 

The study is divided in six chapters. In chapter 1 background of the study is discussed 

including the most recent advances in the nonlinear analysis of RC structures subjected 

to seismic motion as well as major seismic design philosophies in Japan, United States 

of America and Europe. 

 

Chapter two presents the analytical model used in the study. In this study the lattice 

model is used. In this review the initial development of 2D lattice model is briefly 

presented, followed by a more detailed focus of the development of 3D lattice model. 

Here, material considerations as well as geometry properties are presented. The 

constitutive models of concrete and reinforcement are explained. 

 

Chapter three presents the full development and application of the multi-directional 

polygonal 3D lattice model. In this chapter full consideration of the application of the 

model is given to static analysis of RC columns subjected to cyclic loading. On the 

other hand analysis of methodology od discretization of circular cross section columns 

based on circular to rectangular equivalence are compared to a more realistic 

representation of geometry using the multi-directional polygonal 3D lattice model. 

Cumulative seismic damage evaluation of RC columns is performed. 

 

In chapter four the numerical evaluation of seismic performance of RC structures is 

performed. Here the energy approach is explained and a damage index is proposed 

based on the strain energy of the lattice model elements. To perform the analysis, the 

multi-directional polygonal 3D lattice model is used and the applicability of the method 

is verified by performing analysis in RC column subjected to cyclic loading and 

dynamic analysis of RC column tested by shake table test, 

 

In chapter five the damage evaluation using energy dissipation is subject to an 

expansion of scope. An actual viaduct is analyzed. This is a viaduct that suffered 

damage during the Hyogo-ken Nanbu earthquake. The damage is compared to the actual 

registered damage in the structure. 

 

Finally chapter six includes conclusions based on the study and the multiple aspects of 

it and from that a few recommendation for a future study on the topic discussed in this 

thesis. 
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2.1. Introduction 

It is fundamental that the performance of RC structures can be simulated using 

nonlinear analytical models that are both objectively simple to handle and accurate. in 

seismic analysis of RC structures, many nonlinearities related to geometry and the 

material require that the analysis criteria is handled with appropriate analogies, and the 

most essential methods in order to do this treat the structure as a 2 dimensional (2D) 

element. However in a seismic event, actual ground motions imposed on RC structures 

work against the actual 3 dimensional (3D) structures from different directions along the 

principal axis. With that it is important to be able to carry the nonlinear analysis of RC 

structures in 2D and 3D spaces with a method that is both accurate and objective while 

preserving a sensible need for calculation time and CPU processing power. To meet 

these requirements, in this study the lattice model first proposed by Niwa et. al (1995) 

for 2D space and enhanced by Miki and Niwa (2004) for 3D space is focused. This 

model predicts the shear carrying capacity of RC members based on arch and truss 

analogy to treat concrete as a material. In this chapter the formulations of 2D lattice 

model and 3D lattice model which are described. 

 

2.2. Outlines of 2D Lattice Model 

The lattice model consists of members representing concrete and reinforcement. Figure 

2.1 schematically shows the lattice model of RC column. In the lattice model, arch 

action and truss action are considered as the shear resisting mechanism of a structural 

member is. For the 2D lattice model, a RC member in 3D is presented as the 2D model 

based on the plane stress condition. The concrete is modeled into flexural compression 

members, flexural tension members, diagonal compression members, diagonal tension 

members, vertical members, or arch members. For RC column, longitudinal and 

transverse reinforcement are modeled into horizontal and vertical member, respectively. 

 

The diagonal compression members and the diagonal tension members represent the 

truss action of shear resistance mechanism in the lattice model. The 2D lattice model is 

categorized as a fixed angle truss model in which the diagonals are assuming as the 45° 

angle of inclination trusses. By incorporating the arch member to represent the arch 

action, the lattice model can be used to estimate the changing direction of internal 

compressive stress flows after diagonal cracking. For the lattice model, the arch part 

should be located along the compressive stress flows inside a RC member.  

2. ANALYTICAL MODEL 
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The arch and truss analogy allows the consideration of shear resisting mechanism. In 

other words, in the discretization process the concrete is divided into truss and arch 

members. When the value of t is defined as the ratio of the width of the arch part to the 

width of cross section b, the widths of the arch part and the truss part are given by bt 

and b ( 1 − t ), respectively, where 0 < t < 1. The value of t is determined based on the 

theorem of the minimization of the total potential energy for the 2D lattice model with 

the initial elastic stiffness. Figure 2.2 shows a detailed diagram of cross section of RC 

column modeled using 2D lattice model. 

 

Lateral force

Cross section

d

d: Effective 

Depth

Loading direction

   

(a) RC Column                     (b)  2D Lattice model 

Figure 2.1 Outline of 2D lattice model (Miki 2004) 

 

Figure 2.2 Cross section of RC member modeled  

by 2D lattice model (Miki 2004) 
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In the modeling due to the existence of reinforcing bars for flexural tension members 

the concrete still contributes to tensile resistance even after cracking. In that manner the 

cross-sectional area of concrete flexural members, for simplicity, is determined by 

considering the bond effect between concrete and reinforcing bars, and the 

cross-sectional area of the flexural tension or compression member is assumed to be the 

product of the double depth of cover concrete and the width of cross section.  

 

2.3. Material Models 

2.3.1. Compressive stress-strain relationships for concrete 

In this study, in order to take into account the confinement effect by transverse 

reinforcement that is observed when a suitable amount of transverse reinforcement is 

used to confine the concrete, the stress-strain relationship proposed by Mander et al. 

(1988) as expressed by Equation 2.1 and illustrated in Figure 2.3, is used as a material 

model for the diagonal compression members and the arch members. Under these 

circumstances a significant increase in both compressive strength and ductility can be 

expected  
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where, fc’ is the uniaxial compressive strength of the concrete, rw is the transverse 

reinforcement ratio (= Aw / bws), Aw is the cross-sectional area of the transverse 

reinforcement, bw is the width of web concrete of a RC member, s is the transverse 

reinforcement spacing, and fwy is the yield strength of the transverse reinforcement. 

 

Moreover Vecchio and Collins (1986) demonstrated that the compressive stress of 

diagonally cracked concrete decreases as the transverse tensile strain, εt, increases, as 

shown in Figure 2.4. Therefore, the value of εt, for the diagonal tension members, 

which are normal to the diagonal compression members, is used to determine the 

coefficient to express concrete compressive softening, η. The behavior of the cracked 

concrete in compression is then characterized by Equation 2.9. For the arch member, 

the transverse tensile strain of the diagonal tension member near the loading point is 

used. 
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where  o
’
 is equal to 0.002.  The tensile strain  t of the diagonal tension members, 

which is the normal direction to the diagonal compression member, is used to determine 

the coefficient of the compressive softening of concrete. 

 

0 

cc’ 

Figure 2.3 Compressive model of concrete 

c’ 

o’ 

c’ 

 fcc’ 

 fc’ 

Uncracked concrete 

(=1.0) 

Ec Ec 

Confined by transverse reinforcement  

Figure 2.4 Reduction in compressive 

     strength of cracked concrete 

 

o’ 

 fc’ 

fc’ 

c’ 

c’ 
0 

c’ 

c’ 

c’ 

t 



17 
 

 

 

 

 

 

 

 

 

 

 

 

 

Conversely for flexural compression members including the cover concrete, the 

quadratic stress-strain relationship illustrated in Figure 2.3.that has been proposed by 

Vecchio and Collins (1986) is adopted as Equation 2.10 shows. 

 

  2

00 `/`)`/`(2`.`  cccc f                                      (2.10) 

 

In the case of flexural compression members, because the direction of compression 

stress is assumed to correspond to the direction of the principal tensile strain, the effect 

of compressive softening behavior represented by the Equation 2.10 is neglected, thus 

 = 1.0. 

 

 

2.3.2. Tensile stress-strain relationships of concrete 

For the flexural tension members prior to cracking, a linear-elastic relationship is 

applied, while the tension stiffening curve proposed by Okamura and Maekawa (1991) 

defined by Equation 2.11 and illustrated in Figure 2.6 is applied after cracking. The 

strain at crack initiation,  cr is assumed to be 0.0001 (100 μ). 
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where , ft  is the uniaxial tensile strength of concrete. 
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The diagonal tension members exhibit elastic behavior prior to cracking. However, once 

a crack occurs, concrete is assumed to exhibit tension softening behavior. In this study, 

softening behavior, expressed by the 1/4-model (Uchida et al. 1991) shown in Figure 

2.7 and Equations 2.12 and 2.13, is applied to the diagonal tension members 

 

)./(75.01 LfG tFcr                                                (2.12) 

 

)./(0.52 LfG tFcr                                                 (2.13) 

 

where, ft is the splitting tensile strength of concrete and L is the element length. Here, 

the fracture energy of concrete, GF, is assumed to be standard value of 0.1 N/mm. 

 

2.3.3. Reinforcement model 

The stress-strain relationship of the reinforcement is expressed as an elasto-plastic 

model under monotonic loading. As shown in Figure 2.7, the stress-strain relationship 

of the reinforcement is bi-linear, having a tangential stiffness after yielding of Es /100 

(where Es indicates the elastic modulus of reinforcement). The unloading and reloading 

paths are also shown. After yielding, the Bauschinger effect which is when the stiffness 

of the reinforcement decrease as the stress state moves from tension to compression, 

while similar behavior is observed when the stress changes from compression to tension. 

is incorporated into the analysis using the model proposed by Fukuura et al. (1997).  

 

Figure 2.7 Stress-strain relationship of reinforcement under cyclic loading 
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2.4. Outlines of 3D Lattice Model 

The discretization of a RC structure using a 3D model allows the consideration of 

geometries and loading conditions that cannot be expressed by a 2D model. In this study, 

the extension from the 2D lattice model to the 3D lattice model presented is based on 

the concept of the conventional 2D lattice model which has been proved be previous 

studies that can appropriately predict the 2D response of RC structural members 

subjected to the monotonic or reversed cyclic loading (Niwa et al. 1995, Miki et al. 

2003a, 2003b). 

 

The detailed development of the 3D lattice model for RC columns is described by Miki 

and Niwa (2004) and furthermore by Miki (2004). Since in the lattice model, the shear 

resisting mechanism is divided into arch action and truss action, to represent the truss 

action, it is assumed that 3D space is comprised of an orthogonal coordinate system that 

is defined by three planes, such as x-y plane, y-z plane, and z-x plane. Two crossed truss 

members are located on each truss plane so that unit element consists of 12 truss 

members in six truss planes as shown in Figure 3.1 (a). In each truss plane, the in-plane 

2D constitutive law of concrete, with the consideration of the softening of compressive 

strength of diagonally cracked concrete depending on the transverse tensile strain 

(Vecchio and Collins 1986). 
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Figure 3.1 Discretization for 2D and 3D lattice models (Miki 2004) 
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In order to represent the arch action in the 3D lattice model for RC column, four arch 

members are arranged by connecting between the top and the bottom of the column at 

the opposite corners. The resisting mechanism of a RC column subjected to one certain 

load consists of two arch members crossing each other. The stiffness of these arch 

members is assumed to be equivalent to one of two arch members in the 2D lattice 

model. Two pairs of arch members are incorporated into the model symmetrically. 

When lateral load is applied on the RC column from the diagonal direction of the 

section, it is assumed that the corner-to-corner arch action (from the loading point to the 

bottom of a column at opposite corner) inside the RC member is idealized as a 

compressive strut.  

 

The value of t is defined by the ratio of the arch part width to the cross-sectional width 

of a RC member in the 2D lattice model as mentioned previously. Assuming the global 

stiffness of 3D lattice model to be equivalent to that of 2D lattice model, the 

cross-sectional area of the arch member can be identified. The schematic representation 

about the division of cross-section of the 3D lattice model is shown in Figure 3.3. Here, 

the ratios of the arch part width to the width, b and the depth, d in the cross section of 

the column are defined by tb and td, respectively. 

 

With the determination of value of t in the 3D lattice model, both the cross-sectional 

width of the column and the cross-sectional depth of the column are evaluated in 

preliminary analysis. According to the 2D lattice model, the values of tb and td in the 3D 

lattice model are determined based on the theorem of minimization of the total potential 

energy. 
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Figure 3.2 Partition of cross section in 3D lattice model (Miki 2004) 
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2.4.1. Configuration of elements 

(a) Concrete Elements 

Arch members 

The arch members assumed in the 2D lattice model and 3D lattice model are illustrated 

in Figure 3.3. The global stiffness of 2D lattice model and 3D lattice model are 

compared with each other, in that way the cross-sectional areas of arch member are 

presented in Equation 3.1 and Equation 3.2 as follows: 
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where Aarch-3 is the cross-sectional area of arch members in the 3 lattice model, arch-2D is 

the cross-sectional area of arch members in the 2D lattice model. The values of m, n are 

determined in which md and nd correspond to the width of cross section and the height 

of the column in the model, respectively. Here, d is the effective depth of cross-section. 

In the modeling, the height of the lattice model is not always equal to the height of the 

column because the horizontal or vertical distance of two adjoining nodes is determined 

based on the half of the effective depth d. Hence, the height and the width of the 3D 

lattice model are set on the dimensions of the structure comparatively close to actual 

dimensions. 
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Figure 3.3 Arch members in 2D and 3D lattice model (Miki 2004) 

x
z

y

x
z

y

x
z

y

x
z

y



22 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Truss members 

In the 3Dlattice model the horizontal or vertical distance of two adjoining nodes is equal 

to 0.5d, and then the thickness of the truss members on the side view of the column is 

equal to 0.5d⋅sin45°. In order to represent the truss mechanism along the principal 

direction in 3D space, it is assumed that the cross-sectional area of truss members inside 

a RC column is a half of that at the surface of the column. The cross-sectional areas of 

truss members in x-y plane, y-z plane, and z-x plane illustrated in Figure 3.4 by 

hatching are expressed as the following equations (Equations 3.21 to 3.23). 
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where, Atsuss-xy, Atsuss-yz, and Atsuss-zx are the cross-sectional areas of truss members in x-y 

plane, y-z plane, and z-x plane, respectively. b, h, and a represent the cross-sectional 

width, the cross-sectional height, and the shear span of the column, respectively. 

