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Gauge hierarchy problem:

Standard Model (SM) can explain  behavior of particle physics in 
electroweak scale          .

On the other hand, the planck scale        which is characterized by 
Newton constant       exists in our world.

MEW � 102 GeV Mpl � 1019 GeV

MEW

Mpl

GN

Gauge hierarchy problem

Standard Model Extra Dimension Model

1017 GeV



Randall-Sundrum model solves the gauge hierarchy problem.
　

　

To solve the hierarchy problem,
 　we must select 
　　

krc = 10 � 12

7

L.Randall, R.Sundrum  (1999)

　→ The metric fluctuation is so called radion.
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ⅱ）What’s “Radion” ?

　ヒエラルキー問題を解くために導入される場：
Mpl   ～ 　　  GeV　　        　MEW    ～ 　    GeV

　Randall-Sundrum Metric:

D次元Einstein-Hilbert action↔effective Einstein-Hilbert action

1019 103

Large Hierarchy !
Unnatural !

Letter follow from the particular nonfactorizable metric,
ds2 ! e22krcfhmndxmdxn 1 r2

c df2,

where k is a scale of the order of the Planck scale, x

ds2 ! e22s!f"hmndxmdxn 1 r2
c df2.

The coefficient, , is independent of , being the con-s ! rcjfj
s

2L

24M3 ,

. Note that the spacetime in between
L ! 224M3k2.

These relations are necessary for four-dimensional

｛

S4+n = −Mn+2
∗

∫

d4+nx
√

g(4+n)R(4+n) = −Mn+2
∗

∫

dΩ(n)r
n

∫

d4x
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g(4)R(4).

S4 = −M2
P l

∫

d4x
√

g(4)R(4).

M2
P l = Mn+2

∗ V(n) = Mn+2
∗ (2πr)n.+2 ∼ rnMn+2

∗ ,

大きな余剰次元の体積によってPlank scaleは急激に小さくなる
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　To solve the hierarchy problem We must select　   ＝10～12
　　(ex) Hierarchy problem of Higgs 
　　　   effective gravitational interaction:

　
　
　　
　　　　Then, fundamental Higgs field　
　
　　　　　　　　　　　　　　　　　　　　　　　( 1 )を使って書き直す

　
　
　
　

krc
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modulus field, T !x". As with many higher dimensional
theories, it will be critical that the T modulus is stabi-
lized with a mass of at least 1024 eV. This problem is
not yet solved (see Refs. [7,8]); we assume we can re-
place T with rc. In compactifying extra dimensions, one
frequently encounters vector zero modes from Amdxmdf
fluctuations of the metric (that is the original Kaluza-Klein
idea), corresponding to the continuous isometries of the
higher dimensions, but in the present case there are no
such isometries in the presence of the 3-branes. So all
such off-diagonal fluctuations of the metric are massive
and excluded from the low-energy effective theory.
The four-dimensional effective theory now follows by

substituting Eq. (13) into the original action [Eq. (4)].
We focus on the curvature term from which we can derive
the scale of gravitational interactions:

Seff .
Z

d4x
Z p

2p
df 2M3rce22krc jfjp2g R , (14)

where R denotes the four-dimensional Ricci scalar made
out of gmn!x", in contrast to the five-dimensional Ricci
scalar, R, made out of GMN !x, f". We can explicitly
perform the f integral to obtain a four-dimensional
action. From this, we derive

M2
Pl ! M3rc

Z p

2p
df e22krcjfj !

M3

k
#1 2 e22krcp $ .

(15)
This is an important result. It tells us that MPl depends
only weakly on rc in the large krc limit. Although the
exponential has very little effect in determining the Planck
scale, we will now see that it plays a crucial role in the
determination of the visible sector masses.
From Eq. (3) we see that ghid ! gmn . This is not the

case for the visible sector fields; by Eq. (3), we have
gvis

mn ! e22krcpgmn . By properly normalizing the fields
we can determine the physical masses. Consider, for
example, a fundamental Higgs field,

Svis .
Z

d4x
p

2gvis

3 %gmn
vis DmHyDnH 2 l!jHj2 2 y2

0"2& , (16)
which contains one mass parameter y0. Substituting
Eq. (3) into this action yields

Svis .
Z

d4x
p

2g e24krcp

3 %gmne2krcpDmHyDnH 2 l!jHj2 2 y2
0"2& ,

(17)
After wave-function renormalization, H ! ekrcpH, we
obtain

Seff .
Z

d4x
p

2g

3 %gmnDmHyDnH 2 l!jHj2 2 e22krcpy2
0"2& .

(18)

A remarkable thing has happened. We see that the
physical mass scales are set by a symmetry-breaking
scale,

y ' e2krcpy0 . (19)
This result is completely general: any mass parameter
m0 on the visible 3-brane in the fundamental higher-
dimensional theory will correspond to a physical mass,

m ' e2krcpm0 , (20)
when measured with the metric gmn , which is the met-
ric that appears in the effective Einstein action, since all
operators get rescaled according to their four-dimensional
conformal weight. If ekrcp is of order 1015, this mecha-
nism produces TeV physical mass scales from funda-
mental mass parameters not far from the Planck scale,
1019 GeV. Because this geometric factor is an expo-
nential, we clearly do not require very large hierarchies
among the fundamental parameters, y0, k, M, and mc '
1(rc; in fact, we require only krc ) 10.
We now study the gravitational modes. This gives

rise to a rich and very distinctive phenomenology. To
determine the parameters of the gravitational modes in
detail requires an explicit Kaluza-Klein decomposition.
We will do this in Ref. [9]. The result is that the masses
and couplings of the Kaluza-Klein modes are determined
by the TeV scale. This result can be readily understood.
Until this point, we have viewed M ) MPl as the

fundamental scale, and the TeV scale as a derived scale as
a consequence of the exponential factor appearing in the
metric. However, one could equally well have regarded
the TeV scale as fundamental, and the Planck scale of
1019 GeV as the derived scale. That is, the ratio is the
physical dimensionless quantity. From this viewpoint,
which is the one naturally taken by a four-dimensional
observer residing on the visible brane, the large Planck
scale (the weakness of gravity) arises because of the
small overlap of the graviton wave function in the fifth
dimension (which is the warp factor) with our brane. In
fact, this is the only small number produced. All other
scales are set by the TeV scale.
Technically, this change in viewpoint is established

by the change of coordinates, xm ! ekrcpxm. In this
case, the warp factor at f ! p is unity, whereas that
at f ! 0 is e2krc p. In this language, since there is no
rescaling of the “y” parameter in the Higgs potential
because the Higgs is already canonically normalized, the
scale y should take its physical value. Because we are
assuming all fundamental mass parameters are of the same
order, all these parameters are also of order TeV. (Note
that the relation between the mass parameters in the new
coordinates and the old mass parameters is due to the
spacetime coordinate rescaling.)
This result contrasts sharply with the scenario of large

extra dimensions for solving the hierarchy problem with a
product structure for the full spacetime, where the Kaluza-
Klein splittings are much smaller than the weak scale,

3372
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gvis
mn!xm" # Gmn!xm, f ! p" ,

ghid
mn !xm" # Gmn!xm, f ! 0" ,

(3)

where GMN , M, N ! m, f, is the five-dimensional metric.
This setup is similar to the scenario of Ref. [1], but

we take into account the effect of the branes on the

bulk gravitational metric and find a new solution to the
hierarchy problem. As we will show, this requires nothing
beyond the existence of the 3-branes in five dimensions
and their compatibility with four-dimensional Poincaré
invariance.
The classical action is

S ! Sgravity 1 Svis 1 Shid, Sgravity !
Z

d4x
Z p

2p
df

p
2G $2L 1 2M3R% ,

Svis !
Z

d4x
p

2gvis $Lvis 2 Vvis%, Shid !
Z

d4x
p

2ghid $Lhid 2 Vhid% .

(4)

Note that from each 3-brane Lagrangian we have separated out a constant “vacuum energy” which acts as a gravitational
source even in the absence of particle excitations. Other details of the 3-brane Lagrangian are not important (see
Ref. [6]).
Classical solution.—In this section we solve the five-dimensional Einstein’s equations for the above action:

p
2G

µ

RMN 2
1
2

GMNR
∂

! 2
1

4M3 &L
p

2G GMN 1 Vvis
p

2gvis gvis
mnd

m
Mdn

Nd!f 2 p"

1 Vhid
p

2ghid ghid
mn d

m
Mdn

Nd!f"' . (5)

We assume there exists a solution that respects four-
dimensional Poincaré invariance in the xm directions. A
five-dimensional metric satisfying this ansatz takes the
form

ds2 ! e22s!f"hmndxmdxn 1 r2
c df2. (6)

The coefficient, rc, is independent of f, rc being the con-
stant of proportionality so that rc is the “compactification
radius” of the extra dimensional circle prior to orbifolding.
With this ansatz, the Einstein’s equations following

from Eq. (5) reduce to
6s02

r2
c

!
2L

4M3 , (7)

3s00

r2
c

!
Vhid

4M3rc
d!f" 1

Vvis

4M3rc
d!f 2 p" . (8)

The solution to Eq. (7), consistent with the orbifold
symmetry, is

s ! rcjfj
s

2L

24M3 , (9)

so we find L , 0. Note that the spacetime in between
the two 3-branes is simply a slice of an AdS5 geometry.
(Note, this makes our bulk gravitational dynamics com-
patible with a supersymmetric extension.)
Recall that in computing derivatives we are to consider

the metric a periodic function in f. Equation (9), valid
for 2p # f # p , then implies

s00 ! 2rc

s

2L

24M3 &d!f" 2 d!f 2 p"' . (10)

From this, we see that we obtain a solution to Eq. (8) only
if Vhid, Vvis, L are related in terms of a single scale k:

Vhid ! 2Vvis ! 24M3k, L ! 224M3k2. (11)

These relations are necessary for four-dimensional
Poincaré invariance. Note that these relations arise in the
five-dimensional effective theory of the Horava-Witten
scenario [4] if one were to interpret the expectation
values of the background three-form field (but with
frozen Calabi-Yau moduli) as cosmological terms in
the effective five-dimensional theory after Calabi-Yau
compactification [5]. We will assume that k , M so that
we trust our solution.
Our solution for the bulk metric is then

ds2 ! e22krcjfjhmndxmdxn 1 r2
c df2. (12)

The compactification radius rc is effectively an arbitrary
integration constant for this solution.
Physical implications.—We can extract the physical

implications with a four-dimensional effective field theory
description. In this section, we derive the parameters of
this low-energy theory, in terms of the five-dimensional
scales, M, k, and rc.
The first step is to identify the massless gravitational

fluctuations about our classical solution [Eq. (12)]. They
are the zero modes of our classical solution, and take the
form

ds2 ! e22kT !x"jfj&hmn 1 hmn!x"'dxmdxn 1 T2!x"df2.

