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Introduction



Inflation
The Universe rapidly expanded thanks to the 

vacuum energy density in the early stage.

State of vacuum 
(expectation value of scalar field)

（The scale factor a(t) expands faster than t）

Starobinsky, Sato, Guth

Vacuum energy density



Generic predictions of inflation

 Spatially flat universe

 Almost scale invariant,  adiabatic,  and    
Gaussian primordial density fluctuations

 Almost scale invariant and Gaussian 
primordial tensor fluctuations

Generates anisotropy of CMBR.



Spatially flat Universe

Predict (spatially) flat
 

Universe

To be flattened due to rapid expansion

http://astro.uchicago.edu/home/web/mohr/Compton/index.html

Present horizon scale



Generation mechanism of primordial perturbations
(e.g, Baumann 0907.5424, Wang 1303.1523 for recent good review)



Primordial density fluctuations

Vacuum fluctuates quantum mechanically.

vacuum state
(expectation value of scalar field)

Due to vacuum fluctuations, density fluctuations are generated.

Vacuum energy density
These quantum fluctuations are stretched 
to cosmological scales thanks to 
inflationary expansion, and become seeds 
to produce stars and galaxies.

microscopic scale

cosmological scale

inflation

Starobinsky, Hawking,
Guth

 

& Pi, 1982



Primordial density fluctuations II

V

fluctuates

phi

ρ

time

inflation  oscillation(MD)

 
RD

Γ =  H

te tR t

(Almost Gaussian)

inflation

oscillation

ns
 

: spectral index
Almost scale invariant fluctuations (ns

 
~ 1) are predicted.

curvature
perturbation

Density
fluctuation

(N.B. density fluctuations are not generated unless time-translational inv. is violated.) 



Why do we often call them curvature perturbations 
instead of density fluctuations ?

It depends on time slicing (equal time surfaces) : 

t = const

 spatially flat slice

t4
t3
t2
t1

density fluctuates
 

on this surface

t = ρ= const (or t = φ= const)
 equal density slice (or comoving

 
slice)

curvature fluctuates
 

on this surface

ρ= const

(no spatial curvature)

: curvature perturbation
on equal density hypersurface

(spatial curvature on t=const surface)

ζ is conserved during superhorizon
 

epoch 
in case of absence of non-adiabatic pressure perturbations.

(gauge invariant)
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Primordial tensor fluctuations 
(gravitational waves)

Vacuum fluctuates quantum mechanically.

vacuum state
(expectation value of scalar field)

Vacuum energy density

Such vacuum fluctuations generate not only density fluctuations,
but also ripples of spacetime, i.e. gravitational waves.

Geometry itself fluctuates 
(irrelevant to scalar dynamics)

(Starobinsky)

(directly probes
the energy density

 
of 

the Universe)  



k-inflation (Kinetically driven inflation)
(Armendariz-Picon

 

et al., 1999)

Flat Friedmann

c.f.

Inflation !!

If we consider a non-trivial kinetic function, 
inflation can still be realized even without potential.

e.g.  DBI inflation: ( )



Formal derivation of 
primordial tensor fluctuations

(Standard) quantization of free fields

Note that the whole metric is “not”
 

quantized.
The background geometry exists classically and 
only the perturbations are quantized. 



Primordial density fluctuations
Perturbed metric :

Comoving
 

gauge :

 Expand the action up to the second order

 Eliminate αand
 

βby
 

use of the constraint equations
 Obtain the quadratic action for ζ

Prescription:

: sound velocities of curvature perturbations

Garriga & Mukhanov

 

1999



Scalar and tensor perturbations

Theoretical predictions : 

called consistency relation

 scalar (density, curvature) perturbations ζ:
associated with the inflaton

 
perturbations

 tensor perturbations (gravitational waves) γij
 

:
degree of freedom intrinsic to gravity

= X



Cosmic Microwave Background 
(CMB) Anisotropies



Planck satellite

Planck is launched, on an Ariane
 

5 rocket from ESA's
 

Spaceport in French Guiana, 
into its planned trajectory towards L2 on May 14 2009.