 

 

Figure 3.4 Truss planes in 3D lattice model (Miki 2004) 
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(b) Reinforcement Elements 

For longitudinal reinforcement and transverse reinforcement, horizontal and vertical 

members are used. Each reinforcement member is determined based on the actual cross 

section and actual location of reinforcements. Figure 3.5 shows the example of the 

arrangements of longitudinal and transverse reinforcements at the single layer in which 

there are no intermediate ties. Here, the longitudinal reinforcement is divided into eight 

elements in one layer as illustrated in Figure 3.5 (b). It is assumed that the 

cross-sectional areas of reinforcement along the side perpendicular or parallel to 

laterally loading direction are divided at a ratio of 1:2:1 (Figure 3.5 (a)). The 

cross-sectional areas of members of longitudinal reinforcement are expressed as the 

following equations (Equations 3.24 to 3.26). 
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where, As1, As2, and As3 are the cross-sectional areas at the corner of section, at the 

middle of tension extreme fiber, and at the middle of the side parallel to laterally 

loading direction, respectively. Similarly, Al is the cross-sectional area of longitudinal 

reinforcement. Here, nl and ns are the number of longitudinal reinforcement along with 
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Figure 3.5 Arrangements of longitudinal and transverse  

reinforcements with single layer (Miki 2004)  

(a)  Cross section of a column (b)  3D lattice model 
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the side perpendicular and parallel to laterally loading direction, respectively. 

 

In the lattice model, the transverse reinforcement is arranged at intervals of 0.5d 

throughout the model uniformly so that the actual transverse reinforcement ratio equals 

the model transverse reinforcement ratio. The transverse reinforcement ratio, rw of an 

actual RC structural member is calculated by the following equation: 

 

sb

A
r

w

w

w                                                            (3.27) 

 

where Aw is the cross-sectional area of a couple of transverse reinforcements, bw  is the 

width of the cross section of the RC member, and s is the transverse reinforcement 

spacing. 

 

 

2.5. Nonlinear Analysis Procedure 

The nonlinear analysis procedure is done based on computer programs that have been 

developed to facilitate the process (Miki et al.2004). The static analysis case is 

performed for a monotonic and cyclic loading, and the dynamic analysis is done 

assuming that the mass equivalent to the self-weight of the structure is distributed over 

all the nodal points. Moreover it is assumed that a concentrated mass having the weight 

of superstructure applies uniformly on the nodal points at the top of the structure. 

 

The numerical procedure implemented in the computer program is explained below. 

The equations of motion are formulated to satisfy the equilibrium condition for the 

structure. Then, prior to time integration, nodal displacements of the lattice model are 

converted into those in the generalized coordinates by using the mode shape vector. The 

mode shape vector of vibration is obtained as the solution for the free vibration 

equations neglecting the damping. The mode of vibration can be obtained by solving the 

Eigen problem. In this study, the subspace iteration method is used to solve the Eigen 

problem. 

 

The stiffness matrix, K can be obtained from the tangent stiffness considering the 

material nonlinearities of concrete and reinforcement. The damping is assumed to be 

proportional to a combination of the mass and the stiffness matrices, so-called the 

Rayleigh damping. However, this damping formulation has no physical meaning and 
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may lead to the damping with unexpected vibration mode shapes. From a previous 

studies (Hilber et al.1977, Sing et al.1991), it was pointed out that when the factor in the 

Newmark method,  was given as the value that was present, and consequently it was 

possible to attain unconditionally stability and a favorable energy dissipation property if

 25.04/1   . Therefore, in the analysis, it is assumed that the viscous damping is 

neglected (h = 0). In addition, the numerical damping of the Newmark method with 

factors 36.0 and 70.0 is used as time integration (committee 311 2002). Here 

a time interval is set as 0.01 sec. Moreover, since the nonlinear responses appear when 

RC structures are subjected to large ground motions, it is necessary to iterate the 

calculation until a sufficiently converged solution is obtained. In this study, the 

Newton-Raphson iteration method is used to iterate until an adequately converged 

solution is obtained. 

 

In order to check the convergence, the out-of-balance force and the energy increment 

are compared with each initial value during the iteration. The convergence tolerances 

for the out-of-balance force and energy are set at 0.001 and 0.01, respectively 

(Miki.2004). 

 

 

2.6. Cyclic Analysis of RC Columns Using 2D Lattice Model 

In order to demonstrate the applicability of 2D lattice model , analysis of RC column in 

static case under cyclic loading is performed and compared the analytical results to 

experimental results on RC column experimentally loaded laterally and expected to fail 

either in flexure of shear. An analysis previously carried by Miki (2004) is here 

presented to demonstrate the applicability of the 2D lattice model. 

 

2.6.1. Outline of experiment and analysis 

The experiment was carried out by Takemura et al. (1997) on RC bridge piers subjected 

to static reversed cyclic loading are analytical target. The specimen and arrangement of 

reinforcement are illustrated in Figure 4.1. The specimen is a cantilever RC bridge pier 

with a cross section of 400 mm by 400 mm. The reversed cyclic loading was applied by 

controlled horizontal displacement at a point 1,245 mm above the base of the pier. The 

uniaxial compressive strength of concrete was 35.7 MPa, yield strength of longitudinal 

reinforcement is 363 MPa and nominal diameter SD295 D13 and yield strength of 

transverse reinforcement is 368 MPa and nominal diameter SD295 D6. 
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In the experiment, the displacement amplitude was increased stepwise in the increments 

of nδy (n = 1, 2, 3…) at each cyclic loading step. Here, δy is the lateral displacement at 

the initial yielding of longitudinal reinforcement at the bottom of the pier and is taken as 

δy= 6mm. During the test, a constant axial compressive load of 156.7 kN was applied at 

the top of the pier; this is equal to an applied axial compressive stress of 0.98 MPa. 

 

The specimen subjected to cyclic loading is analyzed by the 2D static lattice model. In 

Figure 4.2 analytical model is presented. To simulate RC piers subjected to reverse 

cyclic loading, the flexural compression members and flexural tension members are 

assumed to have the same cross-sectional area. In addition, since the specimen is a 

cantilever RC pier, two intersecting arch members connecting the loading points at the 

top of the pier and the opposite pier-footing connections are provided. Here, from the 

results of pre-analysis already described, the value of t is obtained as 0.20. The applied 

axial compressive load at the top of the pier is uniformly distributed over the top three 

nodes. 

 

2.6.2. Lateral force-displacement characteristics of RC column 

The lateral force-lateral displacement relationships obtained in the experiment and static 

lattice model analysis are shown in Figure 4.3. The experimental result shows that the 

longitudinal reinforcement initially yields on the flexural tension side at the bottom of 

the RC bridge pier.  

 

Figure 4.1 Specimen details and test setup (Takenuma et al. 1997) 
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As the lateral displacement increases gradually after reversing the loading direction, the 

longitudinal reinforcement behaves plastically and deforms laterally outwards in a 

process referred to as buckling. Ultimately, the lateral load-lateral displacement curve 

reaches the post-peak region accompanied by the buckling of longitudinal reinforcement 

and the spalling of cover concrete. In the analytical result (shown in Figure 4.3b)), the 

behavior of the RC bridge pier is found to be close to the experimental result. The 

comparison of two results indicates that the analytical method is applicable to the 

prediction of the initial stiffness, the load carrying capacity, and the cyclic behavior of 

RC bridge piers after the yielding of longitudinal reinforcement. The behavior can be 

successfully predicted. However, it is also confirmed that further softening behavior in 

the post-peak region is not properly predicted by the analysis. 
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Figure 4.3 Lateral force and lateral displacement relationships  
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2.7. Static Analysis of RC Columns Subjected to Bilateral Loading Using 3D 

Lattice Model  

The 3D lattice model has been developed based on the 2D lattice model as previously 

stated. One of the new and key features of analysis in 3D space is that the assumption of 

plane stress is no longer used and therefore the bilateral loading of RC columns can be 

used to verify the expansion of scope of 3D lattice model from 2D case. In that sense, to 

show the consequent extension from 2D analysis to 3D analysis using the lattice model, 

static analysis of RC columns subjected to bilateral loading is performed. The analysis 

previously carried out by Miki (2004) in his work is used. 

 

 

2.7.1. Outline of experiment and analysis 

A set of experiments were carried out by Kawashima et al. (1991, 1993) on RC bridge 

piers subjected to static reversed cyclic loading. In these experiments in order to 

investigate the effect of biaxial loading, the test was conducted for RC bridge piers 

subjected to bending from the diagonal direction of the section. The tests were for the 

square sectional piers. The dimensions and reinforcement arrangement of the specimen 

are illustrated in Figure 4.4 and loading directions in Figure 4.5. 

 

The piers were three RC bridge cantilevers with a square cross section of 500 mm × 

500 mm. All reinforcing bars had a minimum of 35 mm of concrete cover. The diameter 

of longitudinal reinforcing bars was 13 mm, and consequently the longitudinal 

reinforcement ratio was 2.03 %.  
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Figure 4.4 Details and arrangement of specimen 
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The transverse reinforcements were 9 mm diameter round bars with 250 mm spacing. 

Hence, the transverse reinforcement ratio was 0.10 %. The longitudinal reinforcement in 

all piers had the nominal yield strength of 295 N/mm2, while the transverse 

reinforcement had nominal yield strength of 235 N/mm2. The average compressive 

strength of concrete was 31.3 N/mm2 in the column P−10 and 39.8 N/mm2 in columns 

P−33 and P−34. The piers had an identical dimension and arrangement of reinforcement, 

while the loading direction is different each other. In the column P−10, the lateral load 

was provided along the principal axis, while in the columns P−33 and P−34, the load 

was provided in the direction of a diagonal of the pier cross section. For the specimens 

of P−33 and P−34, the loading stub at the top portion of the pier was inclined from the 

principal axis as were 30 and 45, respectively. 

 

In the experiment, the displacement amplitude was increased step wisely in increments 

of n⋅δy (n = 1, 2, 3…) at each loading step. Here, δy was determined as the lateral 

displacement when the measured strain of the longitudinal reinforcement at the bottom 

of the pier firstly reached the yield strain of 1,800μ, and was taken as δy= 13 mm in the 

column P−10. The yield displacement was used to control the displacement in both 

columns P−33 and P−34. The loading cycles were controlled of ten each cycle at the 

same amplitude. 

 

 

2.7.2. Analytical results and discussion 

The experimental lateral load-lateral displacement relationships at the top of the pier for 

each specimen are shown in Figure 4.6. In all specimens, similar behavior was 

observed while the development of damage was significantly different. However in 

analysis For the specimen P−10, the analytical and experimental results are found to 

show the good agreement with each other.  

 

Figure 4.5 Loading condition 

P33 ( = 30) 

 

P10 ( = 0) P34 ( = 45) 
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Matching with experimental observation, the buckling behavior of longitudinal 

reinforcement is predicted at the lateral displacement of more than 55 mm. However, 

the divergence of analytical results from the experimental results is observed at the large 

deformation range. This is because that the fracture of longitudinal reinforcing bars due 

to the low-cycle fatigue is not incorporated in the analysis. 

 

In the specimen P−33, the analytical load-displacement relationship is also found to be 

close to the experimental result. It is found that the flexural ductility of these square 
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Figure 4.6 Lateral load-lateral displacement relationships obtained by the 

cyclic loading test and static 3D lattice model 
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piers subjected to bending from the direction of section diagonal is almost similar to 

that for bending from the direction of a principal axis of the section. In both the 

experiment and analysis, the slight increase in the load carrying capacity is observed. 

After the analytical displacement exceeded around 40 mm, the gradual decrease in the 

lateral force can be observed in the post-peak region of load-displacement relationship. 

That is similar to the experimental observation. This point is corresponding to the 

compressive softening of concrete at the base of the pier and the initiation of the 

buckling of longitudinal reinforcement. 

 

For specimen P − 34, it can be observed that the experimental and analytical 

load-displacement curves and its envelope curves are very close to each other. The 

analytical and experimental comparison of the load carrying capacity of RC piers 

indicates that there is slight difference with the load carrying capacity if the lateral load 

is applied from the direction of a principal axis of the section. The tenth cycle for the 

same displacement produced nearly the same response and the degradation of stiffness 

cannot be observed until the lateral displacement reached at 50 mm. 
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3.1. Introduction 

Circular cross-sectional RC columns are favored for bridge piers, because of relative 

simplicity of construction as well as omnidirectional strength characteristics under wind 

and seismic loads
 
(Ang et al. 1989). Under those conditions, some very important issues 

arise: the first one is related to the ability of the column shear resistance considering that 

the design procedures and formulas that are adopted are based on experimental work 

performed essentially of rectangular shaped cross-sections. Therefore it is important to 

consider the particular case of circular cross-sectional geometry in RC columns. 

 

Based on previous studies (Miki and Niwa 2004), the 3D lattice model has shown 

capabilities of prediction of shear behavior of RC structural members with relative 

simplicity of analytical procedure. Because of that, an analysis mechanism has been 

developed for circular cross-section RC columns using the 3D lattice model based on 

the concept of a more realistic multi-directional polygonal discretization. The 3D lattice 

model for a circular column is named multi-directional polygonal 3D lattice model 

(Simão and Miki 2015). 

 

3.2. Modeling and Geometry of Members 

In the multi-directional polygonal 3D lattice model, the discretization of the circular 

column from solid concrete to the 3D lattice model is performed so that the actual 

cross-sectional diameter, D of the analytical model corresponds to that of the original 

target which means that target diameter defines mesh size and model height, or 

geometry of the model.   

 

The arch and truss discretization is shown in Figure 3.1. The arch action is defined by 

four arch members, as shown in Figure 3.2, connected from the loading point to 

opposite bottom of the column which is representative of internal stress flow. This is 

largely a simplification from the general 3D lattice model case where it is assumed that 

the compressive portion in arch action is sufficiently represented in the pair of arch 

members. Along the principal axis, after the loading is reversed, the direction of the 

compressive stress changes to the orthogonal direction, this is a fundamental for the 

representation of symmetrical pairs of arch members. The representation of the truss 

action, schematically represented in Figure 3.3, is performed on a 3D space. 