(13)

Here, hmn represents tensor fluctuations about Minkowski
space and is the physical graviton of the four-dimensional
effective theory (and is the massless mode in the Kaluza-
Klein decomposition of Gmn). Note that this metric is
locally the same as our “vacuum” solution. The compact-
ification radius, rc, is the vacuum expectation value of the
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modulus field, T !x". As with many higher dimensional
theories, it will be critical that the T modulus is stabi-
lized with a mass of at least 1024 eV. This problem is
not yet solved (see Refs. [7,8]); we assume we can re-
place T with rc. In compactifying extra dimensions, one
frequently encounters vector zero modes from Amdxmdf
fluctuations of the metric (that is the original Kaluza-Klein
idea), corresponding to the continuous isometries of the
higher dimensions, but in the present case there are no
such isometries in the presence of the 3-branes. So all
such off-diagonal fluctuations of the metric are massive
and excluded from the low-energy effective theory.
The four-dimensional effective theory now follows by

substituting Eq. (13) into the original action [Eq. (4)].
We focus on the curvature term from which we can derive
the scale of gravitational interactions:

Seff .
Z

d4x
Z p

2p
df 2M3rce22krc jfjp2g R , (14)

where R denotes the four-dimensional Ricci scalar made
out of gmn!x", in contrast to the five-dimensional Ricci
scalar, R, made out of GMN !x, f". We can explicitly
perform the f integral to obtain a four-dimensional
action. From this, we derive

M2
Pl ! M3rc

Z p

2p
df e22krcjfj !

M3

k
#1 2 e22krcp $ .

(15)
This is an important result. It tells us that MPl depends
only weakly on rc in the large krc limit. Although the
exponential has very little effect in determining the Planck
scale, we will now see that it plays a crucial role in the
determination of the visible sector masses.
From Eq. (3) we see that ghid ! gmn . This is not the

case for the visible sector fields; by Eq. (3), we have
gvis

mn ! e22krcpgmn . By properly normalizing the fields
we can determine the physical masses. Consider, for
example, a fundamental Higgs field,

Svis .
Z

d4x
p

2gvis

3 %gmn
vis DmHyDnH 2 l!jHj2 2 y2

0"2& , (16)
which contains one mass parameter y0. Substituting
Eq. (3) into this action yields

Svis .
Z

d4x
p

2g e24krcp

3 %gmne2krcpDmHyDnH 2 l!jHj2 2 y2
0"2& ,

(17)
After wave-function renormalization, H ! ekrcpH, we
obtain

Seff .
Z

d4x
p

2g

3 %gmnDmHyDnH 2 l!jHj2 2 e22krcpy2
0"2& .

(18)

A remarkable thing has happened. We see that the
physical mass scales are set by a symmetry-breaking
scale,

y ' e2krcpy0 . (19)
This result is completely general: any mass parameter
m0 on the visible 3-brane in the fundamental higher-
dimensional theory will correspond to a physical mass,

m ' e2krcpm0 , (20)
when measured with the metric gmn , which is the met-
ric that appears in the effective Einstein action, since all
operators get rescaled according to their four-dimensional
conformal weight. If ekrcp is of order 1015, this mecha-
nism produces TeV physical mass scales from funda-
mental mass parameters not far from the Planck scale,
1019 GeV. Because this geometric factor is an expo-
nential, we clearly do not require very large hierarchies
among the fundamental parameters, y0, k, M, and mc '
1(rc; in fact, we require only krc ) 10.
We now study the gravitational modes. This gives

rise to a rich and very distinctive phenomenology. To
determine the parameters of the gravitational modes in
detail requires an explicit Kaluza-Klein decomposition.
We will do this in Ref. [9]. The result is that the masses
and couplings of the Kaluza-Klein modes are determined
by the TeV scale. This result can be readily understood.
Until this point, we have viewed M ) MPl as the

fundamental scale, and the TeV scale as a derived scale as
a consequence of the exponential factor appearing in the
metric. However, one could equally well have regarded
the TeV scale as fundamental, and the Planck scale of
1019 GeV as the derived scale. That is, the ratio is the
physical dimensionless quantity. From this viewpoint,
which is the one naturally taken by a four-dimensional
observer residing on the visible brane, the large Planck
scale (the weakness of gravity) arises because of the
small overlap of the graviton wave function in the fifth
dimension (which is the warp factor) with our brane. In
fact, this is the only small number produced. All other
scales are set by the TeV scale.
Technically, this change in viewpoint is established

by the change of coordinates, xm ! ekrcpxm. In this
case, the warp factor at f ! p is unity, whereas that
at f ! 0 is e2krc p. In this language, since there is no
rescaling of the “y” parameter in the Higgs potential
because the Higgs is already canonically normalized, the
scale y should take its physical value. Because we are
assuming all fundamental mass parameters are of the same
order, all these parameters are also of order TeV. (Note
that the relation between the mass parameters in the new
coordinates and the old mass parameters is due to the
spacetime coordinate rescaling.)
This result contrasts sharply with the scenario of large

extra dimensions for solving the hierarchy problem with a
product structure for the full spacetime, where the Kaluza-
Klein splittings are much smaller than the weak scale,
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modulus field, T !x". As with many higher dimensional
theories, it will be critical that the T modulus is stabi-
lized with a mass of at least 1024 eV. This problem is
not yet solved (see Refs. [7,8]); we assume we can re-
place T with rc. In compactifying extra dimensions, one
frequently encounters vector zero modes from Amdxmdf
fluctuations of the metric (that is the original Kaluza-Klein
idea), corresponding to the continuous isometries of the
higher dimensions, but in the present case there are no
such isometries in the presence of the 3-branes. So all
such off-diagonal fluctuations of the metric are massive
and excluded from the low-energy effective theory.
The four-dimensional effective theory now follows by

substituting Eq. (13) into the original action [Eq. (4)].
We focus on the curvature term from which we can derive
the scale of gravitational interactions:

Seff .
Z

d4x
Z p

2p
df 2M3rce22krc jfjp2g R , (14)

where R denotes the four-dimensional Ricci scalar made
out of gmn!x", in contrast to the five-dimensional Ricci
scalar, R, made out of GMN !x, f". We can explicitly
perform the f integral to obtain a four-dimensional
action. From this, we derive

M2
Pl ! M3rc

Z p

2p
df e22krcjfj !

M3

k
#1 2 e22krcp $ .

(15)
This is an important result. It tells us that MPl depends
only weakly on rc in the large krc limit. Although the
exponential has very little effect in determining the Planck
scale, we will now see that it plays a crucial role in the
determination of the visible sector masses.
From Eq. (3) we see that ghid ! gmn . This is not the

case for the visible sector fields; by Eq. (3), we have
gvis

mn ! e22krcpgmn . By properly normalizing the fields
we can determine the physical masses. Consider, for
example, a fundamental Higgs field,

Svis .
Z

d4x
p

2gvis

3 %gmn
vis DmHyDnH 2 l!jHj2 2 y2

0"2& , (16)
which contains one mass parameter y0. Substituting
Eq. (3) into this action yields

Svis .
Z

d4x
p

2g e24krcp

3 %gmne2krcpDmHyDnH 2 l!jHj2 2 y2
0"2& ,

(17)
After wave-function renormalization, H ! ekrcpH, we
obtain

Seff .
Z

d4x
p

2g

3 %gmnDmHyDnH 2 l!jHj2 2 e22krcpy2
0"2& .

(18)

A remarkable thing has happened. We see that the
physical mass scales are set by a symmetry-breaking
scale,

y ' e2krcpy0 . (19)
This result is completely general: any mass parameter
m0 on the visible 3-brane in the fundamental higher-
dimensional theory will correspond to a physical mass,

m ' e2krcpm0 , (20)
when measured with the metric gmn , which is the met-
ric that appears in the effective Einstein action, since all
operators get rescaled according to their four-dimensional
conformal weight. If ekrcp is of order 1015, this mecha-
nism produces TeV physical mass scales from funda-
mental mass parameters not far from the Planck scale,
1019 GeV. Because this geometric factor is an expo-
nential, we clearly do not require very large hierarchies
among the fundamental parameters, y0, k, M, and mc '
1(rc; in fact, we require only krc ) 10.
We now study the gravitational modes. This gives

rise to a rich and very distinctive phenomenology. To
determine the parameters of the gravitational modes in
detail requires an explicit Kaluza-Klein decomposition.
We will do this in Ref. [9]. The result is that the masses
and couplings of the Kaluza-Klein modes are determined
by the TeV scale. This result can be readily understood.
Until this point, we have viewed M ) MPl as the

fundamental scale, and the TeV scale as a derived scale as
a consequence of the exponential factor appearing in the
metric. However, one could equally well have regarded
the TeV scale as fundamental, and the Planck scale of
1019 GeV as the derived scale. That is, the ratio is the
physical dimensionless quantity. From this viewpoint,
which is the one naturally taken by a four-dimensional
observer residing on the visible brane, the large Planck
scale (the weakness of gravity) arises because of the
small overlap of the graviton wave function in the fifth
dimension (which is the warp factor) with our brane. In
fact, this is the only small number produced. All other
scales are set by the TeV scale.
Technically, this change in viewpoint is established

by the change of coordinates, xm ! ekrcpxm. In this
case, the warp factor at f ! p is unity, whereas that
at f ! 0 is e2krc p. In this language, since there is no
rescaling of the “y” parameter in the Higgs potential
because the Higgs is already canonically normalized, the
scale y should take its physical value. Because we are
assuming all fundamental mass parameters are of the same
order, all these parameters are also of order TeV. (Note
that the relation between the mass parameters in the new
coordinates and the old mass parameters is due to the
spacetime coordinate rescaling.)
This result contrasts sharply with the scenario of large

extra dimensions for solving the hierarchy problem with a
product structure for the full spacetime, where the Kaluza-
Klein splittings are much smaller than the weak scale,

3372
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modulus field, T !x". As with many higher dimensional
theories, it will be critical that the T modulus is stabi-
lized with a mass of at least 1024 eV. This problem is
not yet solved (see Refs. [7,8]); we assume we can re-
place T with rc. In compactifying extra dimensions, one
frequently encounters vector zero modes from Amdxmdf
fluctuations of the metric (that is the original Kaluza-Klein
idea), corresponding to the continuous isometries of the
higher dimensions, but in the present case there are no
such isometries in the presence of the 3-branes. So all
such off-diagonal fluctuations of the metric are massive
and excluded from the low-energy effective theory.
The four-dimensional effective theory now follows by

substituting Eq. (13) into the original action [Eq. (4)].
We focus on the curvature term from which we can derive
the scale of gravitational interactions:

Seff .
Z

d4x
Z p

2p
df 2M3rce22krc jfjp2g R , (14)

where R denotes the four-dimensional Ricci scalar made
out of gmn!x", in contrast to the five-dimensional Ricci
scalar, R, made out of GMN !x, f". We can explicitly
perform the f integral to obtain a four-dimensional
action. From this, we derive

M2
Pl ! M3rc

Z p

2p
df e22krcjfj !