Map of CMBR by PLANCK

http://www.rssd.esa.int/index.php?project=planck



Constraints on scalar and tensor perturbations
Theoretical predictions : Observational constraints : 

This is the situation before
the BICEP2 results.



BICEP & BICEP2

BICEP:
Background Imaging of Cosmological Extragalactic Polarization (BICEP) has mapped three 
seasons of degree-scale CMB polarization from the South Pole, and has recently made public 
its 2-year data release. 

BICEP2:
BICEP2 extends the BICEP program through the use of monolithic antenna-coupled 
polarimeter

 
arrays. BICEP2 deployed to the South Pole in November of 2009 and was 

decommissioned in 2012.

http://www.cfa.harvard.edu/CMB/bicep1/

http://www.cfa.harvard.edu/CMB/bicep2/



BICEP2 results

1403.3985



BICEP2 results III

1403.3985



Tension between PLANCK and BICEP2
PLANCK BICEP2

(r  <  0.12) (r  ~  0.2)
Planck 2013 results. XXII

1403.3985

We look forward to the Planck
polarization data, which
will be released this winter.

(parameter degeneracies)



Non-Gaussianities
 

of curvature perturbations



Non-Gaussianity
Generally speaking, the inflation predicts 

almost Gaussian
 

density and tensor perturbations.

ζ is exactly Gaussian                
 

fNL
 

= 0
 standard inflation                       

 
fNL

 
~ 0.01 

(canonical kinetic + potential)
 non-canonical kinetic term        

 
large fNL (5 ~ 100)

Scalar non-Gaussianity
 

(bispectrum):



Shapes of bispectrum

 Equilateral type :

 Local (squeezed) type :

ζ originates from an
 

inflaton
 

and the non-G is generated at the horizon exit.

ζ originates from a light field
 

other than inflaton
 

and 
the non-G is generated during superhorizon

 
evolution. 

triangleLength of three sides !!

(P : normalization of powerspectrum)

Though there are other types such as orthogonal
 

and folded
 

…



Local and equilateral shapes

Baumann 0907.5424



Planck constraints on non-Gaussianity

(2σ)

(2σ)

(2σ)

(1σ) (1σ) (1σ)

WMAP 9yr

(2σ) (2σ)

WMAP 9yr WMAP 9yr

(2σ)

No significant non-Gaussianities
 

are observed.



Equilateral type bispectrum



Bispectrum
 

of curvature perturbations of k-inflation

ADM formalism :

Unitary gauge :

 Expand the action up to the third order

 Eliminate αand
 

βby
 

use of the constraint equations
 Obtain the cubic action for ζ
 Calculate 3-point functions by using the in-in formalism.

Prescription:

Maldacena

 

2003.
Seery

 

& Lidsey

 

2005.
Chen et al. 2007.



Cubic action



In-in formalism

t0

 

is some early time when the fluctuation is well inside the horizon,
t is a several e-folds time after the horizon exit.

What we want is the expectation value
instead of transition amplitude.

Cubic action S3

In-in formalism

cs2
 

<< 1   Large non-Gaussianity
 

is produced.



fNL

fNL

 

is defined to characterize the size of the three-point correlation function,

cs
 

<< 1
 

 large non-Gaussianity
 

can be easily generated !!

How can we understand the relation between cs
 

& fNL
 

?

(The Planck results give the constraint,                         )



Effective field theory of inflation



Basic idea of effective field theory of inflation

Inflation must end to be followed by hot big bang Universe.

spontaneously breaks time diffeomorphism
 

inv.

Time-dependent spatial diffeo
 

is unbroken.

In the low energy effective theory, any term 
respecting the unbroken symmetry is allowed.

We can investigate the properties of perturbations generated
during inflation without resort to a particular Lagrangian.

(Cheung et al. 2008)



Unitary (comoving) gauge

Unitary(Comoving) gauge : 

Time slice (t = const. hypersurface) coincides with 
φ= const. hypersurface.

t

xi

φ(t)

=0

The scalar field perturbation is eaten by the metric.

