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Power counting

• Scaling dim of f
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• Renormalizability

• Gravity is highly non-

linear and thus non-

renormalizable



Abandon Lorentz symmetry?

3 2I dtdx f 
• Anisotropic scaling

t   bz t (Eb-zE)

x  b x

f bs f

z+3-2z+2s = 0

s = -(3-z)/2

• s = 0 if z = 3
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• For z = 3, any 

nonlinear 

interactions are 

renormalizable!

• Gravity becomes 

renormalizable!?



Cosmological implications

• The z=3 scaling solves the horizon problem and 
leads to scale-invariant cosmological perturbations
without inflation (Mukohyama 2009).

• New mechanism for generation of primordial 
magnetic seed field (S.Maeda, Mukohyama, 
Shiromizu 2009).

• Higher curvature terms lead to regular bounce
(Calcagni 2009, Brandenberger 2009).

• Higher curvature terms (1/a6, 1/a4) might make the 
flatness problem milder (Kiritsis&Kofinas 2009).

• Absence of local Hamiltonian constraint leads to 
DM as integration “constant” (Mukohyama 2009).

Horava-Lifshitz Cosmology: A Review, arXiv: 1007.5199



Where are we from?

Primordial Fluctuations



Horizon Problem

& Scale-Invariance
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Horizon @ decoupling

<< Correlation Length of CMB

3.8 x 105 light years

<< 1.4 x 1010 light years
(1 light year ~ 1018 cm)

Scale-invariant spectrum

 ~ constant



Usual story

• w2 >> H2 : oscillate               H = (da/dt) / a

w2 << H2 : freeze                  a : scale factor
oscillation  freeze-out  iff d(H2/ w2)/dt > 0
w2 =k2/a2 leads to d2a/dt2 > 0
Generation of super-horizon fluctuations requires 
accelerated expansion, i.e. inflation.



Usual story

• w2 >> H2 : oscillate               H = (da/dt) / a

w2 << H2 : freeze                  a : scale factor
oscillation  freeze-out  iff d(H2/ w2)/dt > 0
w2 =k2/a2 leads to d2a/dt2 > 0
Generation of super-horizon fluctuations requires 
accelerated expansion, i.e. inflation.

• Scaling law 
t   b t  (E  b-1E)
x  b x
f b-1 f
Scale-invariance requires almost const. H, i.e. 
inflation.

~E Hf 



New story with z=3

• oscillation  freeze-out  iff d(H2/ w2)/dt > 0

w2 =M-4k6/a6 leads to d2(a3)/dt2 > 0

OK for a~tp with p > 1/3

Mukohyama 2009
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New story with z=3

• oscillation  freeze-out  iff d(H2/ w2)/dt > 0

w2 =M-4k6/a6 leads to d2(a3)/dt2 > 0

OK for a~tp with p > 1/3

• Scaling law 

t   b3 t  (E  b-3E)

x  b x

f b0 f

Scale-invariant fluctuations!

• Tensor perturbation Ph ~ M2/MPl
2

0 0~E Hf 

Mukohyama 2009



ln L

ln a
H >> M H << M

Horizon exit and re-entry

pa t
1/3 < p < 1



New Mechanism of 
Primordial Fluctuations

New Quantum Gravity

✔ Horizon Problem Solved

✔ Scale-Invariance Guaranteed

✔ Slight scale-dependence calculable

✔ Predicts large non-Gaussianity



Minimal Horava-Lifshitz gravity

• Basic quantities:
lapse N(t), shift Ni(t,x), 3d spatial metric gij(t,x)

• ADM metric (emergent in the IR)
ds2 = -N2dt2 + gij (dxi + Nidt)(dxj + Njdt)

• Foliation-preserving deffeomorphism
t  t’(t),   xi

 x’i(t,xj)

• Anisotropic scaling with z=3 in UV
t  bz t,   xi

 b xi

• Ingredients in the action

Horava (2009)
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ijR
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( Cijkl = 0 in 3d )



UV action with z=3

• Kinetic terms (2nd time derivative)

c.f.  l = 1 for GR

• z=3 potential terms (6th spatial derivative)

c.f. DiRjkD
jRki is written in terms of other terms

 3 2ij

ijNdt gd x K K Kl

3Ndt gd x
i jk

i jkD R D R i

iD RD R

3Rj k i

i j kR R R j i

i jRR R 



Relevant deformations (with parity)

• z=2 potential terms (4th spatial derivative)

• z=1 potential term (2nd spatial derivative)

• z=0 potential term (no derivative)

3Ndt gd x
2R

j i

i jR R

3Ndt gd x



R

3Ndt gd x 1



• UV: z=3 , power-counting renormalizability

RG flow

• IR: z=1 , seems to recover GR iff l 1

note: 

Renormalizability has not been proved.

RG flow has not yet been investigated.

IR potential
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kinetic term



Physical d.o.f.

• ( 6 + 3 ) – 3 – 3 = 3

gij : 6 components

Ni : 3 components

xi
x’i(t,x) : 3 gauge d.o.f.