M3

k
#1 2 e22krcp $ .

(15)
This is an important result. It tells us that MPl depends
only weakly on rc in the large krc limit. Although the
exponential has very little effect in determining the Planck
scale, we will now see that it plays a crucial role in the
determination of the visible sector masses.
From Eq. (3) we see that ghid ! gmn . This is not the

case for the visible sector fields; by Eq. (3), we have
gvis

mn ! e22krcpgmn . By properly normalizing the fields
we can determine the physical masses. Consider, for
example, a fundamental Higgs field,

Svis .
Z

d4x
p

2gvis

3 %gmn
vis DmHyDnH 2 l!jHj2 2 y2

0"2& , (16)
which contains one mass parameter y0. Substituting
Eq. (3) into this action yields

Svis .
Z

d4x
p

2g e24krcp

3 %gmne2krcpDmHyDnH 2 l!jHj2 2 y2
0"2& ,

(17)
After wave-function renormalization, H ! ekrcpH, we
obtain

Seff .
Z

d4x
p

2g

3 %gmnDmHyDnH 2 l!jHj2 2 e22krcpy2
0"2& .

(18)

A remarkable thing has happened. We see that the
physical mass scales are set by a symmetry-breaking
scale,

y ' e2krcpy0 . (19)
This result is completely general: any mass parameter
m0 on the visible 3-brane in the fundamental higher-
dimensional theory will correspond to a physical mass,

m ' e2krcpm0 , (20)
when measured with the metric gmn , which is the met-
ric that appears in the effective Einstein action, since all
operators get rescaled according to their four-dimensional
conformal weight. If ekrcp is of order 1015, this mecha-
nism produces TeV physical mass scales from funda-
mental mass parameters not far from the Planck scale,
1019 GeV. Because this geometric factor is an expo-
nential, we clearly do not require very large hierarchies
among the fundamental parameters, y0, k, M, and mc '
1(rc; in fact, we require only krc ) 10.
We now study the gravitational modes. This gives

rise to a rich and very distinctive phenomenology. To
determine the parameters of the gravitational modes in
detail requires an explicit Kaluza-Klein decomposition.
We will do this in Ref. [9]. The result is that the masses
and couplings of the Kaluza-Klein modes are determined
by the TeV scale. This result can be readily understood.
Until this point, we have viewed M ) MPl as the

fundamental scale, and the TeV scale as a derived scale as
a consequence of the exponential factor appearing in the
metric. However, one could equally well have regarded
the TeV scale as fundamental, and the Planck scale of
1019 GeV as the derived scale. That is, the ratio is the
physical dimensionless quantity. From this viewpoint,
which is the one naturally taken by a four-dimensional
observer residing on the visible brane, the large Planck
scale (the weakness of gravity) arises because of the
small overlap of the graviton wave function in the fifth
dimension (which is the warp factor) with our brane. In
fact, this is the only small number produced. All other
scales are set by the TeV scale.
Technically, this change in viewpoint is established

by the change of coordinates, xm ! ekrcpxm. In this
case, the warp factor at f ! p is unity, whereas that
at f ! 0 is e2krc p. In this language, since there is no
rescaling of the “y” parameter in the Higgs potential
because the Higgs is already canonically normalized, the
scale y should take its physical value. Because we are
assuming all fundamental mass parameters are of the same
order, all these parameters are also of order TeV. (Note
that the relation between the mass parameters in the new
coordinates and the old mass parameters is due to the
spacetime coordinate rescaling.)
This result contrasts sharply with the scenario of large

extra dimensions for solving the hierarchy problem with a
product structure for the full spacetime, where the Kaluza-
Klein splittings are much smaller than the weak scale,
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mass parameter

( 1 )

2012年6月9日土曜日
何故k#r_cか？
①RSmetricをVierbein&spinconnectionのFormで書き直し、トーションフリーcond.を課して関係式を得る→①で得た関係から2-formのリーマンテンソル、リッチテンソルを求める
→５次元のアインシュタイン方程式に②を代入。各々$%(4D)と44(5D)で関係式を得る。→44から出てきた関係式で、次元をD=4とすれば"に関する式が導出される
→4Dポアンカレ不変になるために出てきたCosmological Constantと関係を組めば出る

Randall-Sundrum metric is

2 Randall-Sundrum 模型
2.1 ゲージ階層性問題の解決 (詳細)

現在良く調べられている余剰次元模型は数種類存在するが、我々は特に 1999年に Lisa Randallと
Raman Sundrumが提唱した“Warped Extra Dimension”（Randall-Sundrum Model、RS Model）
[2] に着目している。このモデルはまず 5次元時空を考え、余剰次元方向を S1/Z2 コンパクト化す
る。図 5に S1/Z2コンパクト化のイメージ図を記した。S1/Z2コンパクト化は φと−φを同一視す
る。このことを一般に orbifoldingという。
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図 6 fixied pointに置かれた 2ブレーンの間を S1/Z2 コンパクト化したModel (RS Model) のイメー
ジ図 (これは図 3と同じである)

更に、orbifoldingした２つの固定点 (fixed point) に各々 (3+1) 次元のブレーンを用意する (図
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となる。ここで、h̄µν はMinkowski空間のフラクチェーションであり、これは有効理論での物理的
なグラビトンである。4次元metricは

ḡµν(x) ≡ ηµν + h̄µν(x) (2.1.49)

と定義した。作用 (2.1.30)を上記のmetricを使って書き直し、有効作用を求めると

Seff ⊃
∫

d4x

∫ π

−π
dφ 2M3rce

−2krc|φ|√−ḡR̄ (2.1.50)

となる。ここで、R̄は ghid = ḡµν(x)で作られる 4次元のリッチスカラーである*2。以上の作用を φ

について積分すると我々は 4次元作用を求める事ができる*3。

M2
pl = M3rc

∫ π

−π
dφe−2krc|φ| =

M3

k
[1 − e−2krcπ] . (2.1.51)

これは一般的に hierarchy relationとして知られている。この関係式から分かるように、TeVブレー
ンに至るまでに大きな krc によって重力はプランクスケールから指数関数的に弱まっており、特に
krc = 10 ∼ 12であれば階層性問題を解決出来ることが分かる。
さて、このMpl & MEW という２つの大きく異なるスケールの自然な説明を求める階層性問題
は、ヒッグスの質量の階層性問題とも置き換えられる。つまり、階層性問題とは、なぜヒッグスの質
量がプランクスケールより遙かに小さい値になるのかという問題と等価である。従って、このヒッ
グスの階層性問題に対しても RS Modelは解決を実現していると予想出来る。
(2.1.50)のうち、ヒッグス場に対してのみ作用を抜き出し、ghid = ḡµν とし (2.1.31)の規格化を行え
ば、以下を得る。

Svis ⊃
∫

d4x
√
−gvis × {gµν

visDµH†DνH − λ(|H|2 − v2
0)2} (2.1.52)

=
∫

d4x
√
−ḡe−4krcπ × {ḡµνe2krcπDµH†DνH − λ(|H|2 − v2

0)2} . (2.1.53)

更に、ヒッグスの波動関数に対してH → ekrcπH というカノニカルな規格化を行えば、有効作用が
得られる。

Seff ⊃
∫

d4x
√
−ḡ × {ḡµνDµH†DνH − λ(|H|2 − e−2krcπv2

0)2} . (2.1.54)

以上の有効作用の下でのヒッグスの VEV vを、以下のように定義する。

v ≡ e−krcπv0 . (2.1.55)

高次元では TeVブレーンでの全ての粒子の質量m0は、物理的な質量に一致するので、

m ≡ e−krcπm0 (2.1.56)

*2 これに対して、5 次元のリッチスカラー R は GMN (x, φ) で作られる。このようなセットアップは low-energy のフラクチェー
ションは xにのみ依っていて、φには依存しないためである。

*3 これは (1.3.3)と等価である。(2.1.51)を導出する過程を簡易的に導いたものが (1.3.3)である
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Why krc = 10~12 ? 

→ ex ) Goldberger-Wise Mechanism

To stabilize the distance between hidden
brane and visible brane, we introduce
a scalar field.

Radion Φ is a canonically normalized 4D
scalar field after integrating out the 
extra dimension. W. D. Goldberger, M. B. Wise

Phys.Rev.Lett. 83 , 4922-4925 (1999)

 ① Production & decay are very similar to Higgs
 ② Radion mass mΦ is O(TeV) and it is lighter than 1st KK graviton
 ③ Strength of coupling to the SM fields is proportional to 1/ΛΦ (～1/TeV)

Radion Φ：Metric fluctuation (G55), Scalar particle (spin=0)
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Figure 4: Left, middle: Combined exclusion limits for the full mass range and for
mH < 150 GeV [10] (see Figure 2). Right: Local probability p0 for the background to
fluctuate to the observed number of events or higher, by channel, for mH < 150 GeV.
Dashed lines show the expected median local p0 for the signal hypotheses at mH .

SM Higgs boson. The chance of this being due to a background fluctuation is 15%
over the full mass range, or (5–7)% over (110–146) GeV.

This work is supported in part by the U.S. Department of Energy under contract
DE-AC02-98CH10886 with Brookhaven National Laboratory.

References

[1] ATLAS Collaboration, JINST 3, S08003 (2008).

[2] ATLAS Collaboration, Phys. Rev. Lett. 108, 111803 (2012) [arXiv:1202.1414].

[3] ATLAS Collaboration, Phys. Lett. B 710, 383 (2012) [arXiv:1202.1415].