3. DEVELOPMENT AND APPLICATION OF MULTI-DIRECTIONAL 

POLYGONAL 3D LATTICE MODEL 
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In the 3D space, the representation of the truss elements is divided in three parts as 

shown in Figure 3.3, which are inner diagonal members (IDM) in Figure 3.3 (a), 

surface diagonal members (SDM) in Figure 3.3 (b) and diagonal members in transverse 

direction (DMT) in Figure 3.3 (c), respectively. The modeling of diagonal members is 

preceded by the distribution of sixteen peripheral nodes for every horizontal layer. The 

distance between two successive layers is equal to half of the diameter i.e. 0.5D, the 

in-plane nodal positions are set according to their polar coordinates defined by x = r 

cosφ and y = r sinφ in an orthogonal system, where r is the radius and φ is the internal 

angle defined by a triangle formed by joining two successive node to each other and the 

center node. In the case of inner diagonal members, each node at the surface is directly 
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connected to the lower or upper node in the central group on nodes.  

 

For the surface diagonal members the nodes are connected successively along the 

surface area and in the case of diagonal members in transverse direction as shown in 

Figure 3.3 (b), sixteen peripheral nodes are connected to a center node for every layer 

of nodes as shown in Figure 3.3 (c), and every node is connected to the second 

following node. In the lattice model, the height of the analytical model does not always 

correspond to the height of the target, but rather the closest dimension. This is due to the 

fact that distance between two nodes in vertical direction is fixed as half of the diameter. 

Longitudinal reinforcement is represented as vertical reinforcement member along the 

sixteen nodes defining the geometry of the model. Regarding transverse reinforcement, 

it is represented in the form of horizontal reinforcement members uniformly distributed 

at intervals of 0.5D throughout the model as the intervals of arrangement are not taken 

into account. In the model it considered that concrete and steel are perfectly bonded and 

no bond degradation is observed for simplicity in analysis. 

 

3.3. Cross-Sectional Area of Lattice Members 

The process of determination of cross-sectional area of arch and diagonal members in 

the multi-directional 3D lattice model is performed considering the particularities of the 

cross section of the analytical target. As previously stated, the diameter of the model is 

invariant for the definition of geometry of the analytical model. Previous researches 

(Pique and Burgos 2008, Merta and Kolbitsch 2006) refer to the fact that under severe 

seismic loading inelastic response and cracking of concrete is observed. Under those 

conditions, the shear resisting area of concrete and the structural stiffness conditions 

     

(a)                (b)                       (c)  

Figure 3.3 Representation of the truss elements 

Inner diagonal members (IDM) Surface diagonal members (SDM)

Diagonal members in transverse 

direction (DMT)
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will be affected. In order to take those conditions into account in analysis the notion of 

analytical diameter is introduced in order to facilitate the calculation of the 

cross-sectional area of lattice members considering the effects of such conditions and 

generally improve the performance of the analytical model. With that, analytical 

diameter is the defined as the diameter obtained from analytical conditions to calculate 

the cross-sectional area of arch and truss members.  

 

With that, the transformation from solid concrete to truss and arch members analogy 

tries to offer a more realistic discretization of RC columns. In the 3D lattice model, 

material nonlinearity is already considered; however in this study reduction factors are 

used to better consider material nonlinearity, especially reduction of cross-sectional area 

of trusses to account the effect of cracking. Based on that, in this research two different 

approaches are studied: the first one is the shear resisting capacity of concrete as 

discussed by Merta and Kolbitsch (2006). In their work they derived the effective shear 

area of circular cross-section columns purely analytically. The ratio of the effective 

shear area to gross section area was expressed as a function of the neutral axis depth for 

different values of the concrete cover. For a typical value of neutral axis depth, it was 

shown that the effective shear area ranges between 0.6 and 0.8 times the sections gross 

area depending on the depth of the concrete cover.  

 

A second approach used to consider the change is mechanical properties after cracking 

of concrete is the degradation of stiffness EI. Pique and Burgos (2008) extensively 

studied the effective rigidity of reinforced concrete elements in seismic analysis and 

observed in their work that stiffness degradation can be observed along the element 

length after cracking of concrete. However it is not practical to evaluate the stiffness 

degradation in various cross-sectional portions individually, because of that reasonable 

average reduction factor values must be adopted. Reduction factors of moment of inertia 

to consider the averaged effect of stiffness degradation ranging from 0.4 to 0.7 times 

gross moment of inertia are considered in the pre-analysis in this study based on the 

work presented by the previous study by Pique and Burgos (2008). 

 

 

3.3.1. Cross-sectional area of arch members 

For the determination of the stiffness matrix in the arch members, it is assumed that a 

single arch member is representative of the stress flow for analysis purposes. The 

equivalence of global stiffness of structural systems in 2D and 3D is assumed. The 
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geometrical properties of the circular cross section column are considered the same in 

the transverse plane directions. 

The structural stiffness matrices for the 2D and 3D lattice model, K2D and K3D, are 

expressed using the direct stiffness method as follows: 

 

 

K2D =

































0

0.

01

0000

00

0101

1
2

22

2

2

msym

m

mmm

mm

m

D                                       (3.1) 

 

K3D =



































1

.

11

111

1111

2
2

2

22

2

3

mmsym

m

m

mmmmm

mm

m

D
                                 (3.2) 

In this case, 
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where, Aarch-2D and Aarch-3D are representatives of the cross-sectional areas of arch 

members for both the 2D and 3D lattice models. larch-2D and larch-3D are the lengths of 

arch members in the 2D and 3D lattice models. Ec is the Young’s modulus of concrete. 

m is set so that that mDana corresponds to the height model, furthermore D is the 

diameter of cross section of the column. 

Regarding the cross-sectional area of an arch member of concrete in the 3D lattice 

model, the equivalence in global stiffness is used for the computation of the relationship 

between the arch members in 2D and in 3D assuming a single representation of the 

stress flow in the arch part and expressed by Equation 3.4. 
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where, in the 2D case it is assumed that the length of the arch band corresponds to the 

full length of diameter for simplicity, and  is the inclination of the arch member in the 

2D lattice model. 

 

 

3.3.2. Cross-sectional area of truss members 

The determination of the truss action in the multi-directional polygonal 3D lattice model 

is performed based on the omnidirectional nature of the circular cross section. Therefore, 

the cross sectional area of diagonal truss members will be determined according to the 

formulas shown in Equations 3.6, 3.7 and 3.8, respectively. Because of the 

high-contribution to stiffness that the IDM have in response, a stiffness adjusting factor 

β empirically determined in pre-analysis between 0.5 and 0.9 is necessary in the 

calculation of the cross-sectional area of the IDM.  
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where AIDM, ASDM and ADMT, represent the cross-sectional areas of the inner diagonal 

members, surface diagonal members and diagonal members in transverse direction in 

the 3D space. Here a represents the shear span, Dana is the analytical diameter, m is set 

so that that mDana corresponds to the height model.   



40 
 

3.4. Parametric Analysis of Relationship between Arch and Truss Members 

3.4.1. Introduction 

In the modeling of RC structures using the multi-directional polygonal 3D lattice model, 

a certain level of uncertainty can be observed due to the interaction between the arch 

and truss analogy and the use of reduction factors as well an multiple other analogies. In 

order to extend the arch and truss analogy to a 3D case using the multi-directional 

polygonal 3D lattice model, it is important to understand first how much the response of 

the analytical target is affected by using different relationships between the arch and 

truss members through the value of t. From that a clear tendency in behavior can be 

grasped and the use of reduction factors can be done much more effectively. 

 

3.4.2. Effect of value of t 

In order to investigate the effect of value of t fundamental 2D lattice model analysis of 

rectangular cross-section RC column is presented. The arch and truss analogy used in 

the multi-directional polygonal 3D lattice model is largely an extension of the approach 

proposed in previous studies (Miki and Niwa 2004), therefore using a 2D approach 

allows a simple and clear validation of the assumption. The analysis presented has been 

conducted by Miki (2004) and is here used. The analytical target is shown in Figure 3.4. 

The parameters of the column are as follows: fc’ = 27.0 N/mm2, fy = 380 N/mm2, Es = 72 

kN/mm2, fwy = 360 N/mm2, and Esw =175 kN/mm2. The longitudinal and transverse 

reinforcement ratios are set as 2.38 % and 0.056 %, respectively. The Constant 

compressive axial force of 79.7 kN is applied at the top of the column. 
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The analytical results are shown in Figure 3.5. In his calculation, Miki (2004) 

determined the value of t based on the theorem of minimization of total potential energy 

as 0.2. However by extending the limits from 0.1 to 0.9 it is visible that the smaller 

values show a higher energy dissipation capacity up to the large deformation range. 

With the increase of t the maximum force is slightly increased. Based on that, it is 

possible to assume that in the multi-directional 3D lattice model, any changes in the 

relationship between arch and truss part will likely affect the energy dissipation capacity 

based on visible changes in the maximum displacement while changes in the maximum 

force are marginal in their contribution. In the modeling of RC structures using the 

proposed analytical model it becomes then necessary to pay attention at all steps to the 

energy dissipation capacity. It remains to be studied to real arch effect in circular RC 

columns, however this analysis gives a valuable benchmark to be used in circular 

columns in conjugation with reduction factors. 
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3.5. Linear-Elastic Analysis of Circular-Cross Section RC Columns 

3.5.1. Introduction 

In order to verify the applicability of the two analytical cases previously discussed, one 

related to the hypothesis of reduction of shear area of concrete and a second one related 

to degradation of stiffness EI, linear-elastic analysis will be conducted on a circular 

cross-section column and the analytical results compared to a linear-elastic curve 

response determined by the elasticity theory. Here the analysis is centered in stress 

conditions that will not produce any yielding in the target column. The analytical 

relationship that has been applied the determination of the load-displacement 

relationship in elastic range is presented in Equation 3.9. 

 

EI

Pl
d

3

3

                                                                     (3.9) 

 

where d is the displacement, P represents the load, l represents the length of the column, 

E is the Young’s modulus and I the moment of Inertia. 

 

3.5.2. Outline of analytical target 

The analytical target is a circular cross sectional column tested by E-Defense. The target 

of this study is the C1-5 column (Kawashima et al.2010). The detailed description of the 

target of analysis, including arrangement of reinforcement is shown in Figure 3.4. The 

specimen C1-5 is a cantilever circular column with diameter 2000 mm. The heights of 

the column and footing correspond to 7500 mm and 1800 mm respectively. The 

longitudinal and transverse reinforcement have a nominal strength of 345 MPa and the 

design concrete strength of 27 MPa. Sixty four deformed 35 mm diameter longitudinal 

bars are presented in two layers, while deformed 22 mm circular ties are set at 150 mm 

and 300 mm intervals in the outer and inner longitudinal bars. 

 

3.5.3. Discretization of target 

In order to analyze the target presented in Figure 3.6, two analytical cases are set for 

static analysis. For analytical case one (AC-1) and analytical case two (AC-2) the 

multi-directional polygonal 3D lattice model is used. In the modeling for AC-1 and 

AC-2 geometrical properties defined by the mesh size and height of the models are 

precisely the same. 



43 
 

 

The geometry of AC-1 and AC-2 is shown in Figure 3.7. The dimension of the truss 

members and arch members differ between AC-1 and AC-2. In the AC-1 Dana is 

obtained from effective shear area of concrete determined to be a value corresponding to 

0.7 of the gross area of concrete. In the AC-2, Dana is derived from the flexural stiffness 

EI, and corresponds to 0.5 of the gross moment of Inertia. These reduction factor values 

were obtained in pre-analysis by calibrating the analysis each time until satisfactory 

load-displacement curve was obtained. However the benchmarks used are those referred 

by the literature (Pique and Burgos 2008, Merta and Kolbitsch 2006). The analytical 

diameters obtained for analysis are 1673.32 mm for AC-1 and 1829.38 mm for AC-2. 

 

3.5.4. Analytical results and discussion 

The analytical results of the load-displacement for the target column C1-5 are presented 

and subjected to discussion for the proposed analytical cases. The results for analytical 

case AC-1 Figure 3.7 (a) and analytical case AC-2 are presented in Figure 3.7 (b). The 

analytical results of AC-1 shows acceptable degree of agreement between the analysis 

and the linear-elastic theory plot regarding elastic stiffness. The proposed cases capture 

the elastic stiffness in elastic phase both acceptably. AC-1 produced a slightly bigger 

analytical diameter then AC-2. One of the key issues during the development process of 

the multi-directional polygonal 3D lattice model was a tendency to overestimate plastic 

stiffness. These two approaches for all their merits also address this issue. 
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Figure 3.6 C1-5 specimen details (Kawashima et al.2010)  



44 
 

 

With the above results it is confirmed the validity of the effective shear hypothesis and 

the effective stiffness hypothesis based on comparison with the elastic stiffness obtained 

from the elastic theory. Since the results are quite similar, one of the conclusions that 

can be drawn is that both approaches can equally be applied to discretize a circular 

cross-section column using the multi-directional polygonal 3D lattice model. 

 

 

3.6. Static Analysis of Circular RC Columns Subjected to Cyclic Loading 

3.6.1. Outline of analysis 

In order to further confirm the performance of the multi-directional 3D lattice model, 

the model was verified by the simulation of RC column that has been subjected to cyclic 

loading experimentally. The target is a circular cross section column tested named C-29 

(Hoshikuma et al. 2013). In previous sub-chapter a discussion on the hypothesis of 

effective shear area and effective flexural area was introduced. One of the conclusions 

at that level was that these two approaches could equally be applied in the 

multi-directional polygonal 3D lattice model. Based on that, a more detailed look will 

be presented here on the sensitivity analysis of reduction factor based on degradation of 

stiffness. In other words in this study, the stiffness degradation is analyzed considering 

the applicability of stiffness reduction factors to represent the effect that a cracked 

section has in the actual design and response of RC columns. To perform the analysis, 

the focus will be on the degradation of flexural stiffness. In a more specific way, 

parametric analysis was conducted in order to verify the effective applicability of 

moment of inertia (second moment area) reduction factors. The assessment of stiffness 

 

(a)                                   (b)  

Figure 3.7 Load-displacement of AC-1 and AC-2 
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degradation induced by seismic damage is verified by the simulation of RC column that 

has been subjected to monotonic loading experimentally.  

