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Introduction



I n ﬂ ati O n Starobinsky, Sato, Guth

The Universe rapidly expanded thanks to the
vacuum energy density in the early stage.

(The scale factor a(t) expands faster than t)

Vacuum energy density

. > "
. 8l
H? = (E) = 5 p ~ constant.

(1

=) a(t) x e

State of vacuum
(expectation value of scalar field)



Generic predictions of inflation

® Spatially flat universe

® Almost scale invariant, adiabatic, and
Gaussian primordial density fluctuations

@® Almost scale invariant and Gaussian
primordial tensor fluctuations

‘ Generates anisotropy of CMBR.



Spatially flat Universe

Present horizon scale

< >

F”_O_——--'E

http://astro.uchicago.edu/home/web/mohr/Compton/index.html

To be flattened due to rapid expansion

Predict (spatially) flat Universe




Generation mechanism of primordial perturbations

(e.g, Baumann 0907.5424, Wang 1303.1523 for recent good review)



Primordial density fluctuations

Starobinsky, Hawking,
Guth & Pi, 1982

Vacuum fluctuates quantum mechanically.

These quantum fluctuations are stretched

Vacuum energ density to cosm()l()gical scales thanks to
inflationary expansion, and become seeds
to produce stars and galaxies.

MW

microscopic scale

q 1 inflation
vacuum state

(expectation value of scalar field) cosmological scale

op ~ H/(2m)

Due to vacuum fluctuations, density fluctuations are generated.



Primordial density

fluctuations II

P ot ot = H

SMEZHG = pol

v

A

d¢p ~ H /(27 ) (Almost Gaussian)

fluctuates

oscillation

inflation

inflation ioscillation(MD)i

> phi

) <[~ 0p/pliy, o 8t/t ~ 68/(

curvature Density |’1. x.1) = do(x.
perturbation fluctuation

Pe(k) o i T

te tr t time
$H™) ~ H?/$|

.f|-.,.::|

spectral index

Almost scale invariant fluctuations (ns ~ 1) are predicted.

(N.B. density fluctuations are not generated unless time-translational inv. is violated.)



Why do we often call them curvature perturbations

instead of density fluctuations ? g
t
It depends on time slicing (equal time surfaces) : tfl
® spatially flat slice ® equal density slice (or comoving slice)
O = const t = 0= const (or t = ¢ = const)
t=const - /\\//\
(no spatial curvature) 4
density fluctuates on this surface curvature fluctuates on this surface
: scale ,
. P . ture perturbation 1 |
— 4y — gL | : curvature pertu !
: EU\ P on equal density hypersurface : a(t) r

( - h 33 (gauge invariant)
—_— 0 — = — —
Q

ds®> = —dt® + ag(t)(1 - 215;]{13;2 [:) MD AD
mm) °R= 2 vy ; .
(spatial t t=”_ t surface) - : ! the
' i, L, &

¢ is conserved during superhorizon epoch
in case of absence of non-adiabatic pressure perturbations.



Primordial tensor fluctuations
(gravitational waves) (Starobinsky)

Vacuum fluctuates quantum mechanically.

Vacuum energy density

t H
Geometry itself fluctuates v~ —
(irrelevant to scalar dynamics) M ~
NN G

— (directly prob
irectly probes
>~ the energy density of

> the Universe)
vacuum state

a\2 8rG 0
(expectation value of scalar field) (H c= (5) -3’7 3Mg,)

Such vacuum fluctuations generate not only density fluctuations,
but also ripples of spacetime, i.e. gravitational waves.



k-inflation (Kinetically driven inflation)

(Armendariz-Picon et al., 1999)

Sy = f Pav=g K(6,X). X =—2g"0up0u¢

(e.g. DBl inflation: S, = [ d*zv/=g [~T($)\/1 = 2X/T(9) + T(#) - V(&) )

) T = Kxo'¢ou¢+ Kol (kx="x)

Flat Friedmann
f

p 2XKx — K, (K =X — V()

) - cf. -
D K. >p=X+V

I XKx| < |K|mmp p = —D mmp Inflation !!

If we consider a non-trivial kinetic function,
inflation can still be realized even without potential.



Formal derivation of
primordial tensor fluctuations

r . . 1 .
ds® = —dt® + a?(t) (7);; da'da? = —dt® + a®(t) (5»&;# + i + Sk + ) da'da’

(’h'z' =0, 74, = U-)

. 4 — l 2 . __1 [
\S—/dm\/_gleGR K@X)|, X =-3¢"0up0us

2) 1 3. 3as2 (o 1
‘ S,E, = gfdtd xa”M¢ ("}’i_-j’}‘ij — ﬂ—Q’Y;aj,ﬁc’}’ij,ﬁ:) *

‘ (Standard) quantization of free fields

. H\2 2 ([ H)\?
Pr = 2(vy;;7’) ~ 8 x 8nG ( ) = ( .
r= 20077 o 2 \ Mg

Note that the whole metric is “not” quantized.
The background geometry exists classically and
only the perturbations are quantized.