[4] ATLAS Collaboration, arXiv:1206.0756.

[5] ATLAS Collaboration, arXiv:1207.0210.

[6] ATLAS Collaboration, arXiv:1206.5971.

[7] ATLAS Collaboration, arXiv:1205.6744.

[8] ATLAS Collaboration, arXiv:1206.2443.

[9] ATLAS Collaboration, arXiv:1206.6074.

[10] ATLAS Collaboration, Phys. Rev. D 86, 032003 (2012) [arXiv:1207.0319].

[11] ATLAS and CMS Collaborations, ATLAS-CONF-2011-157, CMS-PAS-HIG-11-
023 (2011) [https://cdsweb.cern.ch/record/1399599/].

6

 [GeV]Hm
100 200 300 400 500 600

SM
σ/

σ
95

%
 C

L 
Li

m
it 

on
 

-110

1

10

Obs. 
Exp. 

σ1 ±
σ2 ±  = 7 TeVs     

-1 Ldt = 4.6-4.9 fb∫
ATLAS  2011 2011 Data

CLs Limits

 [GeV]Hm
110 115 120 125 130 135 140 145 150

SM
σ/

σ
95

%
 C

L 
Li

m
it 

on
 

-110

1

10 Obs. 
Exp. 

σ1 ±
σ2 ±  = 7 TeVs     

-1 Ldt = 4.6-4.9 fb∫
ATLAS  2011 2011 Data

CLs Limits

 [GeV]Hm
110 115 120 125 130 135 140 145 150

0
Lo

ca
l p

-310

-210

-110

1

10
Exp. Comb.
Obs. Comb.

γγ →Exp. H 
γγ →Obs. H 

 llll→ ZZ →Exp. H 
 llll→ ZZ →Obs. H 

νlν l→ WW →Exp. H 
νlν l→ WW →Obs. H 

 bb→Exp. H 
 bb→Obs. H 
ττ →Exp. H 
ττ →Obs. H 

ATLAS 2011 -1 L dt ~ 4.6-4.9 fb∫  = 7 TeVs

σ1 

σ2 

σ3 

Figure 4: Left, middle: Combined exclusion limits for the full mass range and for
mH < 150 GeV [10] (see Figure 2). Right: Local probability p0 for the background to
fluctuate to the observed number of events or higher, by channel, for mH < 150 GeV.
Dashed lines show the expected median local p0 for the signal hypotheses at mH .

SM Higgs boson. The chance of this being due to a background fluctuation is 15%
over the full mass range, or (5–7)% over (110–146) GeV.

This work is supported in part by the U.S. Department of Energy under contract
DE-AC02-98CH10886 with Brookhaven National Laboratory.

References

[1] ATLAS Collaboration, JINST 3, S08003 (2008).

[2] ATLAS Collaboration, Phys. Rev. Lett. 108, 111803 (2012) [arXiv:1202.1414].

[3] ATLAS Collaboration, Phys. Lett. B 710, 383 (2012) [arXiv:1202.1415].

[4] ATLAS Collaboration, arXiv:1206.0756.

[5] ATLAS Collaboration, arXiv:1207.0210.

[6] ATLAS Collaboration, arXiv:1206.5971.

[7] ATLAS Collaboration, arXiv:1205.6744.

[8] ATLAS Collaboration, arXiv:1206.2443.

[9] ATLAS Collaboration, arXiv:1206.6074.

[10] ATLAS Collaboration, Phys. Rev. D 86, 032003 (2012) [arXiv:1207.0319].

[11] ATLAS and CMS Collaborations, ATLAS-CONF-2011-157, CMS-PAS-HIG-11-
023 (2011) [https://cdsweb.cern.ch/record/1399599/].

6

arXiv:1209.0590v1 [hep-ex]
for the ATLAS Collaboration

SM Higgs was found at low mass 
region.
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region.
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Motivation:

Ⅰ  ) Production & decay of radion are 
     very similar to SM Higgs.

Ⅱ ) We know the ratio of σ/σSM from
    SM Higgs search. 

CMS-HIG-13-002
It might be an indirect constraint on an 
extra (SM Higgs like) scalar.

→ we study allowed region of mΦ and ΛΦ.

SM Higgs was found at low mass 
region.

→  Then we focused heavy 
　  radion search. 

     (no radion-Higgs mixing)

https://mail.google.com/mail/?ui=2&ik=8e2dc67550&view=att&th=13e17fbdfa4f4968&attid=0.2&disp=safe&zw
https://mail.google.com/mail/?ui=2&ik=8e2dc67550&view=att&th=13e17fbdfa4f4968&attid=0.2&disp=safe&zw


Ⅱ：Production and Decay of radion 
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Interaction of radion to SM fields (in detail)
　For fermion, W, Z, SM Higgs：

　For gluon, photon：

2

The interactions of the radion φ with the SM particles
on the brane are model-independent and are governed by
four-dimensional general covariance given by the follow-
ing Lagrangian:

Lint =
φ

Λφ
T µ
µ (SM) , (2)

where Λφ = 〈φ〉 is of the order of TeV and T µ
µ is the trace

of the SM energy-momentum tensor, which is given by

T µ
µ (SM) =

∑

f

mf f̄f − 2m2
WW+

µ W−µ −m2
ZZµZ

µ

+(2m2
HH2 − ∂µH∂µH) + · · · , (3)

where · · · denotes higher order terms. The couplings of
the radion with fermions f , gauge bosons W and Z, and
Higgs boson H are completely fixed by Eq. (2).
For the coupling of the radion to a pair of gluons (pho-

tons), there are contributions from 1-loop diagrams with
the top quark (top quark and W ) in the loop as well as
from the trace anomaly. The contribution from the trace
anomaly for gauge fields is given by

T µ
µ (SM)anom =

∑

a

βa(ga)

2ga
F a
µνF

aµν . (4)

For QCD, βQCD/2gs = −(αs/8π)bQCD, where bQCD =
11 − 2nf/3 with nf = 6. Thus, the effective coupling
of φg(p1)g(p2), including the 1-loop diagrams of the top
quark and the trace anomaly contributions, is given by

iδabαs

2πΛφ
[bQCD + yt(1 + (1− yt)f(yt))]

(

p1 · p2gµν − p2µp1ν
)

(5)
where yt = 4m2

t/2p1 · p2 with the gluon incoming mo-
menta p1 and p2. Similarly, the effective coupling of
φγ(p1)γ(p2), including the 1-loop diagrams of the top
quark andW boson and the trace anomaly contributions,
is given by

iαem

2πΛφ
[b2 + bY − (2 + 3yW + 3yW (2− yW )f(yW ))

+
8

3
yt(1 + (1− yt)f(yt))

]

×
(

p1 · p2gµν − p2µp1ν
)

, (6)

where b2 = 19/6, bY = −41/6 and yi = 4m2
i /2p1 ·p2 with

i = W, t. In the above Eqs.(5) and (6), the function f(z)
is given by

f(z) =











[

sin−1
(

1√
z

)]2
, z ≥ 1

− 1
4

[

log
(

1+
√
1−z

1−
√
1−z

)

− iπ
]2

, z < 1
.

There have been many phenomenological studies of the
radion or dilaton at colliders [13] in the literature. More
recent works related to the LHC can be found in Ref. [14].

Decays and Production of the Radion.– With the above
interactions, we can calculate the partial widths of the
radion into gg, γγ, f f̄ , W+W−, ZZ, and HH . The
partial widths are given by

Γ(φ → gg) =
α2
sm

3
φ

32π3Λ2
φ

∣

∣

∣

∣

bQCD+xt(1+(1−xt)f(xt))

∣

∣

∣

∣

2

, (7)

Γ(φ → γγ) =
α2
emm

3
φ

256π3Λ2
φ

∣

∣

∣

∣

∣

b2 + bY − (2 + 3xW + 3xW

×(2− xW )f(xW )) +
8

3
xt(1 + (1− xt)f(xt))

∣

∣

∣

∣

∣

2

, (8)

Γ(φ → f f̄) =
Ncm2

fmφ

8πΛ2
φ

(1 − xf )
3/2, (9)

Γ(φ → W+W−) =
m3

φ

16πΛ2
φ

√
1− xW

(

1− xW +
3

4
x2
W

)

,

(10)

Γ(φ → ZZ) =
m3

φ

32πΛ2
φ

√
1− xZ

(

1− xZ +
3

4
x2
Z

)

,

(11)

Γ(φ → HH) =
m3

φ

32πΛ2
φ

√
1− xH

(

1 +
xH

2

)2
, (12)

where xi = 4m2
i /m

2
φ (i = f,W,Z,H) and Nc = 3 (1)

for quarks (leptons). Note that the branching ratios are
independent of Λφ.
In calculating the partial widths into fermions, we have

used the 3-loop running masses with scale Q2 = m2
φ. We

have also allowed the off-shell decays of the W and Z
bosons and that of the top quark. The features of ra-
dion decay branching ratios are similar to the decay of
the Higgs boson, except the following. At mφ

<∼ 140
GeV, the decay width is dominated by φ → gg, while
the decay width of the SM Higgs boson is dominated by
the bb̄ mode. At larger mφ, φ also decays into a pair of
Higgs bosons (φ → HH) if kinematically allowed, while
the SM Higgs boson cannot. Similar to the SM Higgs
boson, as mφ goes beyond the WW and ZZ thresholds,
the WW and ZZ modes dominate with the WW partial
width about a factor of 2 of the ZZ partial width. We list
the relevant branching ratios of the radion in Table I for
mφ = 123− 126 GeV. Just for comparison with the SM
Higgs boson, we also list the branching ratios and pro-
duction cross sections of the SM Higgs boson in Table II
(from Ref. [15]).
The production channels of the radion at hadronic col-

liders include

gg → φ

2

The interactions of the radion φ with the SM particles
on the brane are model-independent and are governed by
four-dimensional general covariance given by the follow-
ing Lagrangian:

Lint =
φ

Λφ
T µ
µ (SM) , (2)

where Λφ = 〈φ〉 is of the order of TeV and T µ
µ is the trace

of the SM energy-momentum tensor, which is given by

T µ
µ (SM) =

∑

f

mf f̄f − 2m2
WW+

µ W−µ −m2
ZZµZ

µ

+(2m2
HH2 − ∂µH∂µH) + · · · , (3)

where · · · denotes higher order terms. The couplings of
the radion with fermions f , gauge bosons W and Z, and
Higgs boson H are completely fixed by Eq. (2).
For the coupling of the radion to a pair of gluons (pho-

tons), there are contributions from 1-loop diagrams with
the top quark (top quark and W ) in the loop as well as
from the trace anomaly. The contribution from the trace
anomaly for gauge fields is given by