 

Column C-29 details are shown in Figure 3.8. The cross section is circular with 

diameter of 600 mm and column height of 3410 mm, respectively. The compressive 

strength and Young’s modulus of concrete are 31.8 N/mm2 and 28000 N/mm2, 

respectively. The longitudinal reinforcement of D10 has yield strength of 397 N/mm2 

and the transverse reinforcement D6 has yield strength of 397 N/mm2, respectively 

 

The benchmark inertia reduction factors suggested by previous studies range from 0.4 to 

0.8 times gross moment of inertia (Pique and Burgos 2008, Paulay and Pristley 1992) 

and were considered in pre-analysis. However, during the pre-analysis, the decision was 

made to select three analytical cases, each corresponding to a specific reduction factor 

of inertia that presented the most effective demonstration of the effect of inertia 

reduction factors. In that way analytical case one denoted as C-29(1) corresponds to an 

effective inertia of concrete of 0.8 times the gross moment of inertia of concrete, 

analytical case two denoted as C-29(2) corresponds to the effective moment of inertia of 

0.6 times the gross moment of inertia, and analytical case three denoted as C-29(3) 

corresponds to an effective inertia of 0.4 times the gross moment of inertia. The 

obtained effective moments of inertias were the used to calculate analytical diameter 

used to discretize the RC column in the multi-directional 3D lattice model. In all 

analytical cases the value of t is set as 0.4.  

 

     

Figure 3.8 C-29 specimen details (Hoshikuma et al. 2013)  
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3.6.2. Analytical results and discussion 

The analytical results presented in Figure 3.9 show that there is a considerable 

difference in the load-displacement relationships for the analytical cases. Based on 

hysteretic agreement, C-29(3) presents more agreement between the analysis and the 

experiment, while C-29(1) presents less agreeability regarding the predicted the 

hysteresis of the target.  

 

Looking at the results, it is possible to infer that that in the case of AC1 and AC2, the 

tendency is to underestimate the displacement and overestimate the lateral load. The 

case of AC3 shows that actually a more significant reduction in effective inertia is 

necessary in analysis, when compared to the literature, to more accurately represent the 

response. One of the reasons behind it is related to how reinforcement is treated. In the 

discussion about reduction factors proposed, Pique and Burgos (2008) mention that in 

their analysis there is no special consideration on the effects of reinforcement ratio, 

meaning that reinforcement is treated as a typical reinforcement ratio; i.e. it is not given 

special attention to the ratio between confined concrete and the amount of reinforcement. 

However, the pre-analysis of the target column C-29 in this study proved that the 

dominance of concrete part of the column cannot be neglected, and one of the effects is 

the need to further decrease the reduction factors in order to account for this effect. 

Figure 3.9 C-29 load-displacement relationships 
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In terms of hysteretic energy dissipation capacity, it is valuable to focus first on cases 

C-29(2) and C-29(3) because they produce close values of energy dissipation, and 

compare them to the energy dissipation produced by the experimental results. The 

experimental hysteretic energy dissipation corresponds to 27.5 KN-m while AC2 

corresponds to 30.2 KN-m and C-29(3) corresponds to 30.5 KN-m. However, looking at 

the load-displacement relationships presented in Figure 3.9, it is clear that although 

C-29(2) and C-29(3) present very similar hysteretic energy dissipation, the distribution 

of energy based on hysteretic response of C-29(3) is far more agreeable with the 

experiment than C-29(2). In other words the hysteric response similarity between 

C-29(3) and the experiment suggests a much more similar mechanism of energy 

dissipation than that of C-29(2) and the experiment. On the other hand the tendency of 

C-29(1) is to overestimate energy dissipation capacity. Here the hysteretic energy 

dissipation of AC1 corresponds to 47.9 KN-m. 

 

3.7. Discretization Method Analysis of Circular RC Columns 

3.7.1. Introduction 

The highly nonlinear behavior that reinforced concrete (RC) structures exhibit in the 

occurrence of an earthquake is at the top of priorities in the analytical development of 

numerical techniques to study seismic behavior. Many techniques are available to 

perform seismic analysis of RC columns. Columns are especially vulnerable against 

lateral loads induced by seismic action result in many times in shear failure as a 

dominant mode of failure. In seismic design of RC columns, the geometry of the section 

has a strong influence on the shear capacity of the member. However the majority of the 

codes simply assume that the shear capacity of a circular cross section equals the 

capacity of an equivalent rectangular section (Merta 2004). With that in mind, it is 

important to evaluate the merits of treating a circular column just as an equivalent 

cross-sectional area rectangular column against a more realistic discretization of circular 

cross-section. 

 

3.7.2. Outline of analysis 

In order to analyze the applicability of circular-rectangular equivalence against a more 

direct discretization, the analytical target is a circular cross section column named C1-5 

tested using a shake-table by E-Defense (Kawashima et al. 2013) which has been 

previously introduced in Sub-chapter 3.4.3 and specimen details in Figure 3.6.  



48 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Column C1-5 was designed according to the 2002 JRA Design Specifications of 

Highway Bridges (JRA 2002), based on the design response spectrum (Kawashima et al. 

The specimen is a cantilever circular column with diameter 2000 mm. The heights of 

the column and footing correspond to 7500 mm and 1800 mm respectively. Column 

C1-5 was excited using a near-field ground motion which was recorded at the JR 

Takatori Station during the 1995 Kobe earthquake. Taking into account the 

soil/structure interaction, a ground motion with 80% of the original intensity of JR 

Takatori was imposed as command to the table in the experiment. In the experimental 

program, C1-5 has been excited under different conditions, however in this study the 

analysis will focus on C1-5(1) which corresponds to the first excitation. The ground 

motion corresponding to 100% E-Takatori in longitudinal and transverse directions is 

shown in Figure 3.10. 

 

In order to analyze column C1-5 two analytical situations have been set. First is the 

conversion of circular cross sectional shape into an equivalent rectangular cross 

sectional shape, based on the fact that most design methods for shear and flexure of RC 

members are mainly based on the rectangular cross-sectional shape for the analysis.  

Figure 3.10 100% E-Takatori ground motion (Kawashima et al. 2010) 
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Upon this, the 3D lattice model as developed in previous studies (Miki and Niwa 2004) 

is used in an analytical model further addressed as AM-1 shown in Figure 3.11 (a).  

 

The second analysis corresponds to the application of the multi-directional polygonal 

3D lattice model, newly developed for circular cross section columns. Here, the shear 

capacity of reinforced concrete is considered by assuming that of the actual resisting 

area of concrete is reduced in seismic response. It is in that way that an analytical model 

addressed as the AM-2 is developed, where an effective area of concrete corresponding 

to 0.7 of the gross area of concrete is assumed to determine the cross-sectional area of 

the lattice members.  

 

The reduction in flexural stiffness is considered to perform analysis. Assuming that 

there is stiffness degradation in seismic response, an analytical model AM-3 is 

developed; where in the case effective area moment of inertia corresponding to 0.7 of 

the gross moment area of inertia is assumed for the analytical diameter used to 

determine the cross-sectional area of lattice model elements. It should be noted that the 

general geometry of AM-2 and AM-3 is the same as detailed in Figure 3.11 (b). 

 

3.7.3. Analytical results and discussion 

The analytical results using analytical models AM-1, AM-2 and AM-3 are shown in 

Figure 3.12 and Figure 3.13 respectively, and compared to the experimental results. 

 

(a)  Analytical model AM-1 
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Figure 3.11 Analytical models  
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The analytical response using AM-1 shows reasonable agreement with the experiment 

before cracking occurs; the initial stiffness is very consistent in both directions, however, 

it is in the longitudinal direction that the after cracking behavior differ visible, but while 

in the transverse direction the hysteretic response though is agreeable underestimates 

   

 
(a) Longitudinal direction 

  

 
(b) Transverse direction 

 

Figure 3.12 Load-displacement relationships computed using analytical models 
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maximum force as well as displacement. Thus supporting that, the assumption of 

equivalence of responses between a rectangular cross sectional member and circular 

cross section member has large limitation in inelastic phase. 

 

The analysis performed using the multi- directional polygonal lattice model, in both 

proposals presented in this paper show that largely better hysteretic agreement is 

obtained. Looking at the response using AM-2 when consideration for reduction of 

shear area of concrete is used, it is visible that the prediction of maximum displacement 

and force is reasonably performed, especially in the longitudinal direction. However in 

the transverse direction the hysteretic response overestimates the deformation capacity.  

 

On the other hand, AM-3 shows the most acceptable prediction of response when 

compared to the other models presented. This suggests that consideration for an 

equivalent flexural stiffness in the analysis proved more accurate than for shear area of 

concrete. It is nonetheless important to mention that using the multi-directional 

polygonal lattice models the initial stiffness is highly estimated. 

 

The reason behind that is the elevated number of elements necessary to describe the 

element, when compared to the rectangular lattice model. The consequence of this is 

         

 
 

Figure 3.13 Displacement relationships computed using analytical models 
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that at the beginning, regardless of the approach chosen, that is AM-2 and AM-3, the 

model consistently has large initial stiffness. This shortcoming should be object of 

attention in further research on the topic. A detailed look at Fig.10 allows the 

comparison of displacement capacity prediction in longitudinal and diagonal directions. 

Comparing the analytical models to the experiment, AM-2 and AM-3 present more 

acceptable agreement with the experiment in comparison to AM-1; this is a fundamental 

outcome that comes from the more realistic discretization of target that AM-2 and 

AM-3 propose. 

 

 

3.8. Cumulative Seismic Damage Assessment in Circular RC Columns 

3.8.1. Introduction 

Experimental and field evidence indicates that the strength, stiffness and ultimate 

deformation capacity of reinforced concrete (RC) elements and structures deteriorate 

during excursions into the plastic range (Teran-Gilmore and Jirsa 2005). 

Furthermore, a number of seismic events such as the Loma Prieta earthquake in 1989, 

and more recently Kumamoto earthquake in 2016 are evidence that RC structures and 

specially columns are in a relatively short time-period subjected to strong plastic 

deformation due to the sequence of earthquakes` foreshock, main shock and after-shock 

in one hand, and on the other hand the great Tohoku earthquake in 2011, the strongest 

ever recorded in Japan proved that RC structures can be hit by a very powerful 

earthquake followed by numerous strong after-shocks. 

 

It is fundamental that in seismic damage and seismic performance analyses of RC 

structures, the cumulative effect that an earthquake`s main shock and after-shocks have 

on the behaviour of RC members, especially columns, is considered, in order to 

improve the understanding of the real structural behaviour under seismic loading, 

especially the cumulative effect on the stiffness degradation, energy dissipation as well 

as parameters related to strength and displacement on RC members. 

 

With the above in mind, this study is focused on the applicability of the 

multi-directional polygonal 3D lattice model to perform cumulative seismic damage 

evaluation in circular cross section RC Columns (Simão and Miki 2016). 
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3.8.2. Outline of analysis 

The analytical target is a circular cross section column named C1-5 tested using a 

shake-table by the E-Defense presented in Sub-chapter 3.4.3 and specimen details in 

Figure 3.6. In the experiment Vertical load is in the form of tributary mass to the 

column by two decks including four weights of 307 ton and 215 ton in the longitudinal 

and transverse directions, respectively. The geometry of the model corresponds to the 

same geometry presented in Figure 3.11(b). For reduction factors, Pique and Burgos 

(2008) suggest that for typical columns in order to balance precision and simplicity 

based on studies previously presented, reduction factor of 0.7 to the gross flexural 

stiffness is applied in this analysis. The analytical diameter corresponds to 1825.85 mm.   

 

According to Kawashima et al. (2010) column C1-5 was excited in longitudinal, 

transverse and vertical direction. However this study will neglect vertical direction to 

focus on the principal directions. The convention and loading sequences used in the 

experiment are also applied in the analysis. 

 

With that C1-5(1)-1 corresponds to one 100% E-Takatori to a time of 20 seconds of 

loading, C1-5(1)-2 to two 100% E-Takatori corresponding to 40 seconds of aggregate  

 

 

Figure 3.14 Sequential loading in longitudinal direction for column C1-5 
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loading, and after 21% increase in the tributal mass at the top of the pier, from 307 ton 

to 372 ton, C1-5(2) was excited to three 100% E-Takatori corresponding to 60 seconds 

of aggregate loading. In the experiment, column C1-5 was subjected to further loading. 

However, for the scope of this study, the focus will be on the three initial loading 

sequences as explained, because it was concluded during the pre-analysis, that on 

further loadings, the nonlinear behavior of the column became much more difficult to 

describe. The loading sequences for longitudinal direction for C1-5(1)-1, C1-5(1)-2 and 

C1-5(2)  are shown in Figure 3.14, respectively. 

 

 

 

 

 

(a)    Longitudinal direction                  (b)     Transverse direction 

 

Figure 3.15 Load-displacement relationships for C1-5 analytical cases 

-3000

-2000

-1000

0

1000

2000

3000

-100 -50 0 50 100

L
o

ad
 (

K
N

)

Displacement (mm)

Analysis C1-5(1)-1

Experimental

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

-80 -60 -40 -20 0 20 40 60 80

L
o

ad
 (

K
N

)

Displacement (mm)

Analysis C1-5 (1)-1

Experimental

-3000

-2000

-1000

0

1000

2000

3000

-150 -100 -50 0 50 100 150

L
o

ad
 (

K
N

)

Displacement (mm)

C1-(5)-2

Experimental

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

-150 -100 -50 0 50 100 150

L
o

ad
 (

K
N

)

Displacement (mm)

C1-(5)-2

Experimental

-3000

-2000

-1000

0

1000

2000

3000

-300 -200 -100 0 100 200 300

L
o

ad
 (

K
N

)

Displacement (mm)

C1-5(2)

Experimental

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

-300 -200 -100 0 100 200 300

L
o

ad
 (

K
N

)

Displacement (mm)

C1-5(2)

Experimental



55 
 

3.8.3. Analytical results and discussion 

The analytical results for load-displacement relationships are shown in Figure 3.15 and 

the results for time-history are shown in Figure 3.16, for both longitudinal and 

transverse direction. Looking at Fig. 6, generally the comparison of hysteresis response 

between the analytical cases and the experiment shows the highly nonlinear behaviour 

that accumulated damage causes in the response of the RC column, and this complexity 

is response calls for a very detailed analysis of the response. It is noticeable that case 

C1-5(1)-1 shows the best agreement in hysteresis between analysis and the experiment 

for both directions, when compared to cases C1-5(1)-2 and C1-5(2). Overall the 

strength capacity prediction is considered to be acceptable in both directions for the 

three analytical cases.  