I/Ni=0 : 3 constraints

• 3 = 2 + 1

tensor graviton: 2 d.o.f.

scalar graviton: 1 d.o.f.



Different versions of HL gravity

• There are versions w/wo the projectability condition.

• Horava’s original proposal was with the 

projectability condition, N=N(t). 

• Naïve non-projectable extension is inconsistent 

[c.f. Henneaux, et.al. 2009].

• Inclusion of ai = (ln N),i (and thus more terms) in 

the action can cure the non-projectable extension 

[Blas, Pujolas and Sibiryakov 2009]. 

• U(1) extension [Horava & Melby-Thompson 

2010]



HL gravity with extra U(1)

• Existence of scalar graviton is not necessarily 

a problem but is at least a source of technical 

complications. 

• In order to get rid of the scalar graviton, 

Horava & Melby-Thompson (2010) introduced 

an extra local U(1) symmetry.

• Basic quantities:
lapse N(t), shift Ni(t,x), 3d spatial metric gij(t,x),

“gauge field” A(t,x), “Newtonian pre-potential” n(t,x)

• A/N and n transform as scalars



U(1) extension of HL gravity
• Local U(1)

, A/N : not invariant

, s : invariant

• Ingredients in the action

• Scaling dimensions

ij ij i jK K D D n 
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UV action with z=3

• Kinetic terms (2nd time derivative)

• z=3 potential terms (6th spatial derivative)

• New term with s ( [s]=2z-2=4 )

 3 2ij

ijNdt gd x K K Kl

3Ndt gd x
i jk

i jkD R D R i

iD RD R

3Rj k i

i j kR R R j i

i jRR R 

3Ndt gd x Rs 



Relevant deformations (with parity)

• z=2 potential terms (4th spatial derivative)

• z=1 potential term (2nd spatial derivative)

• z=0 potential term (no derivative)

3Ndt gd x
2Rj i

i jR R

3Ndt gd x



R

3Ndt gd x 1

• New term with s

3Ndt gd x s 

cf. This construction is based on da Silva (2012).



Total action

Set e = 0 by

or

Use of some identities



Absence of scalar graviton

• Background eom for N = 1, Ni = 0, gij = ij, 

A = 0 , n = 0     = W = 0

• Scalar perturbation

• Quadratic action

• A-eom & b-eom & -eom  = b = A = 0

• Extra U(1) eliminates scalar graviton!

• This result extends to FLRW background

1N 

2 2 2 2 2 4 23 1
(3 1) (3 1) 2 ( 1)

2 2k
I dt k k k A kl  l b   l b

 
         

 


i iN b  (1 2 )ij ijg    A 0n 



Coupling to matter at low-E

• Among (N, Ni, gij), N
i is not U(1) invariant but

is U(1) invariant. 

• In addition to                  , there is a U(1) 

invariant scalar s and it can also couple to 

matter at low-E. 

• The equivalence principle requires that 

coupling to matter should be universal.

• A proposal:                    couple to matter 

universally, where

(N, N ,g )i

ij

(N, N ,g )i

ij

N F( ) Ns
2g ( )gij ijs W

N N Ngi i ij

jn  



A possible scenario

• Consider a heavy scalar field c neutral 

under U(1) with potential   V(c) + s U(c)

• Suppose that                    and

couple to matter. After integrating out c, we 

obtain f(c)  F(s), w(c)  W(s).

• In general (F, W) depend on matter species, 

but universality may emerge at low-E. It is 

worthwhile trying to see if this is possible. 
• c.f. Emergent Lorentz symmetry: Lorentz-invariant IR fixed 

point (Chadha and Nielsen 1983) & SUSY or/and strong 

dynamics to speed-up the RG flow

N f( ) Nc
2g ( )gij ijw c



Solar system tests
• Matter propagates on the 4d metric 

• Define Tmn by varying matter action w.r.t. gmn. 

• Introduce PPN parameters for gmn. 

• By using gravity equations of motion with  = W = 

0, express PPN parameters in terms of other  

parameters of the theory.

• All solar system tests are passed if 

|cg
2 – 1|, |F’(s=0) – 1|, |W’(s=0)| < 10-5

Here, F(s=0) and W(s=0) are set to 1.

• This condition is independent of l.

2 2 ( )( )i i j

j

j

idx dx dt dx dtN dx dtg N Nm n

mng     



PPN parameters

g1 = -cg
2 a1 = F’(s=0) a2 = W’(s=0)



Summary
• Horava-Lifshitz gravity is power-counting renormalizable and 

can be a candidate theory of quantum gravity.

• The z=3 scaling solves horizon problem and leads to scale-
invariant cosmological perturbations for a~tp with p>1/3.

• The original theory has an additional d.o.f. called scalar 
graviton. This is not necessarily a problem but leads to a lot 
of technical complications. [See the review for discussions.]

• In order to get rid of the scalar graviton, Horava & Melby-
Thompson (2010) introduced an extra local U(1) symmetry.

• The U(1) extension (with projectability condition) indeed 
removes the scalar graviton.

• We proposed a universal coupling to matter. 

• We calculated all PPN parameters. 

• All solar-system constraints are satisfied under a certain 
condition. 