T µ
µ (SM)anom =

∑

a

βa(ga)

2ga
F a
µνF

aµν . (4)

For QCD, βQCD/2gs = −(αs/8π)bQCD, where bQCD =
11 − 2nf/3 with nf = 6. Thus, the effective coupling
of φg(p1)g(p2), including the 1-loop diagrams of the top
quark and the trace anomaly contributions, is given by

iδabαs

2πΛφ
[bQCD + yt(1 + (1− yt)f(yt))]

(

p1 · p2gµν − p2µp1ν
)

(5)
where yt = 4m2

t/2p1 · p2 with the gluon incoming mo-
menta p1 and p2. Similarly, the effective coupling of
φγ(p1)γ(p2), including the 1-loop diagrams of the top
quark andW boson and the trace anomaly contributions,
is given by

iαem

2πΛφ
[b2 + bY − (2 + 3yW + 3yW (2− yW )f(yW ))

+
8

3
yt(1 + (1− yt)f(yt))

]

×
(

p1 · p2gµν − p2µp1ν
)

, (6)

where b2 = 19/6, bY = −41/6 and yi = 4m2
i /2p1 ·p2 with
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boson, as mφ goes beyond the WW and ZZ thresholds,
the WW and ZZ modes dominate with the WW partial
width about a factor of 2 of the ZZ partial width. We list
the relevant branching ratios of the radion in Table I for
mφ = 123− 126 GeV. Just for comparison with the SM
Higgs boson, we also list the branching ratios and pro-
duction cross sections of the SM Higgs boson in Table II
(from Ref. [15]).
The production channels of the radion at hadronic col-

liders include

gg → φ
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The interactions of the radion φ with the SM particles
on the brane are model-independent and are governed by
four-dimensional general covariance given by the follow-
ing Lagrangian:

Lint =
φ

Λφ
T µ
µ (SM) , (2)

where Λφ = 〈φ〉 is of the order of TeV and T µ
µ is the trace

of the SM energy-momentum tensor, which is given by

T µ
µ (SM) =
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where · · · denotes higher order terms. The couplings of
the radion with fermions f , gauge bosons W and Z, and
Higgs boson H are completely fixed by Eq. (2).
For the coupling of the radion to a pair of gluons (pho-

tons), there are contributions from 1-loop diagrams with
the top quark (top quark and W ) in the loop as well as
from the trace anomaly. The contribution from the trace
anomaly for gauge fields is given by
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µ (SM)anom =
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For QCD, βQCD/2gs = −(αs/8π)bQCD, where bQCD =
11 − 2nf/3 with nf = 6. Thus, the effective coupling
of φg(p1)g(p2), including the 1-loop diagrams of the top
quark and the trace anomaly contributions, is given by
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φγ(p1)γ(p2), including the 1-loop diagrams of the top
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where b2 = 19/6, bY = −41/6 and yi = 4m2
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i = W, t. In the above Eqs.(5) and (6), the function f(z)
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There have been many phenomenological studies of the
radion or dilaton at colliders [13] in the literature. More
recent works related to the LHC can be found in Ref. [14].

Decays and Production of the Radion.– With the above
interactions, we can calculate the partial widths of the
radion into gg, γγ, f f̄ , W+W−, ZZ, and HH . The
partial widths are given by
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where xi = 4m2
i /m

2
φ (i = f,W,Z,H) and Nc = 3 (1)

for quarks (leptons). Note that the branching ratios are
independent of Λφ.
In calculating the partial widths into fermions, we have

used the 3-loop running masses with scale Q2 = m2
φ. We

have also allowed the off-shell decays of the W and Z
bosons and that of the top quark. The features of ra-
dion decay branching ratios are similar to the decay of
the Higgs boson, except the following. At mφ

<∼ 140
GeV, the decay width is dominated by φ → gg, while
the decay width of the SM Higgs boson is dominated by
the bb̄ mode. At larger mφ, φ also decays into a pair of
Higgs bosons (φ → HH) if kinematically allowed, while
the SM Higgs boson cannot. Similar to the SM Higgs
boson, as mφ goes beyond the WW and ZZ thresholds,
the WW and ZZ modes dominate with the WW partial
width about a factor of 2 of the ZZ partial width. We list
the relevant branching ratios of the radion in Table I for
mφ = 123− 126 GeV. Just for comparison with the SM
Higgs boson, we also list the branching ratios and pro-
duction cross sections of the SM Higgs boson in Table II
(from Ref. [15]).
The production channels of the radion at hadronic col-

liders include

gg → φ

Production(main)：
gluon fusion ( top + bottom loops )
　　

Free parameter

　　　　　　)　   7 (for nf = 6)

qq′ → qq′φ (WW, ZZ fusion)

qq̄ , gg → tt̄φ .

Similar to the SM Higgs boson, the most important production channel for the radion is gg fusion, which has the
lowest order in couplings. In addition, gg → φ gets further enhancement from the anomaly. The production cross
section at a hadronic collider with a center-of-mass energy

√
s is given by

σ(s) =

∫ 1

m2

φ
/s

dx

x
g(x) g

(
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φ

sx

)
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s
|bQCD + yt(1 + (1 − yt)f(yt)|2 , (12)

where g(x) is the gluon parton distribution function at momentum fraction x. As shown in Fig. 3, gg → φ has
substantially larger cross sections than any other channels for all energies and masses. We shall emphasize using this
channel to detect the radion in the next section. We have used the parameterization of CTEQ5L [11] for parton
distribution functions.

The associated Higgs production with a vector boson, W or Z, is the golden channel to search for the light Higgs
boson at a relatively low energy machine, such as the Tevatron. This is because the W or Z can be tagged to reduce
the huge QCD background and Higgs decays mainly into the heaviest flavor bb̄. However, for the radion it is not the
case because the light radion decays dominantly into gg so that heavy flavor cannot be tagged, but still the associated
W or Z boson can be tagged to reduce backgrounds.

The subprocess cross sections for qq̄′ → Wφ and qq̄ → Zφ are given by

σ̂(qq̄′ → Wφ) =
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where gf
L,R = T3f − Qf sin2 θw are the chiral f̄ fZ couplings, and ŝ is the square of the center-of-mass energy of the

incoming partons.
The WW and ZZ fusion processes will give an increasing cross section with energy. They are useful production

channels at the LHC, especially, when energetic and forward jets are tagged [12] while the other channels would not
give rise to energetic nor forward jets. There are a number of subprocesses, e.g., ud → udφ (WW and ZZ fusion),
uu → uuφ (ZZ fusion only), us → dcφ (WW fusion only), etc. Here we only present the formula for the subprocess
ud → udφ. The other subprocesses can be obtained from this by removing the interference term and replacing with
appropriate chiral couplings. The spin- and color-averaged amplitude-squared for u(p1)d(p2) → d(q1)u(q2)φ(k) is
given by

∑

|M|2 =
4g4m4

W

Λ2
φ

p1 · p2 q1 · q2

[(p1 − q1)2 − m2
W ]2 [(p2 − q2)2 − m2

W ]2
,

+
16g4m4

Z

cos4 θwΛ2
φ

(gd
L

2
gu

R
2 + gu

L
2gd

R
2
) p1 · q1 p2 · q2 + (gd

L
2
gu

L
2 + gd

R
2
gu

R
2) p1 · p2 q1 · q2

[(p1 − q2)2 − m2
Z ]2 [(p2 − q1)2 − m2

Z ]2

+
16g4m2

W m2
Z

3 cos2 θwΛ2
φ

gd
Lgu

L p1 · p2 q1 · q2

[(p1 − q1)2 − m2
W ] [(p2 − q2)2 − m2

W ][(p1 − q2)2 − m2
Z ] [(p2 − q1)2 − m2

Z ]
. (15)

The associated production with a tt̄ pair is also nonnegligible because of the large top-quark mass. The formulas
for qq̄ → tt̄φ and gg → tt̄φ are more complicated and thus presented in the appendix.

The production cross sections for these channels versus the center-of-mass energy and versus mφ are given in Fig.
3(a) and (b), respectively. It is clear that σ(gg → φ) is at least two orders of magnitude larger than the other channels.
It is only this channel that the production of radion is substantially larger than the production of the Higgs boson, in
the case of Λφ = v. In the next section, we shall study a few decay modes of the radion using this gg → φ production
channel.
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Radion decay:

2

The interactions of the radion φ with the SM particles
on the brane are model-independent and are governed by
four-dimensional general covariance given by the follow-
ing Lagrangian:

Lint =
φ

Λφ
T µ
µ (SM) , (2)

where Λφ = 〈φ〉 is of the order of TeV and T µ
µ is the trace

of the SM energy-momentum tensor, which is given by

T µ
µ (SM) =

∑

f

mf f̄f − 2m2
WW+

µ W−µ −m2
ZZµZ

µ

+(2m2
HH2 − ∂µH∂µH) + · · · , (3)

where · · · denotes higher order terms. The couplings of
the radion with fermions f , gauge bosons W and Z, and
Higgs boson H are completely fixed by Eq. (2).
For the coupling of the radion to a pair of gluons (pho-

tons), there are contributions from 1-loop diagrams with
the top quark (top quark and W ) in the loop as well as
from the trace anomaly. The contribution from the trace
anomaly for gauge fields is given by

T µ
µ (SM)anom =

∑

a

βa(ga)

2ga
F a
µνF

aµν . (4)

For QCD, βQCD/2gs = −(αs/8π)bQCD, where bQCD =
11 − 2nf/3 with nf = 6. Thus, the effective coupling
of φg(p1)g(p2), including the 1-loop diagrams of the top
quark and the trace anomaly contributions, is given by

iδabαs

2πΛφ
[bQCD + yt(1 + (1− yt)f(yt))]

(

p1 · p2gµν − p2µp1ν
)

(5)
where yt = 4m2

t/2p1 · p2 with the gluon incoming mo-
menta p1 and p2. Similarly, the effective coupling of
φγ(p1)γ(p2), including the 1-loop diagrams of the top
quark andW boson and the trace anomaly contributions,
is given by

iαem
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[b2 + bY − (2 + 3yW + 3yW (2− yW )f(yW ))

+
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)

, (6)

where b2 = 19/6, bY = −41/6 and yi = 4m2
i /2p1 ·p2 with

i = W, t. In the above Eqs.(5) and (6), the function f(z)
is given by
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There have been many phenomenological studies of the
radion or dilaton at colliders [13] in the literature. More
recent works related to the LHC can be found in Ref. [14].