 

On the other hand, with increase in the number of loading sequences, going to cases 

C1-5(1)-2 and C1-5(2), there is a visible tendency to underestimate the maximum 

displacement capacity due to overestimation of stiffness in response in the longitudinal 

direction, especially in the quadrant corresponding to positive displacement and positive 

load. This situation is directly related to the high initial stiffness that is observed in the 

analytical response of all analytical cases, and according to results previously reported 

by Simão and Miki (2015), by modelling a circular column using the multi directional 

polygonal 3D lattice model, elastic stiffness is by tendency overestimated due to the 

increased number of diagonal members used to discretize a circular column into 

polygonal 3D lattice model, which increases the size of the stiffness matrix. 

 

In the analytical results, it is visible that after cracking, for the longitudinal direction, 

the response continues to underestimate the stiffness degradation, thus the response fails 

to reach the maximum displacement capacity, remaining stiffer than the experiment. 

This is a point that should be addressed in further stages of this study. However in the 

transverse direction the response better captured the strength and stiffness degradation 

going from case C1-5(1)-1 to C1-5(1)-2 and C1-5(2). 

 

The interpretation of analytical results can be further performed by evaluating the 

hysteretic energy dissipation capacity of all cases.  Hereafter, the hysteretic energy 

dissipation corresponds to the enclosed area of the load-displacement relationships, 

calculated for analytical response and experimental cases. The energy dissipation is 

calculated at the end of each analytical cycle, corresponding to total loading time. The 

analytical calculated energy dissipation for C1-5(1)-1 at 20 seconds of total loading  
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time correspond to174 KNm for longitudinal direction and 181 KNm in transverse 

direction. The calculated values of experimental energy dissipation for C1-5(1)-1 

correspond to 180 KNm for longitudinal direction and 140 KNm for transverse 

direction. In this case, comparing the values of energy dissipation for analysis and 

experiment it is clear that the analysis acceptably predicts the level of energy dissipated 

by the column, although it is slightly overestimated in transverse direction. 

 

Looking at the cases of C1-5(1)-2 at 40 seconds of loading time and C1-5(2) at 60 

seconds of loading time, in transverse direction the values or energy dissipation of  

analysis and experiment are somehow close to each other.  In case C1-5(1)-2, 

analytical energy dissipation corresponds to 275 KNm while experimental corresponds 

 

 

  

(a)   Longitudinal direction             (b)     Transverse direction   

 

Figure 3.16 Time-history relationships for C1-5 analytical cases 
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to 318 KNm. In case C1-5(2), analytical energy dissipation corresponds to 376 KNm 

and experimental energy dissipation corresponds to 409 KNm.  

 

On the other hand, for longitudinal direction, although some portions of the hysteretic 

response are acceptably described, the failure to accurately grasp the maximum 

displacement in the analysis for C1-5(1)-2 and C1-5(2), produces an important 

underestimation in the analytical energy dissipation in this direction. With that, in the 

case of C1-5(1)-2, analytical energy dissipation corresponds to 219 KNm while 

experimental corresponds to 281 KNm. For C1-5(2), analytical energy dissipation 

corresponds to 292 KNm and experimental energy dissipation corresponds to 497 KNm. 

 

The interpretation of analytical results can be further performed by evaluating the 

hysteretic energy dissipation capacity of all cases.  Hereafter, the hysteretic energy 

dissipation corresponds to the enclosed area of the load-displacement relationships, 

calculated for analytical response and experimental cases. The energy dissipation is 

calculated at the end of each analytical cycle, corresponding to total loading time. The 

analytical calculated energy dissipation for C1-5(1)-1 at 20 seconds of total loading 

time correspond to174 KNm for longitudinal direction and 181 KNm in transverse 

direction. The calculated values of experimental energy dissipation for C1-5(1)-1 

correspond to 180 KNm for longitudinal direction and 140 KNm for transverse 

direction. In this case, comparing the values of energy dissipation for analysis and 

experiment it is clear that the analysis acceptably predicts the level of energy dissipated 

by the column, although it is slightly overestimated in transverse direction. 

 

Looking at the cases of C1-5(1)-2 at 40 seconds of loading time and C1-5(2) at 60 

seconds of loading time, in transverse direction the values or energy dissipation of 

analysis and experiment are somehow close to each other.  In case C1-5(1)-2, 

analytical energy dissipation corresponds to 275 KNm while experimental corresponds 

to 318 KNm. In case C1-5(2), analytical energy dissipation corresponds to 376 KNm 

and experimental energy dissipation corresponds to 409 KNm.  

 

On the other hand, for longitudinal direction, although some portions of the hysteretic 

response are acceptably described, the failure to accurately grasp the maximum 

displacement in the analysis for C1-5(1)-2 and C1-5(2), produces an important 

underestimation in the analytical energy dissipation in this direction. With that, in the 

case of C1-5(1)-2, analytical energy dissipation corresponds to 219 KNm while 
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experimental corresponds to 281 KNm. For C1-5(2), analytical energy dissipation 

corresponds to 292 KNm and experimental energy dissipation corresponds to 497 KNm. 

 

Looking at Fig. 7, the time-histories are presented for the analysis. In case C1-5(1)-1 the 

results correspond to a one 100% E-Takatori corresponding to 20 seconds, while in 

C1-5(1)-2 are two 100% E-Takatori corresponding to 40 seconds and in C1-5(2) are 

three 100% E-Takatori corresponding to 60 seconds. In the case of C1-5(1)-2 and 

C1-5(2) the last 20 seconds are compared to the experiment, which performed 

accumulation of damage by loading separately each case in sequences of 20 seconds 

(Kawashima et al. 2010), and since in the analysis the loading sequences are continuous, 

the last 20 seconds correspond to the displacement-time relationship that is co-related to 

damage accumulation or cumulative damage. 

 

In these results, the longitudinal direction shows acceptable capability of predicting the 

residual displacement from all three cases. Case C1-5(1)-1 in longitudinal direction 

shows the best agreement between analysis and experiment among all the cases. The 

effect of accumulation of damage is acceptably described for longitudinal direction, in 

the transition from first to second loading in case C1-5(1)-2 and from second to third 

loading in case C1-5(2), as shown by the analytical and experimental displacements in 

those portions. The transverse direction however came short in accurately describing 

this transition. 
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4.1. Introduction 

Reinforced concrete (RC) structures reluctantly exhibit severe damage subjected to a 

strong earthquake motion. In Japan in the context of seismic performance of RC 

structures, the assessment of serviceability and reparability is a primary task after a huge 

earthquake. In most post-earthquake structural damage evaluation, the analysis is 

qualitative. However, it is important to establish a quantitative correlation between the 

observed damage state and an applicable damage index, so as to make the 

post-earthquake evaluation of damage level in structures more reliable and less 

time-consuming.  

 

The damage index normalizes the damage evaluation criteria and the threshold values 

influence the decision related to repair and retrofitting, and they should be connected to 

the damage states, with clear definition of the damage level and failure mechanism. This 

is specially the case on the context of performance-based design, where performance 

objectives are set so that the structural capacity for each performance level is related to 

a state of damage and is quantified using one or more engineering limit states. 

 

With a new focus in seismic design on the performance of reinforced concrete bridges, 

commonly current seismic design standards for reinforced concrete bridges do not 

provide adequate performance design requirements. Although previous research on the 

response of reinforced concrete bridge columns is extensive, these studies are not 

adequate to develop all aspects of performance-oriented design. Development of 

performance-based design methods requires further experimental and analytical 

investigations to evaluate intermediate damage levels and to develop analytical models 

and appropriate design methodologies (Lehman and Mohele 2000). 

 

Based on the above considerations, the multi-direction polygonal 3D lattice model is 

proposed to perform the verification of performance level of RC columns from the 

material point of view based on sustained seismic induced damage (Simão and Miki 

2015).  

 

 

4. NUMERICAL VERIFICATION OF SEISMIC PERFORMANCE OF 

CIRCULAR RC COLUMNS USING MULTI-DIRECTIONAL POLYGONAL 3D 

LATTICE MODEL 
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4.2. Energy Dissipation Capacity in RC Columns 

4.2.1. Introduction 

In the field of engineering mechanics the evaluation of behavior of structures has 

traditionally focused on strength and deformation capacity. In those cases to a certain 

level of applied force, a certain level of displacement is expected and from that the 

behavior of the structure understood from pure force-deformation criteria. It is 

nonetheless true that in modern design of structures, the structural members tend to be 

composite structures. That means that more than one material is used in the same 

member and thus the global structural response is very much dependent on material 

behavior. At the material level a division between brittle materials, quasi-brittle material 

and ductile materials can be found. That is specially the case in RC structures; where 

concrete is a quasi-brittle material and steel reinforcement a ductile material. At this 

level the behavior of materials is best understood by looking and the stress and strain 

conditions, and the criteria that differentiates the material type is the energy dissipation 

criteria. In this sub-chapter energy capacity of materials will be studied in the context of 

seismic damage evaluation (Popov 1990). 

4.2.2. Hysteretic energy dissipation 

Tembulkar & Nau (1987) stated that damage attained by a RC member under dynamic 

loading can be assessed by a well-constructed hysteretic model. Furthermore, with 

well-defined parameters, energy based hysteresis models may successfully represent 

seismic response considering the deteriorating behavior of RC members. 

 

On the other hand, Bousias et al. (1995) reported that the strong coupling between the 

two transverse plane directions of columns produces an apparent reduction of strength 

and stiffness in each of the two transverse plane directions when considered separately, 

but also an increase in hysteretic energy. 

 

With that, the cumulative hysteretic energy dissipation is a very important notion in the 

analysis of cyclic behavior of RC structures, because it relates to the global damage 

potential and energy capacity. The hysteretic energy is calculated considering the area 

of each loading cycle in the X (longitudinal) and Y (transverse) direction for the lateral 

force and displacement relationships, and the total energy dissipation is calculated as the 

sum of these two parts. Equations 4.1, 4.2 and 4.3 express the analytical relationships. 

 

              (4.1)  xxxd dFE
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            (4.2) 

 

 

(4.3) 

 

where Ed-x is hysteretic energy dissipation in X direction; Ed-y is hysteretic energy 

dissipation in Y direction; Ed-total is total hysteretic energy dissipation; Fx is force in X 

direction and Fy is force in Y direction 

 

4.2.3. Elemental energy dissipation 

The 3D lattice model offers some unique characteristics in terms of analytical capacity 

of the composing analytical elements. Because of the truss and arch analogy, the 

analytical response is obtained individually for every component of the system. The 

lattice model comprises several elements, and it is assumed that an average stress and 

strain relationship governs each one of them. In other words, the stress and strain 

relationships define the strain energy for each element in the lattice model, that is 

concrete and reinforcement elements.  

 

This definition can be very useful for the calculation of strain energy after the target of 

analysis has reached the yielding point, and especially because of highly nonlinear 

behavior of concrete after cracking. That way, the strain energy density for one element 

is defined as presented in Equation 4.4, and the accumulated strain energy density of a 

material is shown in Equation 4.5. 

 

                
   (4.4) 

 

  
n

t emats tEE
1

)(                      (4.5) 

 

where Eei is the elemental strain energy density, εi (t) is strain in element i at time step t, 

σi(t) is the strain in element i at time step t, Es-mat is the accumulated material strain 

energy. 

 

 

 yyyd dFE
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By taking into account the energy dissipation in individual elements, the distribution of 

energy dissipation in a RC column can be evaluated by the lattice model. Based on this 

assumption the energy dissipated in each element can be calculated from the product of 

the strain energy dissipated in each element, where the strain energy is the area enclosed 

by the stress-strain relationship for the unloading and reloading curves, and the 

elemental volume. RC member accumulated energy dissipation will be the sum of all 

the elemental energy dissipation histories as shown in Equation 4.5 below. 

 

ematsmatd VEE                                             (4.5) 

 

where Ed-mat is the accumulated energy dissipation of the material in the member Es-mat 

is the accumulated strain energy density for all element  and Ve is the Volume of 

elements which for simplicity is assumed to be constant 

 

4.3. Damage Range Evaluation 

4.3.1. Introduction 

The evaluation of seismic damage of concrete structures is very important in order to 

take countermeasures, such as repair and strengthening the deteriorated structures after 

severe earthquakes. In technical literature, a large number of damage indexes have been 

proposed. Some of them are based on cyclic fatigue concepts (Krawinkler and Zohrei 

1983) and others make use of structural mode (Dipasquale and Cakmak 1990,). 

Furthermore, a group of damage indexes include ductility ratio or plastic deformation 

(Powell and Allahabadi 1988; Cosenza et al.1988) whilst some concern hysteretic 

energy absorption (Dipasquale and Cakmak 1989; Fajfar 1992). Other damage indexes 

are a integration of different parameters. For example, Park's and Ang's model (Park and 

Ang 1985], and Reinhorn's and Valles's model (Reinhorn and Valles 1995) consist of 

both deformation and energy terms. 

 

From the material point of view however it is very useful to derive a damage index from 

the energy criteria point of view, because in that way a useful understanding of the 

actual damage range capacity of the material can be attained, based on the strain energy 

density analysis, issues of resilience and toughness can be studied and thus providing a 

better understanding of the damage distribution in material that is connected to 

structural performance. However, global damage condition of a structure can only be 

assessed using energy methods if there is knowledge about the total energy capacity.  
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Based on the discretization method of the lattice model it is possible to determine from 

an elemental level the expected energy capacity of single elements and compare them to 

the response obtained from the analytical results 

 

 

4.3.2. Evaluation of seismic damage using damage index 

In order to realize the performance evaluation of RC columns under seismic loading, it 

is very important to quantitatively verify the damage states. In this study, this is 

performed by looking at the damage level, based on the measured damage range 

measures at the end of the relevant loading sequence. To do that, damage range 

evaluation is proposed using a damage index defined from the material point of view 

based on energy criteria for concrete and steel reinforcement. In order to use the energy 

dissipated as an indicator of seismic damage in concrete structures, the total energy 

dissipated must somehow be normalized so as to compare the results of different size 

specimens (Inoue 1994). 

 

In this study damage index is defined from the energy dissipation point of view. In that 

way, damage index in material is defined as the ratio between the calculated materials 

accumulated energy dissipation and the ultimate material energy dissipation. The 

ultimate material energy dissipation is obtained from the constitutive models for 

ultimate condition of materials and for concrete for concrete in compression is used the 

model proposed by Mander et al.(1988), concrete in tension proposed by Uchida et al. 

