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Abstract： For chemical syntheses in a microreactor, mixing speed is thought to be significant parameter in the case that
chemical reaction speed is significant high. For gold nanoparticle synthesis process, an initial reaction has been known as a rapid
reaction. Therefore, so far we have developed a microreactor for gold nanoparticle synthesis using a pulsed mixing microfluidic
device with T-shaped mixing channels for high-speed mixing. In this study, we uses the novel pulsed mixing method with cross-
shaped mixing channels in a microreactor to improve the mixing speed. The mixing achieved higher mixing speed than the
conventional method. This study found that mixing speed of two solutions was an effective parameter for increasing particle size
uniformity and that higher mixing speed achieved higher particle size uniformity.
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 In the both cases of concentrations, we observed that the coefficient of variation of the 
particle diameter tended to decrease with increasing the switching frequency. 

 At the HAuCl4 concentrations of 1.0 mM and 10 mM, the coefficients of variation show 
saturation tendencies from 100 Hz and 200 Hz, respectively. 

 This is because higher concentration of solutions provides higher reaction speed. At 
higher reaction speed, mixing speed has an effect of synthesis up to higher switching 
frequency. 

 From these results we confirmed that the proposed method for high mixing speed is 
useful for uniformly sized nanoparticle synthesis. 

Experimental results of particle synthesis
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“Nucleation period” can be controlled by “mixing speed”.

Particle size and size distribution strongly depend on
“nucleation period”.
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HAuCl4 + Na3C6H5O7 (Trisodium Citrate) → Au
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A-1. SiO2 dry etching
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Si(100)

C-1. Anodic bonding of micropump chip and Y-
or cross-shaped channel chips on glass

C-2. Au evaporation and wiring for micropump
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A-3. Si wet etching (KOH)
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a) 2 inlets

Distance, x [mm]
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c) 3 inlets with reverse flow
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b) 3 inlets without reverse flow
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HAuCl4:Na-Cit.
=1.0mM:1.8mM

HAuCl4:Na-Cit.
=10mM:18mM
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HAuCl4:Na-Cit.
=1.0mM:1.8mM

HAuCl4:Na-Cit.
=10mM:18mM

 High mixing speed and its control were achieved using the proposed method.