Decays and Production of the Radion.– With the above
interactions, we can calculate the partial widths of the
radion into gg, γγ, f f̄ , W+W−, ZZ, and HH . The
partial widths are given by
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where xi = 4m2
i /m

2
φ (i = f,W,Z,H) and Nc = 3 (1)

for quarks (leptons). Note that the branching ratios are
independent of Λφ.
In calculating the partial widths into fermions, we have

used the 3-loop running masses with scale Q2 = m2
φ. We

have also allowed the off-shell decays of the W and Z
bosons and that of the top quark. The features of ra-
dion decay branching ratios are similar to the decay of
the Higgs boson, except the following. At mφ

<∼ 140
GeV, the decay width is dominated by φ → gg, while
the decay width of the SM Higgs boson is dominated by
the bb̄ mode. At larger mφ, φ also decays into a pair of
Higgs bosons (φ → HH) if kinematically allowed, while
the SM Higgs boson cannot. Similar to the SM Higgs
boson, as mφ goes beyond the WW and ZZ thresholds,
the WW and ZZ modes dominate with the WW partial
width about a factor of 2 of the ZZ partial width. We list
the relevant branching ratios of the radion in Table I for
mφ = 123− 126 GeV. Just for comparison with the SM
Higgs boson, we also list the branching ratios and pro-
duction cross sections of the SM Higgs boson in Table II
(from Ref. [15]).
The production channels of the radion at hadronic col-

liders include

gg → φ
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The interactions of the radion φ with the SM particles
on the brane are model-independent and are governed by
four-dimensional general covariance given by the follow-
ing Lagrangian:

Lint =
φ

Λφ
T µ
µ (SM) , (2)

where Λφ = 〈φ〉 is of the order of TeV and T µ
µ is the trace

of the SM energy-momentum tensor, which is given by

T µ
µ (SM) =

∑
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mf f̄f − 2m2
WW+

µ W−µ −m2
ZZµZ

µ

+(2m2
HH2 − ∂µH∂µH) + · · · , (3)

where · · · denotes higher order terms. The couplings of
the radion with fermions f , gauge bosons W and Z, and
Higgs boson H are completely fixed by Eq. (2).
For the coupling of the radion to a pair of gluons (pho-

tons), there are contributions from 1-loop diagrams with
the top quark (top quark and W ) in the loop as well as
from the trace anomaly. The contribution from the trace
anomaly for gauge fields is given by

T µ
µ (SM)anom =

∑

a

βa(ga)

2ga
F a
µνF

aµν . (4)

For QCD, βQCD/2gs = −(αs/8π)bQCD, where bQCD =
11 − 2nf/3 with nf = 6. Thus, the effective coupling
of φg(p1)g(p2), including the 1-loop diagrams of the top
quark and the trace anomaly contributions, is given by
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)
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where yt = 4m2

t/2p1 · p2 with the gluon incoming mo-
menta p1 and p2. Similarly, the effective coupling of
φγ(p1)γ(p2), including the 1-loop diagrams of the top
quark andW boson and the trace anomaly contributions,
is given by
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where b2 = 19/6, bY = −41/6 and yi = 4m2
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i = W, t. In the above Eqs.(5) and (6), the function f(z)
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There have been many phenomenological studies of the
radion or dilaton at colliders [13] in the literature. More
recent works related to the LHC can be found in Ref. [14].

Decays and Production of the Radion.– With the above
interactions, we can calculate the partial widths of the
radion into gg, γγ, f f̄ , W+W−, ZZ, and HH . The
partial widths are given by
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where xi = 4m2
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φ (i = f,W,Z,H) and Nc = 3 (1)

for quarks (leptons). Note that the branching ratios are
independent of Λφ.
In calculating the partial widths into fermions, we have

used the 3-loop running masses with scale Q2 = m2
φ. We

have also allowed the off-shell decays of the W and Z
bosons and that of the top quark. The features of ra-
dion decay branching ratios are similar to the decay of
the Higgs boson, except the following. At mφ

<∼ 140
GeV, the decay width is dominated by φ → gg, while
the decay width of the SM Higgs boson is dominated by
the bb̄ mode. At larger mφ, φ also decays into a pair of
Higgs bosons (φ → HH) if kinematically allowed, while
the SM Higgs boson cannot. Similar to the SM Higgs
boson, as mφ goes beyond the WW and ZZ thresholds,
the WW and ZZ modes dominate with the WW partial
width about a factor of 2 of the ZZ partial width. We list
the relevant branching ratios of the radion in Table I for
mφ = 123− 126 GeV. Just for comparison with the SM
Higgs boson, we also list the branching ratios and pro-
duction cross sections of the SM Higgs boson in Table II
(from Ref. [15]).
The production channels of the radion at hadronic col-

liders include
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The interactions of the radion φ with the SM particles
on the brane are model-independent and are governed by
four-dimensional general covariance given by the follow-
ing Lagrangian:

Lint =
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Λφ
T µ
µ (SM) , (2)

where Λφ = 〈φ〉 is of the order of TeV and T µ
µ is the trace

of the SM energy-momentum tensor, which is given by
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µ W−µ −m2
ZZµZ

µ

+(2m2
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where · · · denotes higher order terms. The couplings of
the radion with fermions f , gauge bosons W and Z, and
Higgs boson H are completely fixed by Eq. (2).
For the coupling of the radion to a pair of gluons (pho-

tons), there are contributions from 1-loop diagrams with
the top quark (top quark and W ) in the loop as well as
from the trace anomaly. The contribution from the trace
anomaly for gauge fields is given by

T µ
µ (SM)anom =
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For QCD, βQCD/2gs = −(αs/8π)bQCD, where bQCD =
11 − 2nf/3 with nf = 6. Thus, the effective coupling
of φg(p1)g(p2), including the 1-loop diagrams of the top
quark and the trace anomaly contributions, is given by
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There have been many phenomenological studies of the
radion or dilaton at colliders [13] in the literature. More
recent works related to the LHC can be found in Ref. [14].
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bosons and that of the top quark. The features of ra-
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Λφ
T µ
µ (SM) , (2)

where Λφ = 〈φ〉 is of the order of TeV and T µ
µ is the trace

of the SM energy-momentum tensor, which is given by

T µ
µ (SM) =

∑

f

mf f̄f − 2m2
WW+

µ W−µ −m2
ZZµZ

µ

+(2m2
HH2 − ∂µH∂µH) + · · · , (3)

where · · · denotes higher order terms. The couplings of
the radion with fermions f , gauge bosons W and Z, and
Higgs boson H are completely fixed by Eq. (2).
For the coupling of the radion to a pair of gluons (pho-

tons), there are contributions from 1-loop diagrams with
the top quark (top quark and W ) in the loop as well as
from the trace anomaly. The contribution from the trace
anomaly for gauge fields is given by

T µ
µ (SM)anom =

∑

a

βa(ga)

2ga
F a
µνF

aµν . (4)

For QCD, βQCD/2gs = −(αs/8π)bQCD, where bQCD =
11 − 2nf/3 with nf = 6. Thus, the effective coupling
of φg(p1)g(p2), including the 1-loop diagrams of the top
quark and the trace anomaly contributions, is given by

iδabαs

2πΛφ
[bQCD + yt(1 + (1− yt)f(yt))]

(

p1 · p2gµν − p2µp1ν
)

(5)
where yt = 4m2

t/2p1 · p2 with the gluon incoming mo-
menta p1 and p2. Similarly, the effective coupling of
φγ(p1)γ(p2), including the 1-loop diagrams of the top
quark andW boson and the trace anomaly contributions,
is given by

iαem

2πΛφ
[b2 + bY − (2 + 3yW + 3yW (2− yW )f(yW ))

+
8

3
yt(1 + (1− yt)f(yt))

]

×
(

p1 · p2gµν − p2µp1ν
)

, (6)

where b2 = 19/6, bY = −41/6 and yi = 4m2
i /2p1 ·p2 with

i = W, t. In the above Eqs.(5) and (6), the function f(z)
is given by

f(z) =











[

sin−1
(

1√
z

)]2
, z ≥ 1

− 1
4

[

log
(

1+
√
1−z

1−
√
1−z

)

− iπ
]2

, z < 1
.

There have been many phenomenological studies of the
radion or dilaton at colliders [13] in the literature. More
recent works related to the LHC can be found in Ref. [14].

Decays and Production of the Radion.– With the above
interactions, we can calculate the partial widths of the
radion into gg, γγ, f f̄ , W+W−, ZZ, and HH . The
partial widths are given by

Γ(φ → gg) =
α2
sm

3
φ

32π3Λ2
φ

∣

∣

∣

∣

bQCD+xt(1+(1−xt)f(xt))

∣

∣

∣

∣

2

, (7)

Γ(φ → γγ) =
α2
emm

3
φ

256π3Λ2
φ

∣

∣

∣

∣

∣

b2 + bY − (2 + 3xW + 3xW

×(2− xW )f(xW )) +
8

3
xt(1 + (1− xt)f(xt))

∣

∣

∣

∣

∣

2

, (8)

Γ(φ → f f̄) =
Ncm2

fmφ

8πΛ2
φ

(1 − xf )
3/2, (9)

Γ(φ → W+W−) =
m3

φ

16πΛ2
φ

√
1− xW

(

1− xW +
3

4
x2
W

)

,

(10)

Γ(φ → ZZ) =
m3

φ

32πΛ2
φ

√
1− xZ

(

1− xZ +
3

4
x2
Z

)

,

(11)

Γ(φ → HH) =
m3

φ

32πΛ2
φ

√
1− xH

(

1 +
xH

2

)2
, (12)

where xi = 4m2
i /m

2
φ (i = f,W,Z,H) and Nc = 3 (1)

for quarks (leptons). Note that the branching ratios are
independent of Λφ.
In calculating the partial widths into fermions, we have

used the 3-loop running masses with scale Q2 = m2
φ. We

have also allowed the off-shell decays of the W and Z
bosons and that of the top quark. The features of ra-
dion decay branching ratios are similar to the decay of
the Higgs boson, except the following. At mφ

<∼ 140
GeV, the decay width is dominated by φ → gg, while
the decay width of the SM Higgs boson is dominated by
the bb̄ mode. At larger mφ, φ also decays into a pair of
Higgs bosons (φ → HH) if kinematically allowed, while
the SM Higgs boson cannot. Similar to the SM Higgs
boson, as mφ goes beyond the WW and ZZ thresholds,
the WW and ZZ modes dominate with the WW partial
width about a factor of 2 of the ZZ partial width. We list
the relevant branching ratios of the radion in Table I for
mφ = 123− 126 GeV. Just for comparison with the SM
Higgs boson, we also list the branching ratios and pro-
duction cross sections of the SM Higgs boson in Table II
(from Ref. [15]).
The production channels of the radion at hadronic col-

liders include

gg → φ

 → Free parameters : 
             ΛΦ,   mΦ 　　　
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Ⅲ: Constraints on mΦ and ΛΦ from search for Higgs 
　  boson at the LHC

high mass region→WW, ZZ modes
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  → It might be an indirect constraint on an extra (SM Higgs like) scalar.
　