(1991) and reinforcement proposed by Fukuura and Maekawa (1997). In the case of 

concrete the ultimate strain in compression is assumed to be 0.0035 when concrete 

crushes and the ultimate compressive stress corresponds to 0.002 of compressive strain. 

The tensile strain is calculated using the 1/4 model (Uchida et al. 1991). The damage 

index in material is presented as: 

 

ultimated

matd
mat

E

E
DI



             (4.6) 

 

here DImat is the damage index of the material, Ed-mat is the accumulated energy 

dissipation of the material in the member and Ed-ultimatet is the ultimate energy dissipation 

of the material in the member. 
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4.4. Numerical Verification of Seismic Performance 

4.4.1. Analytical frame-work 

In the context of performance-based seismic design most codes define a single level of 

seismic hazard and a single level of performance that is generally understood to be 

life-safety i.e. performance objectives other than the life-safety are not evaluated 

explicitly. As seismic performance objectives can be defined based on expected 

performance levels, according to Li et al. (2013), structural damage conditions can be 

assessed from 0-1. Here damage condition 0 means no damage at all, while damage 

condition 1.0 means total failure of structure. This convention is quite simple and useful 

to evaluate the damage potential in structures. 

 

In this study, this convention will be applied at the material level, where to the same 

extent damage level 0 corresponds to sound material and damage level 1 corresponds to 

total failure of material. In this study a damage potential separation point named damage 

limitation point (DLP) is proposed. The DLP corresponds to the point in the damage 

scale where damage potential changes from moderate to high. The DLP corresponds to 

a theoretical threshold in the damage scale where damage potential in the material 

becomes critical under the given loading conditions and is defined for concrete and 

reinforcement as follows: 

 

To understand this concept it is useful to fall back to classic engineering mechanics of 

solids and explained by Popov (1990). According to the later resilience corresponds to 

the ability of material to absorb energy without suffering plastic strain. On a 

stress-strain diagram of material the area of the elastic region represents the density of 

strain energy that can be absorbed without any permanent damage to the material or the 

so called modulus of resilience UR. On the other hand, toughness corresponds to the 

ability of the material to absorb energy prior to fracture, and in the stress-strain diagram 

of the material it is represented by the full area of the enclosure prior to fracture or the 

so called modulus of toughness UT. With that two important threshold values are 

presented: resilience and toughness. 

In order to use this analogy and extend these concepts to numerical evaluation of RC 

structures a few assumptions are important: the first one is that the constitutive models 

of material used in this study are to be best extent possible representatives of the actual 

behavior of material is seismic response, and in the analysis process a few 

simplifications are necessary to ensure practicability of the method. 
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Based on the explained, DLP will be the ratio between modulus of resilience and 

modulus of toughness. 

 

matT

matR

mat
U

U
DLP



                                                             (4.7) 

 

where DLPmat is the damage limitation point of material, UR-mat is the modulus of 

resilience of material and UT-mat is the modulus of toughness of material. In concrete the 

modulus of toughness corresponds to the sum of total enclosed area of stress-strain 

diagram in tension side and in compression side or in other words the ultimate strain 

energy density in concrete.  
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Figure 4.1 Damage limitation points in concrete 
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On the other hand, modulus of resilience in tension side is the sum between the tensile 

strain energy density at cracking of concrete represented by the hatched area in Figure 

4.1(a) and the compressive strain energy density at maximum stress which is 

represented by the hatched area in Figure 4.1(b).  

 

The same approach is used for reinforcement. In that case the modulus of toughness 

corresponds to the sum of total enclosed area of stress-strain diagram until fracture of 

reinforcement or the total strain energy density of reinforcement. On the other hand the 

modulus of resilience corresponds to the an closure represented in hatch in Figure 4.2, 

which is the yielding strain energy density of reinforcement. 

 

In the numerical evaluation of seismic performance the damage index of material is 

compared to DLP. The detailed explanation of the method is shown in the next 

sub-chapter. 

 

 

4.4.2. Evaluation of performance states 

In order to establish a co-relation between the analogies describe in sub-chapter 4.4.1, 

and real structural damage condition and from that derive structural performance of RC 

member, it is important to look at the JSCE specifications (2002) and experimental 

evidence to co-relate damage index and observed structural performance. 

 

Figure 4.2 Damage limitation points in steel reinforcement 
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With that, based on the seismic performance criteria indicated by JSCE (2002) three 

seismic performance levels of structures are defined. First, the seismic performance that 

is assumed to correspond to small residual deformation on a structure and in principle 

yield load of the member is not reached. In the seismic performance II the load carrying 

capacity does not deteriorate after an earthquake and finally in the seismic performance 

III it is required that the whole structural system does not collapse.  

 

On the other hand, Kawashima et al. (2010) clearly described the seismic performance 

of RC columns from the material point of view based on experimental evidence. 

According to their experimental observations, in this study, the seismic performance of 

RC columns will be evaluated based on damage index and correlated to structural 

damage as discussed in the previous research (JSCE specifications 2002; Kawashima et 

al. 2010)  

 

With that, in order to evaluate the performance, damage range between 0 to DLP 

corresponds to a seismic performance category I (SP-I), and damage range between 

DLP to 1.0 corresponds to a seismic performance category II (SP-II), respectively. As 

for the SP-I of concrete, the maximum structural damage corresponds to cracking of 

cover concrete. For reinforcement the maximum structural damage corresponds to 

yielding and buckling of reinforcement. 

 

On the other, hand in the SP-II for concrete the maximum structural damage condition is 

spalling of cover concrete, crushing of concrete and fracture of confined concrete, for 

reinforcement the maximum structural damage is fracture of reinforcement. 

 

 

4.5. Numerical Verification of Seismic Performance of RC column subjected to 

Cyclic Loading 

4.5.1. Outline of analysis 

The experimental case (Hoshikuma et al. 2013) described in sub-chapter 3.5.1 will be 

used to perform the numerical verification of seismic performance of RC column that 

has been subjected to cyclic loading. The target is a circular cross section column named 

C-29. The cross section of this column is circular with diameter of 600 mm and column 

height of 3410 mm. The compressive strength and the Young’s modulus of concrete are 

31.8 N/mm2 and 28000 N/mm
2
, respectively.  
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The longitudinal reinforcement of D10 and transverse reinforcement D6 have yield 

strength of 397 N/mm
2
 and the transverse reinforcement D6 has yield strength of 397 

N/mm
2
, respectively. In order to conduct the analysis, three scenarios related to different 

inertia reduction factors were studied, corresponding to C-29(1), C-29(3) and C-29(3). 

In this cub-chapter the focus will be case C-29(3) which offered the best agreement 

between analysis and experiment in load-displacement curve. Detailed explanation of 

all the cases can be found in chapter 3.5.1. The load-displacement curve of C-29(3) is 

shown in Figure 4.3. 

 

 

4.5.2. Analytical results and discussion 

The seismic performance verification of column C-29(3) is presented in Table 1. The 

results show that energy accumulated dissipation of concrete is 35.4 kN-m and ultimate 

energy dissipation of concrete is 151.1 kN-m, while in reinforcement the accumulated 

energy dissipation is 202 kN-m and ultimate energy dissipation is 6072 kN-m. This 

means that by large in the given conditions, the damage potential is bigger in concrete 

than in steel as and also the idea that energy the energy dissipation potential of steel 

reinforcement is by large most significant than that of concrete in damage resistance 

capacity due to higher ductility of steel reinforcement. 

 

Looking at the seismic performance of materials, it can be assessed that the damage 

index of concrete corresponds to 0.59 and is placed between the DLP and 1, and the 

damage index of steel reinforcement is 0.00008 and is placed between 0 and DLP.  

Figure 4.3 C-29(3) load-displacement 
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Table 1: seismic performance verification of column C-29(3) 

 

 

 

 

 

 

 

 

 

With that, the concrete performance is that of SP-II and the performance of 

reinforcement is that of SP-I. In terms of structural seismic performance it is important 

to correlate the observed structural damage reported by the experiment. Based on the 

definition provided, analytical seismic performance criteria concrete has been affected 

by cracking followed by spalling of cover concrete. Reinforcement on the other hand, 

has been affected by yielding of reinforcement at the plastic hinge followed by localized 

buckling.  

 

Sensitivity analysis of concrete suggests that because the damage index is not far from 

the value of DLP perhaps the sustained damage is not critical. On the other hand, 

reinforcement is less affected by the seismic action based on the calculated damage 

index, which is confirmed by visual inspection of the experimental target (Hoshikuma et 

al. 2013).  

 

The report on the experimental results, clearly show the progress of damage in the 

column C-29. The mechanism of failure is flexural, and flexural cracking developed 

along the column, with visible concentration on the plastic hinge. The observed damage 

condition of concrete in experiment corresponds to cracking and some spalling, which is 

predicted by the analytical model. In reinforcement only yielding is observed in the 

experiment, which corresponds to SP-I in the analytical performance verification 

method proposed. 

 

 

 

 

 

Material Concrete Steel 

Energy dissipation 

KN-m 

Accumulated 35.4 202 

Ultimate 151.1 3036 

DLP 0.40 0.004 

Damage index 0.59 0.00008 

Seismic performance SP-II SP-I 
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4.6. Performance Evaluation of RC Columns Subjected to Seismic Motion 

Designed according to 2002 JRA Specifications 

4.6.1. Outlines of Analysis 

In order to perform the analysis the analytical target is a circular cross section column 

named C1-5 tested using a shake-table by E-Defense. The complete detailing of column 

C1-5 is shown in sub-chapter 3.4.2. The specimen is a cantilever circular column with 

diameter 2000 mm. The heights of the column and footing correspond to 7500 mm and 

1800 mm respectively. The analytical model is shown in shown in Figure 4.4. Column 

C1-5 was excited using a near-field ground motion which was recorded at the JR 

Takatori Station during the 1995 Kobe earthquake. Taking into account the soil/structure 

interaction, a ground motion with 80% of the original intensity of JR Takatori name 

E-Takatori was imposed as command to the table in the experiment and corresponds to 

100% E-Takatori. In this study the analysis will focus on C1-5(1) corresponding to 

100% E-Takatori and C1-5(3) corresponding to 125% E-Takatori and 21% top mass 

increase, respectively. The input accelerations are shown in Figure 4.5 for longitudinal 

direction. 

 

Simão & Miki (2014) reported that on a cantilever bridge column, about 50% of 

damage is concentrated below the column mid-height. Based on that, it is reasonable to 

assume that the most significant concentration of damage at the bottom is very 

representative of damage condition. In order to analyze Localized damage evaluation, 

numerical verification of damage concentration is performed in case C1-5(1). The 

height at the bottom of the column portion where it is assumed that the plastic hinge  

Figure 4.4 C1-5 Analytical model 
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will develop and thus numerical verification of damage concentration is performed is 

1000 mm corresponding to the first layer of lattice model elements as shown in Figure 

4.4. 

4.6.2. Analytical results and discussion 

The results of analysis are presented for C1-5(1) and C1-5(3) regarding the 

load-displacement relationships in Figure 4.6. The calculated analytical and 

experimental hysteretic energy dissipations are presented in Table 2. In Table 3 is 

presented the analysis on levels of performance for C1-5(1) for concrete and steel 

reinforcement. 

     

A detailed look at Figure 4.6 shows that for both C1-5(1) and C1-5(3) the 

multi-directional polygonal 3D lattice model acceptably shows the hysteretic behavior, 

comparing the analytical response and the experiment in longitudinal and transverse 

directions. In general, there is an over-estimation in initial stiffness, and this is due to 

the fact that by discretizing a circular column using the multi-directional polygonal 3D 

lattice model, more elements are needed to accurately describe the detailing of the 

column as in opposition to a 3D lattice model applied to a rectangular column (Miki and 

Figure 4.5 E-Takatori acceleration - longitudinal direction (Kawashima et al. 2010) 
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Niwa 2004) or representing a circular cross-section column using a circular-rectangular 

cross-sectional area equivalence. On the other hand the maximum displacement 

capacity and the strength have acceptable agreement between analysis and experiment. 

 

The hysteretic energy dissipation that has been calculated and shown in Table 2 for 

analysis and experiment shows that by looking at the ratios between analysis and 

experiment, in the case of C1-5(1) corresponds to 1.24 and for C1-5(3) corresponds to 

0.87. These values suggest that generally the method grasp the behavior of the column 

acceptably and furthermore the impact of the slight overestimation if initial stiffness is 

not very big on energy dissipation capacity. 

 

In Table 3, the results for performance level of column are shown. Looking at the 

analytical results, in concrete the response strain energy corresponds to 3.60 N/mm
2
 

while the total strain energy corresponds to 8.91 N/mm
2
. Furthermore accumulated 

response energy dissipation corresponds to 12.05 KN-m while total energy dissipation 

corresponds to 41.87 KN-m. Furthermore accumulated response energy dissipation 

corresponds to 12.05 KN-m while total energy dissipation corresponds to 41.87 KN-m. 

For steel reinforcement on the other hand, response strain energy is equal to 12.13 

N/mm
2
 while the total strain energy is equal to 316.02 N/mm

2
. 

    
(a) Longitudinal direction 

    
(b) Transverse direction 

Figure 4.6 Load-displacement relationship computed using analytical model 
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Table 2: Hysteretic energy dissipation of column C1-5 

 

 

 

 

 

Table 3: Concentrated seismic performance evaluation of C1-5(1) 

Material Concrete Steel 

Strain energy 

N/mm
2 

Accumulated 3.60 12.13 

Ultimate 8.91 316.02 

Energy dissipation 

KN-m 

Accumulated 12.05 20.75 

Ultimate 41.87 201.9 

Damage limitation point (DLP) 0.39 0.43 

Damage index 0.33 0.04 

Performance Level SP-I SP-I 

 

On the accumulated material energy dissipation, response energy dissipation is equal to 

20.75 KN-m while total accumulated energy dissipation is equal to 201.9 KN-m. These 

results show that by a large margin steel reinforcement is more ductile than concrete in 

one hand, and also based on energy dissipation levels, in concrete the C1-5(1) case 

produced almost a quarter of total energy dissipation capacity, while in reinforcement it 

had a small significance. The objective of assessing seismic performance levels in 

material in this study is realized comparing the damage index of material to the damage 

scale previously explained. In that manner, for concrete the damage index calculated 

corresponds to 0.33, which falls between 0 and DLP that corresponds to 0.39. This 

corresponds to performance level SP-I. On the other hand, in the case of steel 

reinforcement, the calculated damage index is 0.04 and that corresponds to performance 

level SP-I. For both materials based on the performance levels, the damage range 

corresponding is moderate. However a more detailed look at both damage indexes 

suggests that concrete by far as been more exposed to greater damage such as 

occurrence of some level of cracking because it`s damage index of 0.33 is close to the 

threshold DLP value of 0.39. This is further confirmed by the report on the experimental 

program (Kawashima et al. 2010) which states that after the first shaking corresponding 

to C1-5(1) concrete shows some visible damage cracks. 