The graviton (metric) has three
 

degree of freedom:

Curvature perturbation ζ
Tensor perturbations γij

(That is, the scalar perturbations correspond to the NG bosons)



 4-dim scalar

 generic function of t, f(t)

 in unitary gauge, which allows
any tensor with 0 upper index

 
(g00 , R00, …)

 Extrinsic curvature :

Action in unitary gauge
Any quantities respecting the time-dependent diffeo. inv. 

: unit vector orthogonal to t =const.

: projection tensor to t =const.

Note that (3)R
 

is redundant.

(all indices are contracted)

(All covariant derivatives of nμ

 

can be written using Kμν

 

and derivatives of g00)



(Terms such as                       can be absorbed into
the above terms by integration by parts) 

Expanding around FLRW background
Fluctuations around FLRW background: 

 0th and 1st order
 

in fluctuations: 

Variation w.r.t. g00

 

& gij

kinetic(g00

 

dot{φ}2) & potential energy 

of the background scalar field



This is the most general action in unitary gauge (              ),
which satisfies the time-dependent spatial diffeo. invariance.

Expanding around FLRW background II

Note, however, that time diffeo. : 
is broken.



Stuckelberg
 

trick
In order to (apparently) recover broken time diffeo. : 

we introduce the Stuckelberg
 

field π, which corresponds 
to the Goldstone boson and transforms as

t + π(x) is invariant under this time diffeo.

We have only to make the following replacements :



Relation between π and ζ

Flat gauge : Unitary gauge (π=0) : 

gauge transformation

We can easily evaluate observable quantities like powerspectrum.



Mixing terms

(π= 0 recovers the action in unitary gauge)

Mixing terms between π & g have fewer derivatives :
e.g.

Canonical normalization

The Goldstone boson π decouples from graviton g 
(lapse & shift) at the energy scale E >> Emix

 

= ε1/2
 

H.

E >> Emix
 


 

ε<< 1 (inflation)



Decoupling limit

 It is manifest which term leads to a non-trivial sound velocity.
 The (δg00

 
)2

 
term leads to not only non-trivial sound velocity

but also non-trivial cubic interactions, which leads to 
large non-Gaussianities

 
for cπ

 

<< 1 .
 Thus, the relation between each term (physics) and 

observable quantities
 

is clear in EFT.

Coefficient of (δg00 )2

(DL limit)

c.f. 



Tensor perturbations



Sound speed of tensor perturbations



Sound speed of tensor perturbations

Ingredients of higher perturbations terms : 

at linear order

: sound speed of tensor perturbations

= S0



Formal derivation of 
primordial tensor fluctuations

(Standard) quantization of free fields

Note that the whole metric is “not”
 

quantized.

The background geometry exists classically and 
only the perturbations are quantized. 



Higher derivative term
e. g.

∵

φ= const
(t = const)

This kind of term appears in Horndeski’s
 

theory (Generalized Galileon):



Effects of change of sound speed of tensor perturbations

 No cubic interaction of γ associated with this interaction !!
(different from the case of curvature perturbations)

 The normalization of powerspectrum
 

is changed.

cγ has nothing to do with the auto-bispectrum
 

of tensor perturbations.
(N.B.                        can generate large tensor bispectrum)

(parameter degeneracies)

How can we probe the tensor sound speed ?



Importance of cross bispectum
By using the Stuckelberg

 
trick to recover the interaction of π,

(γγπ)

(γππ)

(πππ)

The scalar-tensor-tensor
interaction, the γγπ-type 
interaction, arises only from 
the operator 



Scalar-tensor-tensor bispectum

One can observe 
the cγ

 

dependence on 
this cross bispectrum.

In-in formalism

polarization tensor



Summary


 
If the BICEP2 results are correct, we now observe
the powerspectrum

 
of scalar and tensor perturbations.


 

Non-Gaussianity
 

(bispectrum)
 

gives additional information.


 

For example, the sound speed of the curvature perturbations
 are strongly correlated with the their auto-bispectrum.


 

On the other hand, the tensor sound speed has nothing to do 
with their auto-bispectrum. 


 

Rather, it is related to the cross-bispectra, in particular, 
the scalar-tensor-tensor bispectrum.


 

The relevant CMB bispectra
 

of two B-modes and one 
temperature (or one E-mode) anisotropies

 
become a powerful 

tool to probe the tensor sound speed.
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