       In other words, we calculated  ...

 Experimental bound from LHC

 Radion interaction to SM fields
 is very similar to SM Higgs.

    We know the ratio of 
σ/σSM from SM Higgs search. 
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 → We study allowed region of ΛΦ and mΦ.

When the radion is heavy enough, the W+W− decay mode is the dominant one, and the
branching ratio can be O(1). At the region mφ ! 200 GeV, the ZZ decay branching ratio is
about the half of that of W+W−. Since these features are similar to those of the SM Higgs
bosons, we can make use of the W+W− and ZZ data for the SM Higgs boson searches to
the case of the radion as well.

At the low-mass regionmφ ∼ 120 GeV, the radion can decay into a pair of photons mainly
via the anomaly term in addition to the contributions from W -boson and top-quark loop
diagrams. Although the partial decay width to γγ is enhanced by the anomaly term, the full
width at this mass region is dominated by the gg decay width, which is also enhanced by the
contribution from the anomaly term. As a result, the branching ratio to γγ is suppressed,
rather than enhanced, compared to that of the SM Higgs boson.

4 Constraint on radion mass and couplings from LHC

data

With the preparations in the previous sections, we are now ready to discuss the constraint
on the radion mass and couplings from the Higgs-boson search data at the LHC.

The ATLAS and CMS collaborations recently discovered the SM Higgs boson at mh "
125.5 GeV [33, 34]. At the same time, they have excluded the existence of the SM Higgs
boson at wide range of mh other than mh " 125.5 GeV from non-observation of pp → h →
W+W−, ZZ, γγ. As already discussed by a number of authors [4, 5, 6, 7], these data can
be used to exclude the radion in the RS model since its production mechanism and decay
modes are similar to the SM Higgs boson.

In this paper, we use the CMS data for the W+W−, ZZ and γγ decay modes of the SM
Higgs boson [41, 42, 43]. To evaluate the excluded region, we use the following method.
Below we explain it taking the ZZ channel as an example.

In the left panel of Fig. 5 of Ref. [42], the authors give values of the 95% CL limit on
σ/σSM as a function of the Higgs boson mass mh, which is equal to the invariant mass of
the Z-boson pair in this case. We call this curve (the solid curve with the label “Observed”)
f(mh). To interpret this as a constraint on the radion, we impose the condition below,

[
∫

L7TeVdt · σ(pp → φX; 7TeV) +

∫

L8TeVdt · σ(pp → φX; 8TeV)

]

Br(φ → ZZ)

≤ f(mh)

[
∫

L7TeVdt · σ(pp → hX ; 7TeV) +

∫

L8TeVdt · σ(pp → hX ; 8TeV)

]

× Br(h → ZZ)

∣

∣

∣

∣

mh=mφ

, (4)

where the right-hand side should be evaluated with the understanding that mh is taken to
be equal to mφ. The factors

∫

L7TeVdt and
∫

L8TeVdt are the integrated luminosities at the
LHC center-of-mass energy

√
s = 7 TeV and 8 TeV, and in the case of Fig. 5 of Ref. [42],

they are 5.1 fb−1 and 19.6 fb−1, respectively. σ(pp → φX; 7(8)TeV) is the radion production
cross section at

√
s = 7(8) TeV, and similarly for the Higgs boson production cross sections.

In Fig. 3, we show the region in the (mφ,Λφ) plane which is excluded by the condition
Eq. (4) and similar conditions in the W+W− and γγ channels. The input data we use are
taken from Fig. 9 in Ref. [41] for the W+W− channel, the left panel of Fig. 5 in Ref. [42] for
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Figure 3: Excluded regions in the (mφ,Λφ) plane from the SM Higgs boson searches in the
ZZ,W+W− and γγ channels at the LHC.

the ZZ channel, and Fig. 5b in Ref. [43] for the γγ channel. We find that the constraint from
the ZZ channel excludes wide region of the parameter space: For mφ around 200 GeV, the
radion interaction scale Λφ is excluded up to 5 TeV. Even for mφ = 1 TeV, Λφ is excluded up
to 2 TeV. We find that this is an interesting result since the RS model is supposed to solve
the gauge hierarchy problem, and Λφ is believed to be not very far from the weak scale.

Below the V V (V = W,Z) nominal threshold the bound from V V becomes much weaker.
In Fig. 3 we find that there is a parameter region which is excluded by W+W− but not by
ZZ or γγ. Similarly, below the W+W− nominal threshold, there are small parameter regions
which are excluded by γγ but not by W+W− or ZZ.

Before closing this section, we compare bounds on the radion parameters from the Higgs-
boson searches and those from the first Kaluza-Klein (KK) graviton searches. The mass mG1

of the first KK graviton in the RS model is given by [44]

mG1
= 3.83ke−kπrc, (5)

and this is related to Λφ via

Λφ =
√
6Mple

−kπrc , (6)

once the value of k/Mpl is fixed [16]. The ATLAS collaboration has reported the lower mass
bound on the first KK graviton in the RS model as mG1

> 2.23 (1.03) TeV for k/Mpl =
0.1 (0.01) [45], and this can be translated into the bound Λφ > 14.3 (65.8) TeV via Eqs. (5)
and (6). Although this is a stringent bound, if the value of k/Mpl is unity, then the lower
bound on Λφ is relaxed to a few TeV [4, 46]. In this case, our study presented in this paper
remains interesting.

5 Summary

In this paper, we have studied constraints on the radion mass and couplings in the RS model
from the LHC data on the SM Higgs boson searches. We have used the data for h → ZZ,

6

We analyzed h → ZZ / WW / γγ decay modes

→ The bounds are not depend on the stabilization mechanism . 



17

On the other hand ...

　Constraints on ΛΦ from search for 1st KK graviton 
　at the LHC
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Comment on “Could the Excess Seen at 124− 126 GeV Be due to the

Randall-Sundrum Radion?”

Yong Tang
Physics Division, National Center for Theoretical Sciences, Hsinchu, Taiwan

The excess seen at 125 GeV at both ATLAS [1] and
CMS [2] has attracted many considerations for new
physics beside the higgs boson in standard model(SM)
. One very interesting suggestion is [3] which shows that
Randall-Sundrum(RS) radion can be responsible for the
excess. The physics behind RS model lies with the fol-
lowing geometry for the warped space-time [4],

ds2 = e−2kT (x)|ϕ|[ηµν +Gµν(x)]dx
µdxν +T 2(x)dϕ2, (1)

where T (x) is referred to as the modulus field, Gµν(x) as
graviton and k is a scale of the order of the (reduced)
Planck scale Mpl. To explain the hierarchy problem,
the compactification radius or the vacuum expectation
value(vev) of the modulus field, rc ≡ 〈T (x)〉, is required
to satisfy the relation krc ∼ 12.
The radion φ [5], identified as the scalar bulk field to

stabilize the modulus field, couples to SM particles as
Lint = φ

Λφ
T µ

µ, where Tµν is energy-momentum tensor

for SM particles and Λφ =
√
6Mple−krcπ. This model

leads to a larger branching ratio for φ → gg or γγ, rel-
ative to hSM → gg or γγ in SM. As shown in [3], with
Λφ ∼ 680 GeV, the excess observed at the LHC can be
explained by a 125 GeV RS radion with σ(H)Br(H →
γγ)/σBrSM ∼ 2.1 and smaller values for other channels
relative to the corresponding ones in SM.
The analysis above does not take into account of the

constraint on other part of the RS model, namely the
searches for a massive graviton at the LHC. In this note,
we shall show that the results of LHC searches for gravi-
ton have interesting implications for the radion.
The nth massive Kaluza-Klein(KK) modes of Gµν will

also couple to SM particles, L(n)
int = 1

ΛG
G(n)

µν T µν , where

ΛG = Mple−krcπ . The mass of the nth KK graviton is
given by MGn = kxne−krcπ = xn

k
Mpl

ΛG, where xn is the

nth solution of J1(xn) = 0, and J1 is the Bessel function.
In the following, we will focus on the first KK mode with
x1 = 3.83, MG ≡ MG1

.
The couplings of the first KK graviton with SM parti-

cles are proportional to 1/ΛG or x1k/Mpl for a fixed MG.
Limits put on MG for specified k/Mpl can then be trans-
ferred to limits on ΛG, therefore on Λφ due to the rela-
tion, Λφ =

√
6ΛG. For example, using dijet final states,

CMS [6] with 1 fb−1 has excluded a RS graviton mass
below 1 TeV for k/Mpl = 0.1. A straightforward calcula-

tion gives that the corresponding Λφ =
√
6

x1k/Mpl
MG = 6.4

TeV. More recently, using dilepton final states, ATLAS
[7] with 5 fb−1 show that a RS graviton mass below

2.16 TeV is excluded at 95% confidence level also with
k/Mpl = 0.1, then the corresponding Λφ = 13.8 TeV.

A smaller value of Λφ then requires a larger k/Mpl,
although the latter of order 0.1 or less is preferred
theoretically[8]. However, a larger k/Mpl means a more
stringent constraint on MG because the cross section for
the graviton’s production at the LHC is proportional to
(k/Mpl)2. As shown in Fig. 1, when k/Mpl = 0.3, the
limit for MG is 2.8 TeV, then we have Λφ = 5.97 TeV.
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FIG. 1: Limit on the mass of RS graviton for various k/Mpl,
where the box points are taken from [7].