Hysteretic Energy dissipation (KN-m) C1-5(1) C1-5(3) 

Analysis (1) 353 2466 

Experimental (2) 283 2808 

(1)/(2) 1.24 0.87 
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5.1. Introduction 

Viaducts as civil structures are in the epicenter of societies. Good and sound viaducts 

provide the infrastructure from which socio-economic development can be put to place. 

This is the case especially in Japan, because the country has a very extensive network of 

elevated viaducts, mainly in urban areas. Whenever an earthquake takes place in Japan, 

viaducts are very much exposed to seismic induce damage. This was the case with the 

Hyogo-ken Nanbu earthquake, which cause the collapse and ultimately failure of many 

reinforced concert structures, but especially viaducts. 

 

The evaluation of damage remains a highly difficult task, because so many factors 

influence the level of damage and response of an RC (reinforced concrete) structure, 

even within the same structure with similar arrangements of reinforcement and concrete 

member’s cross sections. Factors such as soil conditions, applied ground motions and 

other properties of the earthquakes such distance from the fault line and epicenter, 

material and structural specifications such as strength and stiffness of material and 

deterioration of concrete and reinforcement based on the age of materials, ensure that 

this task will remains ever complex. But still, even with the complex nature of the 

analysis, it is ever important to study the behavior of RC viaducts under seismic 

loadings, if not for their interesting and challenging analysis process, definitely for their 

social and economic importance. 

 

In this study, the dynamic lattice model was introduced and used for the evaluation of 

structural response under cyclic loading. Furthermore, from the dynamic analysis, 

energy dissipation was proposed as means to evaluate damage range under seismic 

loading from a RC column, either for the whole target or more specifically the most 

damaged zone, according to a specific case assessment. On that note, using the concept 

of energy dissipation presented ion chapter four, this chapter will perform analysis of 

damage in a RC rigid-frame viaduct that suffered damage during the Hyogo-ken Nanbu 

earthquake. In this analysis the buckling behavior of reinforcement at the end of 

columns is taken to account, but the bond-slip behavior of reinforcing bars at the joint 

portion as well as soil and structure interaction are not considered.  

 

 

 

5. PERFORMANCE EVALUATION OF RC VIADUCT 
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5.2. Damage Distribution in RC Viaducts Based on Energy Dissipation 

5.2.1. Outline of target structure 

The seismic performance evaluation is performed for Hansui R5 which is a rigid-frame 

railroad viaduct. The target is a beam-slab type rigid-frame RC viaduct with three-span. 

The viaduct was designed according to Structural Design Standards of Japan National 

Railways enacted in 1970. Here, the viaducts were designed using the seismic intensity 

method with a design horizontal seismic intensity of 0.2 (Miki. 2004). In the 

observation of actual structures, the degree of damage was determined according to 

most heavily damaged members in the viaduct. Figure 5.1 shows the dimensions and 

reinforcement arrangement of Hansui R5. In Figure 5.2, the ground-motion acceleration 

for the viaduct in transverse and longitudinal direction is shown. 

 

In the viaduct, the cross section of a column was a square of 900 mm. All reinforcing 

bars in the columns had a minimum concrete cover of 60 mm. The beams had 

rectangular cross section with 700 mm width and 1,000 mm depth for the upper portion 

in transverse direction, while with 700 mm width and 1,100 mm depth for other 

portions. Heights of columns were 5,000 mm and 4,000 mm in lower and upper portions, 

respectively. The compressive strength of concrete was 29.1 MPa, while the tensile 

strength was 1.27 MPa to a Young`s modulus of 18.4 GPa. The longitudinal 

reinforcement had yield strength of 322 MPa, ultimate strength of 521 MPa and Young’s 

modulus of 203 GPa. While the transverse reinforcement had yield strength of 263 MPa, 

ultimate strength of 380 MPa and Young`s modulus of 183 GPa. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Dimensions and arrangements of reinforcement in Hansui R5 Viaduct 

(Miki. 2004) 
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5.2.2. Configuration of lattice model 

The 3D dynamic lattice model and the boundary conditions used in the analysis are 

illustrated in Figure 5.3. The three-span viaduct is treated as a unit of the analytical 

model. As seen in the figure, the model consists of beams and columns, while the slab is 

not included. In the analysis, it is assumed that the masses corresponding to the 

self-weight of viaducts are uniformly distributed over all nodal points, using the 

lumped-mass idealization. It is also assumed that there is a concentrated mass, which is 

equal to the weight of the superstructure and the slab, acting on the top nodes of 

columns and beams. It is considered that the joints of each column and beam are rigidly 

connected between each member. According to the flexural deformation of columns and 

beams, it is appropriate to provide arch members in two layers along the longitudinal 

direction of the member axis. 

 

 

(a) Longitudinal (NS) 

 

 

(b) Transverse (EW) 

Figure 5.2 Hansui R5 Input ground motion 
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Hence, the arch members in both columns and beams are modeled into eight concrete 

members. Similarly, at the column-beam joint portion, four arch members are modeled 

as. In order to determine the cross-sectional area of arch members in the 3D lattice 

model, the values of t b and td are determined based on the theorem of minimization of 

the total potential energy. The calculations for the values of t b and t d are conducted on 

each structural member individually. 

 

Viaducts are founded on the sufficiently stiff ground; it is assumed that the input ground 

motion is directly applied to the bottom of each lower column. The 3D lattice model 

treats the RC viaduct that is disregarded the foundation, and consequently the 

interaction between the structure and soil is not considered in the analysis. For the 

boundary between neighboring viaducts in the longitudinal direction, the horizontal 

direction is assumed to be a free condition. 

 

In the dynamic analysis it is assumed that the viscous damping is neglected (h=0) and 

the numerical damping of the Newmark method with factors β=0.36 and γ= 0.70 is used 

as time integration. Here a time interval of 0.01 sec. is set, the Newton-Raphson 

iteration method is used for the calculations until an adequately converged solution is 

obtained, since the nonlinear responses appear in RC structures when they are subjected 

to large ground motions.  

In order to check the convergence, the out-of-balance force and energy increment are 

 

Figure 5.3 Lattice model of Hansui R5 Viaduct (Miki.2004) 
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compared with initial values during the iteration. The convergence tolerances of the 

out-of-balance force and energy are set to be 0.001 and 0.01, respectively (Miki 2004). 

 

 

5.2.3. Damage distribution of Hansui R5 viaduct 

The damage distribution evaluation is performed according to the principle of energy 

dissipation previously presented. The damage will be focused on the columns of Hansui 

RC. In order to evaluate the damage, the structure, the elemental stress and strain of the 

8 columns that are part of the structure will be used for the calculation of strain energy. 

This same strain energy will be multiplied by each individual volume, related to each 

specific elemental stress and strain and thus energy dissipation computed. The analysis 

will evaluate the amount of damage in terms of energy dissipation for the whole column 

height, followed by a specific focus on the bottom layer, in which case corresponds to 

the height of 2100 mm corresponding to six lattice layers. Furthermore, for column P1, 

the joint between the column and the beam will be object of calculation. The damage 

range of the pier of the Hansui R5 has been calculated, based on their energy dissipation. 

The assumption that more energy dissipated means potentially a bigger range and 

degree of damage allows a clear and practical assessment of damage sustained because 

of seismic excitation. Figure 5.4 shows the damage of eight piers that are part of the 

target. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 Damage distribution evaluation of Hansui R5 piers 
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The damaged has been calculated to the full height of the piers, as well as bottom layers 

corresponding to a height of 2100 mm. from the analysis pier P5 in the presents the 

biggest damage range equivalent to a energy dissipation of 1203 kN-m, while pier P2 

presents the least damage range which is equivalent to 925 kN-m. In general, the region 

composed by piers P3, P4, P5 and P6 has the biggest damage range, and in the structure 

this region corresponds to the transition zone from one set of piers to the following, 

with no stiffness beam connecting them, as visible in Figure 5.3 

 

The calculations of damage range at the bottom of the columns suggest that about 40% 

to 60% of the total damage was there located. This proved totally independent from the 

actual total energy dissipation. In other word piers P6 and P8 had about 60% of damage 

concentrated at the bottom, the maximum percentage, but their total energy dissipation 

does not correspond to the maximum values if the entire targets are object of 

comparison, thus proving the complex and nonlinear nature of this estimations. 

 

Figure 5.5 shows the location of the joint within pier P1. The energy dissipation at the 

joint has been calculated, in order to understand its contribution to the general state of 

damage range of P1. The results are presented in Figure 5.6. The total energy 

dissipation at the joint is 147 KN-m which corresponds to 13% of the total energy 

dissipation of the pier. The energy was calculated considering the four arch members 

that are part of the joint lattice model structure. The value of energy dissipation at the 

joint and thus damage range is small when compared to the contribution of the bottom 

layer. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.5 Damage range evaluation of P1 joint 

 

 

 

 

 



83 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In other words the level of damage range at the top of the column is much less than the 

level of damage at the bottom, and the joint, although it represents a portion of 

discontinuity in the columns, that is the behavior is affected by the connection to the 

beam, showed reduced damage range level. This is most likely related to the stiffness 

the connection beam introduced to the system at that level. 

 

Figure 5.7 shows the actual damage conditions of the Hansui R5 viaduct after the 

earthquake.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 P1 and P1 joint comparative Energy Dissipation 
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Figure 5.7 Damaged conditions of Hansui R5 (Miki.2004) 
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It is possible to visualize at first glance that the biggest range of damage is at the bottom 

of the piers. The damage range analysis based on energy dissipation correctly predicted 

that this would be the actual damage situation. Looking closer at the joint of the piers, 

the level of damage is not as elevated as it at the bottom, and this is related to the 

decreased level of energy dissipation at this point that was calculated using the 3D 

lattice model. Although very complex, the level of response and damage was acceptably 

predicted by the 3D Dynamic Lattice Model, especially the damage range evaluation 

considering the nonlinearities, by using the stress-strain relationships for the calculation 

of strain energy, further applied for the estimation of energy dissipation in order to 

predict damage range. 

 

By comparing between the actual damage condition and the analytical response of RC 

viaducts, the validity of the 3D dynamic lattice model has been confirmed at the 

structural system level. The analytical response predicted by the 3D dynamic lattice 

model is used to evaluate the seismic performance of RC structures. 

 

The maximum displacement during the earthquake and the residual displacement after 

the earthquake are useful to evaluate the possibility of the restoration or rehabilitation 

after the earthquake occurs. In order to evaluate the seismic performance of a RC 

structure, the predicted response, such as the maximum and residual displacements, ca 

be compared with the limiting values determined from the importance of target 

structures. 

 

 

5.3. Numerical Verification of Seismic Performance of Hansui R5 Viaduct 

In order to perform the numerical verification of seismic performance of Hansui viaduct, 

the analytical target has been subjected to the motion presented in Figure 5.2. In order 

to perform the simulation, the footing is not modeled and at the bottom of each lower 

column a fixed support is provided. In this analysis a personal computer Pentium 4 with 

1.7 GHz was used and the total computation time is about 3 hours, where the total time 

and time intervals were set to be 10 sec and 0.01 sec, respectively (Miki 2004). 

 

The numerical verification method fully detailed in Chapter 4, was applied to the 

columns of Hansui viaduct and the analytical results are described in Table 4. The time 

history is presented in Figure 5.8; in the figure it is visible that the calculation fails at 4 

seconds of acceleration. Therefore the numerical varication has limited time scope.  



85 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The analytical results shown in Figure 5.8 represent the response obtained at different 

target points marked in black dot in the figures From the response it is possible to 

observe that the longitudinal direction is dominant with in both cases for the target point 

and in the case represented in the right in the figure, where the target point is an inner 

beam, the maximum observable displacement is about 100mm compared to the case 

presented to the left where it is a bit over 50mm. This might be to the stiffening effect 

observed in the outer layer members, which present stiffer response when subjected to 

seismic motion. 

 

On the other hand, one of the key objectives of this work is to make use of energy 

dissipation criteria to evaluate the performance of RC structures under seismic motion. 

With that, the analytical results offer a great chance to understand the performance of 

the structure from the material point of view up to the moment the calculation is 

interrupted. The resumed calculations regarding the seismic performance evaluation of 

the Hansui viaduct from the material point of view are shown in Table 4. 
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Figure 5.8 Analytical responses for Hansui R5 Viaduct  
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Table 4: Seismic performance evaluation of Hansui viaduct 

 Damage Limitation Point Damage Index (DI) Seismic Performance 

Column Concrete Steel Concrete Steel Concrete Steel 

P1 0.4 0.0038 0.05 0.00072 SP-I SP-I 

P2 0.4 0.0038 0.06 0.00070 SP-I SP-I 

P3 0.4 0.0038 0.06 0.00078 SP-I SP-I 

P4 0.4 0.0038 0.07 0.00087 SP-I SP-I 

P5 0.4 0.0038 0.08 0.00090 SP-I SP-I 

P6 0.4 0.0038 0.07 0.00089 SP-I SP-I 

P7 0.4 0.0038 0.06 0.00079 SP-I SP-I 

P8 0.4 0.0038 0.07 0.00087 SP-I SP-I 

 

The columns of Hansui viaduct present the same material properties and distribution of 

reinforcement and because of that looking at the table the damage limitation point is the 

same for all the targets. On the other hand the damage index is calculated for each target 

and compared to the damage limitation point to understand the performance of the 

materials at 4 seconds of shacking. The overall results suggest that both materials 

remain structurally sound after the first 4 seconds. For concrete in all 8 peers, the 

seismic performance level is SP-I, which corresponds to the first level. At the structural 

damage level in concrete in all 8 peers, cracking of concrete as well as some level of 

spalling can be expected in visual inspection. On the other hand for the case of steel 

reinforcement in all 8 peers, the seismic performance category is SP-I. At the material 

level the maximum observable damage condition expected in yielding of reinforcement. 

 

The analytical method proposed can generally predict the damage states from a 

numerical point of view. However it is necessary to conduct some sensitive analysis on 

the values presented by the methods in order to be better informed about the real 

damage condition of structures. With that, comparing the values of the damage indexes 

calculated for concrete and for steel with the damage limitation point of each material it 

is possible to understand that numerically they are considerably apart. In other words, 

the damage indexes are considerably smaller than the damage limitation points. In the 

definition of damage limitation point, it has been said that this corresponds to the 

threshold value where the damage potential of the material changes from moderate to 

considerable, and based on this definition at 4 seconds of shacking, it is possible to 

conclude that both material still present a considerable sound state.  
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5.4. Seismic Design and Retrofit Considerations based on 3D Lattice Model 

The standard goal of every analytical model in seismic analysis is to contribute to a 

better understanding of the complex factors that affect the behavior of RC structures in 

seismic events. Miki (2004) states in his doctoral thesis that one of the key concepts the 

updated JSCE standard specification establish is the concept that inelastic deformation 

can considerably be observed in RC structures after the longitudinal reinforcement 

yields, in opposition to the idea that only plastic behavior of structures subjected to 

strong motion is considered. On the other hand Priestley et al. (1996) stated that the use 

of elastic design promotes a false sense of the response levels to be expected under 

seismic attack and typically will result in severely underestimated displacements while 

encouraging designers to ignore aspects of ductility and rational hierarchy of strengths. 

 

In current design practice a large consideration should be given do ductility aspects. 

Ductility being defined as: the ability of the structural member to displace inelastically 

through several cycles of response without significant degradation of strength or 

stiffness. This is specially the case for bridge columns, where sudden loss of strength or 

stiffness can have catastrophic results and ultimately lead to structural failure and 

collapse. In the discussion pertaining ductility, strength, stiffness, energy dissipation and 

deformation are at the center of discussion. Although mathematically ductility is defined 

as the ration between deformation at a certain level of response to the level of 

deformation at yielding, understanding strength, stiffness, energy dissipation and 

deformation allows a much more informed decision on design aspects of RC bridge 

elements, especially columns 

 

The contribution of the 3D lattice model for the design and retrofit of RC structures can 

be seen from a multitude of approaches. Recent development in earthquake engineering 

allow the improved estimation of earthquake input ground motions and thus allowing 

the dynamic analysis using input ground motion that has been recorded during actual 

earthquakes to be used in the performance evaluation of RC structures. With a 

discretization method that is simplified, the 3D lattice model allows the typical use of 

dynamic analysis using actual ground motion to relatively easily estimate the seismic 

performance of existing RC structures while retaining reasonable computational time.   

 

On the other hand, aspects of design can be seen through the lenses of Priestley et al. 

(1996). According to their discussion, in design several different measures of strength 

must be considered. They discuss required strength, nominal strength, expected strength, 
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dependable strength, extreme strength, ideal strength and according to their discussion, 

in design, the presented strength characteristics follow a Gaussian or bell shaped 

distribution, on a relationship between strength and frequency. That evaluation shows 

how important it is to correctly grasp the response strength of a structure under seismic 

loading. Throughout the analysis the 3D lattice model has shown consistency in 

correctly predicting the strength to a certain load. The evidence of that is the extensive 

comparison between analytical results and experimental information to give proof or 

reliability. In that sense it can be useful to use to 3D lattice model to evaluate the 

strength of RC structural members.  

 

The contribution of the 3D lattice model can be extended to aspects of retrofit as well. It 

is commonplace that still existing RC bridges have been designed without clear 

understanding of performance states or performance demand in actual seismic events. 

The result of that is that many RC bridges have been designed to substandard codes and 

so in seismic events, their performance is not to be taken for granted and it is necessary 

to go back and verify the expected levels of performance under seismic loading so that 

appropriate retrofitting action can be taken.  

 

With a better understanding of site seismicity, which might be the single most important 

aspect in retrofit consideration, the modeling and simulation of existing RC bridges can 

easily be performed under dynamic analysis using the 3D lattice model. A simple 

example of the applicability of the 3D lattice model is in the retrofitting of RC Columns. 

In many cases they are retrofitted using steel jackets, which act as an extremely efficient 

transverse reinforcement. In that manner it is possible to simulate different transverse 

reinforcement ratios using the 3D lattice model to make a more informed decision on 

the steel jacketing to be used. 

 

Miki, T.(2004): Nonlinear Analysis of Reinforced Concrete Structures Subjected to 

Seismic Loads by Using Three-Dimensional Lattice model, Tokyo Institute of 

Technology, Doctoral Thesis, March  

 

Priestley, M.J.N., Seibe, F. and Calvi, G.M.(1996): Seismic Design and Retrofit of 

Bridges, Willey and sons, March  

References in Chapter 5 
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6.1. General Conclusions 

This study presented the performance evaluation of reinforced concrete (RC) structures 

subjected to seismic loading using 3D lattice model. The concept of 3D lattice model 

defines the shear resisting mechanism in terms of arch and truss actions in RC structural 

member. The truss action is comprised of an orthogonal coordinate system defined by 

three planes, as for the arch part, the internal stress flow is idealized as the compressive 

strut. The fundamental 3D lattice model has been developed for a quadrangular cross 

section target structure. In this study an expansion of scope is presented, with the 

development of 3D lattice model that targets circular cross section columns. 

Furthermore the damage analysis is performed and taken further by proposing a seismic 

performance evaluation method. With that a few important conclusions may be taken. 

 

The applicability of the 3D lattice model to perform static analysis on reinforced 

concrete columns with circular cross section is verified through the application of the 

3D lattice model previously developed, to a circular cross section column, considering 

equivalence in cross-sectional area in geometry to a rectangular cross section. A second 

and new approach is proposed, the multi-directional polygonal 3D lattice model, with 

more realistic geometrical discretization. 

  

Looking at the analytical results, the circular to rectangular equivalence in cross 

sectional area shows acceptable performance in response prediction based on initial 

stiffness, however it`s applicability has a larger scope in 2D analysis, in 3D analysis a 

more realistic discretization is obtained using the multi-directional polygonal 3D lattice 

model. The performance of the multi-directional polygonal 3D lattice model is 

considered acceptable both in terms of general response prediction of the envelope 

curve comparing initially to linear-elastic curve obtained from analysis of large-scale 

bridge pier followed by analysis performed on a column subjected to monotonic loading 

test. In both cases good agreement was observed in initial stiffness of the columns when 

reduction factors of cross-section area of concrete part of RC column are used. However, 

comparing analysis to the experimental results it was observed that the initial response 

strength is slightly overestimated. 

 

The applicability of the 3D lattice model to perform dynamic analysis for reinforced 

concrete columns with circular cross section is proposed. The analytical results show 

6. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 
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that before cracking, the geometrical equivalence between circular and square cross 

sectional areas produces softer and more acceptable results, especially with relation to 

initial stiffness. On the other hand, in the inelastic range, the multi-directional polygonal 

3D lattice model shows reasonable accuracy in hysteresis analysis, either considering 

the reduction of shear resisting area of concrete or reduction in the flexural stiffness that 

occurs in seismic response of RC members. 

 

In this research the multi-directional polygonal 3D lattice model is proposed in order to 

perform cumulative seismic damage evaluation of circular cross section RC columns 

under multiple loading sequences. The analytical results suggest that after the first shake 

the model works in an acceptable way to predict the transition from one loading 

sequence to the following, as well as residual displacement in longitudinal direction, 

and the energy dissipation capacity for one, two or three of loading sequences in 

transverse direction. 

 

In the analysis, the hysteretic response should be conjugated with the energy dissipation 

capacity and the residual displacement in order to have a more complete evaluation of 

the response. This need is proved by the increased complexity in the nonlinear behavior 

that is introduced by shaking the analytical target to more than one excitation.  

 

The applicability of this model to perform cumulative damage analysis is verified under 

a limited scope. Based on that, for further stages of this study, the research should focus 

on reducing the intrinsic initial high initial stiffness observed in elastic response, as it 

influenced the stiffness degradation in inelastic phase in some cases. Furthermore, 

underestimation of response displacement in higher order shaking sequences should 

also be closely looked at.   

 

The applicability of the 3D lattice model to perform damage evaluation of reinforced 

concrete columns with circular cross section is proposed using the multi-directional 

polygonal 3D lattice model. The analytical results confirm the applicability of the model, 

especially the hysteretic response after cracking of concrete. Damage evaluation has 

been proposed from the material point of view considering the accumulated energy 

dissipation of concrete and reinforcement, which are dependent on strain energy. 

Analytical results show that by large scale, steel reinforcement is the most dominant 

material in seismic resistance capacity.   
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The analysis of damage considering the critical damage condition point (CDP), allowed 

the reasonable prediction of real structure damage condition. At this point in this 

research, suffices to assume that damage range potential between 0 and CDP is 

moderate, while damage range from CDP to 1 is consistent with more severe damage 

potential, especially for concrete which presents less ductility capacity when compared 

to steel reinforcement. 

 

In this study, numerical verification of seismic for circular RC columns using 

multi-directional polygonal 3D lattice model is proposed. From the analysis, it is 

verified that based on static analysis, it is possible to acceptably reduce the high elastic 

stiffness observed in the modeling previously proposed based on the dynamic analysis. 

This suggests that a more fundamental treatment using static analysis should be given to 

the analytical target when the main focus of analysis is the elastic range. 

 

The damage index and seismic performance categories, allows the numerical evaluation 

of performance of material based on the seismic performance criteria broadly described 

by JSCE and fundamental experimental work performed by Kawashima et al. (2010) 

which are the basis considered in this study to co-relate damage index and structural 

performance evaluation from the material point of view. 

 

Furthermore a full framed rail road viaduct was subject to damage analysis using energy 

dissipation developed from 3D dynamic analysis. The target structure was Hansui R5 

viaduct. The results from the analysis have good level of agreement with the actual 

damage structure when compared. From the analysis the bottom layer was the most 

damaged position of the piers, very much visible in the post-damage figure presented. 

Furthermore, the joint of pier P1 was subjected to analysis, and based on its energy 

dissipation which was about 13% of the total for the pier, it was concluded that it 

presented a very small level of damage when compared to the remaining parts of the 

structure, especially the bottom. 

 

 

6.2. Recommendations for Future Research 

While conducting this research the complex nature of the issues studied was always 

present and throughout the study, decision on simplification of procedure and 

assumptions had to be made. With that certain aspects remain to be further researched to 

achieve better results. 
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In the modeling of RC columns using the multi-directional polygonal 3D lattice model 

there should be a profound experimental study to clarify the arch action in circular 

columns. In this study although an analytical approach was presented using the direct 

stiffness method, a more fundamental experimental and analytical research on the arch 

action in circular columns is needed to reduce the degree of uncertainty. 

 

In the discretization of circular columns using the multi-directional polygonal 3D lattice 

model for the truss part, a separation between Inner Diagonal Members (IDM), Surface 

Diagonal Members (SDM) and Diagonal Members in Transverse direction (DMT) has 

been used. This was the geometry that was found to best work at this stage and stable 

enough to conduct the analysis. However other geometries should be further 

investigated and in the current research elemental cross section of diagonal members in 

the multi-directional polygonal 3D lattice model has been proposed using simplified 

formulas, but the calculation of their cross sectional area can be better achieved using 

more sophisticated formulation. 

 

Still regarding the modeling using the multi-directional polygonal 3D lattice model, in 

the case of dynamic analysis, high plastic stiffness is observed in the response. In this 

study the applicability of the dynamic analysis was focused on the inelastic range and 

thus the initial stiffness of the model overestimation was not profoundly investigated. 

On further research some investigation on how to reduce the elastic stiffness should be 

performed, especially if the focus is the elastic design of RC members. 

 

One of the key features of the 3D lattice model is the reduced need for computational 

time due to the reduced number of degrees of freedom. So with that in analysis, 

especially the geometrical modeling it is important to keep in mind that choices have to 

be made so that the computational requirements of the analysis will not grow at a very 

fast pace, and it is also recommendable that computers with strong memory are used for 

analysis, especially for the analysis of viaducts. 

 

 

6.3. Further Contributions and Discussion 

Based on the discussions and recommendations from the thesis defense sessions, a 

number of points for further contribution and discussion in the refinement of scope of 

this research have been presented. From a general point of view, it is important to 

clearly understand the scopes of the analytical contributions of the study based on a 
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laboratory controlled environment to a more practical design environment. In this study, 

in order to confirm the applicability of the procedures proposed, the analytical 

information is compared to experimental information. However, in an actual RC 

structural member, the degree of complexity in response is potentially larger than the 

observed in laboratory environment, therefore it is important to effectively conduct 

sensitivity analysis in the interpretation of the analytical and experimental in order to 

extend the applicability to real RC structures.  

 

Furthermore from a general point of view, there is a big trend in the use of Finite 

Elements Methods (FEM) as well as others such as the fiber model, already described in 

this thesis and the Distinctive Elements Methods (DEM). All these analytical models 

have strong points and weak points, but one of the successes that the Lattice Model 

achieves when compared to them is the ability to give good prediction of flexural and 

shear behavior and obtain the appropriate failure mode, which can be verified 

experimentally while allowing the discretization of RC structural members with a 

reduced number of degrees of freedom. The consequences of that are that in one hand, 

the calculation time is greatly reduced. For example for a typical column in this study, 

the calculation time took more than only a couple of minutes. On the other hand the 

understanding of the failure mode appropriately allows a much more efficient 

application of the Lattice Model in the damage evaluation of RC structures, which is 

based on the understanding of failure modes and grasping real damage progress in 

structure. 

 

From a specific point of view, another important contribution has been offered. In the 

comparison between analytical results and the experimental results it is important to 

keep in the interpretation the effect of pull-out of longitudinal rebar in the footing. The 

question is that there is a size-dependency in the sense that in smaller column samples, 

the effect is much more severe than in larger samples. Therefore on a case-by-case basis, 

it is important to analyze carefully this effect, especially in the case where there is 

underestimation of the effect such as in smaller column samples. 

 

The lattice model showed good ability to discretize circular columns. Based on that, a 

further extension of scope would be to study its applicability to study RC piles. Based 

on the geometry alone, the multi-directional polygonal 3D lattice model can discretize 

RC piles, however, further research is need in the constitutive modeling as well as soil 

and structure interaction models. 