One may want to extend to even larger k/Mpl and
hope to accommodate Λφ = 680 GeV. The obstacle
is that there is an upper limit for k/Mpl theoretically

given by [9], k/Mpl <
√

3π3/5
√
5 ( 2.88. We show

the conservative constraint for large k/Mpl in Fig. 2. A
limit of MG = 3.5 TeV will give Λφ = 2.24 TeV for
k/Mpl ( 1. Even the largest but highly theoretically
disfavoured k/Mpl ( 2.88 results in Λφ = 0.8 TeV and
σ(H)Br(H → γγ)/σBrSM ∼ 1.5.

In summary, it is unlikely to have a 125 GeV RS ra-
dion with Λφ = 680GeV and accommodate with both
experimental and theoretically constraints.

[1] G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 710,
49 (2012) [arXiv:1202.1408 [hep-ex]].

[2] S. Chatrchyan et al. [CMS Collaboration],
arXiv:1202.1488 [hep-ex].

[3] K. Cheung and T. -C. Yuan, Phys. Rev. Lett. 108, 141602
(2012) [arXiv:1112.4146 [hep-ph]].
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on mG are summarised in Table 2. Using a constant K-factor of 1.75, the 95% CL

lower limit from the diphoton channel is 1.00 (2.06) TeV for k/MP l= 0.01 (0.1), and

the combined 95% CL lower limit is 1.03 (2.23) TeV for k/MP l=0.01 (0.1).
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Figure 3. Expected and observed 95% CL limits from the combination of G →
γγ/ee/µµ channels on σ×B, the product of the RS graviton production cross section
and the branching ratio for graviton decay via G → γγ/ee/µµ, as a function of the
graviton mass. The –1σ and –2σ variations of the expected limit exhibit a tendency
to be particularly close to the expected limit at large mG. This behaviour is expected
as signals with large mG would manifest themselves in regions of mγγ where the
SM background is small and the poissonian fluctuations around the mean expected
background are highly asymmetric. The theory curves are obtained using the Pythia

generator, which implements the calculations from Ref. [48]. A K-factor of 1.75 is
applied on top of these predictions to account for NLO corrections. The thickness of
the theory curve for k/MPl = 0.1 illustrates the theoretical uncertainties due to the
PDFs expressed at 90% CL.

A counting experiment is performed to set limits on the ADD model. Specifically,

the number of diphoton events is counted in a search region above a given threshold in
mγγ . The mass threshold is chosen to optimise the expected limit on the difference in

the diphoton cross section formγγ > 500 GeV between the ADD model and the SM-only

hypothesis. For the purpose of this optimisation, a specific implementation of the ADD

model and specific values of the parameters have to be chosen. For MS = 2500 GeV
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Thus the relation between ΛΦ and mG1 is
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The excess seen at 125 GeV at both ATLAS [1] and
CMS [2] has attracted many considerations for new
physics beside the higgs boson in standard model(SM)
. One very interesting suggestion is [3] which shows that
Randall-Sundrum(RS) radion can be responsible for the
excess. The physics behind RS model lies with the fol-
lowing geometry for the warped space-time [4],

ds2 = e−2kT (x)|ϕ|[ηµν +Gµν(x)]dx
µdxν +T 2(x)dϕ2, (1)

where T (x) is referred to as the modulus field, Gµν(x) as
graviton and k is a scale of the order of the (reduced)
Planck scale Mpl. To explain the hierarchy problem,
the compactification radius or the vacuum expectation
value(vev) of the modulus field, rc ≡ 〈T (x)〉, is required
to satisfy the relation krc ∼ 12.
The radion φ [5], identified as the scalar bulk field to

stabilize the modulus field, couples to SM particles as
Lint = φ

Λφ
T µ

µ, where Tµν is energy-momentum tensor

for SM particles and Λφ =
√
6Mple−krcπ. This model

leads to a larger branching ratio for φ → gg or γγ, rel-
ative to hSM → gg or γγ in SM. As shown in [3], with
Λφ ∼ 680 GeV, the excess observed at the LHC can be
explained by a 125 GeV RS radion with σ(H)Br(H →
γγ)/σBrSM ∼ 2.1 and smaller values for other channels
relative to the corresponding ones in SM.
The analysis above does not take into account of the

constraint on other part of the RS model, namely the
searches for a massive graviton at the LHC. In this note,
we shall show that the results of LHC searches for gravi-
ton have interesting implications for the radion.
The nth massive Kaluza-Klein(KK) modes of Gµν will

also couple to SM particles, L(n)
int = 1

ΛG
G(n)

µν T µν , where

ΛG = Mple−krcπ . The mass of the nth KK graviton is
given by MGn = kxne−krcπ = xn

k
Mpl

ΛG, where xn is the

nth solution of J1(xn) = 0, and J1 is the Bessel function.
In the following, we will focus on the first KK mode with
x1 = 3.83, MG ≡ MG1

.
The couplings of the first KK graviton with SM parti-

cles are proportional to 1/ΛG or x1k/Mpl for a fixed MG.
Limits put on MG for specified k/Mpl can then be trans-
ferred to limits on ΛG, therefore on Λφ due to the rela-
tion, Λφ =

√
6ΛG. For example, using dijet final states,

CMS [6] with 1 fb−1 has excluded a RS graviton mass
below 1 TeV for k/Mpl = 0.1. A straightforward calcula-

tion gives that the corresponding Λφ =
√
6

x1k/Mpl
MG = 6.4

TeV. More recently, using dilepton final states, ATLAS
[7] with 5 fb−1 show that a RS graviton mass below

2.16 TeV is excluded at 95% confidence level also with
k/Mpl = 0.1, then the corresponding Λφ = 13.8 TeV.

A smaller value of Λφ then requires a larger k/Mpl,
although the latter of order 0.1 or less is preferred
theoretically[8]. However, a larger k/Mpl means a more
stringent constraint on MG because the cross section for
the graviton’s production at the LHC is proportional to
(k/Mpl)2. As shown in Fig. 1, when k/Mpl = 0.3, the
limit for MG is 2.8 TeV, then we have Λφ = 5.97 TeV.
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One may want to extend to even larger k/Mpl and
hope to accommodate Λφ = 680 GeV. The obstacle
is that there is an upper limit for k/Mpl theoretically

given by [9], k/Mpl <
√

3π3/5
√
5 ( 2.88. We show

the conservative constraint for large k/Mpl in Fig. 2. A
limit of MG = 3.5 TeV will give Λφ = 2.24 TeV for
k/Mpl ( 1. Even the largest but highly theoretically
disfavoured k/Mpl ( 2.88 results in Λφ = 0.8 TeV and
σ(H)Br(H → γγ)/σBrSM ∼ 1.5.

In summary, it is unlikely to have a 125 GeV RS ra-
dion with Λφ = 680GeV and accommodate with both
experimental and theoretically constraints.
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on mG are summarised in Table 2. Using a constant K-factor of 1.75, the 95% CL

lower limit from the diphoton channel is 1.00 (2.06) TeV for k/MP l= 0.01 (0.1), and

the combined 95% CL lower limit is 1.03 (2.23) TeV for k/MP l=0.01 (0.1).
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Figure 3. Expected and observed 95% CL limits from the combination of G →
γγ/ee/µµ channels on σ×B, the product of the RS graviton production cross section
and the branching ratio for graviton decay via G → γγ/ee/µµ, as a function of the
graviton mass. The –1σ and –2σ variations of the expected limit exhibit a tendency
to be particularly close to the expected limit at large mG. This behaviour is expected
as signals with large mG would manifest themselves in regions of mγγ where the
SM background is small and the poissonian fluctuations around the mean expected
background are highly asymmetric. The theory curves are obtained using the Pythia

generator, which implements the calculations from Ref. [48]. A K-factor of 1.75 is
applied on top of these predictions to account for NLO corrections. The thickness of
the theory curve for k/MPl = 0.1 illustrates the theoretical uncertainties due to the
PDFs expressed at 90% CL.

A counting experiment is performed to set limits on the ADD model. Specifically,

the number of diphoton events is counted in a search region above a given threshold in
mγγ . The mass threshold is chosen to optimise the expected limit on the difference in

the diphoton cross section formγγ > 500 GeV between the ADD model and the SM-only

hypothesis. For the purpose of this optimisation, a specific implementation of the ADD

model and specific values of the parameters have to be chosen. For MS = 2500 GeV
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Thus the relation between ΛΦ and mG1 is

k/Mpl= 0.1 0.01
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  Recall : 

 The strength of coupling to the SM fields is proportional to 1/ΛΦ. 
　　　　   Thus, it is difficult to discover light radion.
　　   

 →　Then we focus heavy radion search at LHC.
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Considering the correlation between mΦ and k/Mpl

mG1 = x1ke�krc

(�G = Mple
�k�rc)

In GWM, Relation between mΦ and mG1/ΛΦ is

� = m2/4k2 � 1/40～1/40
W. D. Goldberger, M. B. Wise (1999)

1st KK Graviton mass is

�� =
�

6�G1

Relation between ΛG and ΛΦ is
��

m� mG1

�G1

(x1 = 3.83)

C. Csáki, J. Hubisz, S. J. Lee  (2007)

G.D. Kribs (2006)
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�
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3
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Mpl
��G ,

,
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http://arxiv.org/find/hep-ph/1/au:+Hubisz_J/0/1/0/all/0/1
http://arxiv.org/find/hep-ph/1/au:+Hubisz_J/0/1/0/all/0/1
http://arxiv.org/find/hep-ph/1/au:+Lee_S/0/1/0/all/0/1
http://arxiv.org/find/hep-ph/1/au:+Lee_S/0/1/0/all/0/1
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Results:

ex: natural       k/Mpl = 1, 0.1, 0.01
      unnatural   k/Mpl = 10, 0.00001...



Ⅴ：Conclusion (and Future Works...)
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＊We study production and decay of the radion in Randall-Sundrum (RS) model at the LHC 
　taking account of the recent SM Higgs search by the ATLAS and CMS experiments. 

＊A certain class of new physics predicts extra neutral scalars, e.g., MSSM/THDM...

＊Discrimination of radion to heavier Higgs in MSSM is studied 
　(in a decoupling scenario in MSSM Higgs sector)

＊From analysis, we found  useful modes to discriminate two models (RS,MSSM) .
    - Φ → WW/ZZ  (no H/A → WW/ZZ)
    - Number of events (pp→Φ→WW/ZZ)　～ 1000　(WW @8TeV,     =100        , ΛΦ=5TeV )
  　　　　　　　　　　　　　　　　　   ～  500    (ZZ   @8TeV,     =100        , ΛΦ=5TeV )
＊Our future works:
   estimation of backgrounds,       cut ,...
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