Primordial density fluctuations

Garriga & Mukhanov 1999

" Perturbed metric :
ds® = —(1 + 2a)dt? + 2a20;Bdtdx" + a’e?dx?
Comoving gauge :

. d=¢@1), bsp=0.

Prescription:

.
® Expand the action up to the second order

< ©® Eliminate & and S by use of the constraint equations

® Obtain the quadratic action for &
-

2
2 € : Cs
Sg ) — fdtd3$ {13 M(% (1—2 (CQ — ar_QCakC,k)

5

2 _ Kx : sound velocities of curvature perturbations
° Kx+2XKxx (Kx = 0K/0X, Kxx = 0°K/0X?)



Scalar and tensor perturbations

® scalar (density, curvature) perturbations ¢ :
associated with the inflaton perturbations

® tensor perturbations (gravitational waves) Vij :
degree of freedom intrinsic to gravity

Theoretical predictions : L= K(¢,X) V().

r =X
2
. 1 H 4 2 _ Ky >
PC(IIL) _— 87]'2(-'{:,; (M{;) ¥ '-re.S K:{‘ —I—'2_XK};A - ("S — 1+
iInPq(k _ "
ns —1 = AE_QE_?T}—S, £ = HE{{L
dink < ;
< Pr(k) = =2 H )\ = gl<t
| - g2 MG ’ |a . Cg ‘{{ 1
ffln /P"li‘(k) \ ) Hﬂ,t;
ny = ~ —2¢€,
dink
r = ;" ((i)) ~ 16¢ecs (= —8esny) . - called consistency relation



Cosmic Microwave Background
(CMB) Anisotropies



Planck satellite

Planck 1s launched, on an Ariane 5 rocket from ESA's Spaceport in French Guiana,
into its planned trajectory towards L2 on May 14 2009.



Map of CMBR by PLANCK

http://www.rssd.esa.int/index.php?project=planck



Constraints on scalar and tensor perturbations

Observational constraints :

Theoretical predictions :

Primordial Tilt (ns)

Fig. 1. Marginalized joint 68% and 95% CL regions for ng and rggp from Planck in combination with other data sets compared to

the theoretical predictions of selected inflationary models.
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This is the situation before
the BICEP?2 results.

2e,



BICEP & BICEP2

BICEP:
Background Imaging of Cosmological Extragalactic Polarization (BICEP) has mapped three
seasons of degree-scale CMB polarization from the South Pole, and has recently made public

1ts 2'year data release. http://www.cfa.harvard.edu/CMB/bicep1/

BICEP2:

BICEP2 extends the BICEP program through the use of monolithic antenna-coupled
polarimeter arrays. BICEP2 deployed to the South Pole in November of 2009 and was
decommissioned in 2012. http://www.cfa.harvard.edu/CMB/bicep2/



BICEP2 results
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BICEP2 results 111
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F1G. 10— Left: The BicEpP2 bandpowers plotted with the maximum likelihood lensed- ACDM+r = 0.20 model. The uncertainties are taken from that model
and hence include sample variance on the r contribution. Middle: The constraint on the tensor-to-scalar ratio ». The maximum likelihood and +1 & interval is

r= 0.20J_r0:07, as indicated by the vertical lines. Right: Histograms of the maximum likelihood values of r derived from lensed- ACDM-+noise simulations with
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Tension between PLANCK and BICEP2

PLANCK
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Tensor-to-Scalar Ratio (rpg02)
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0.94

Fig. 1. Marginalized joint 68% and 95% CL regions for n, and repz from Planck in combination with other data sets compared to
the theoretical predictions of selected inflationary models.
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(r < 0.12)

Planck 2013 results. XXII

We look forward to the Planck

polarization data, which

will be released this winter.
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_ Pr(k)
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~ 16¢ecs (= —8csny).
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F1G. 13.— Indirect constraints on r from CMB temperature spectrum mea-
surements relax in the context of various model extensions. Shown here is
one example, following Planck Collaboration XVI (2013) Figure 23, where
tensors and running of the scalar spectral index are added to the base ACDM
model. Thﬁﬁ%ﬁﬁfﬁ%ﬁwand 95% confidence regions
for r and the scalar spectral index #; when also allowing running. The red
contours ate for the “Planck+WP+highl.” data combination, which for this
model extension gives a 95% bound r < 0.26 (Planck Collaboration XVI
2013). The blue contours add the BICEP2 constraint on » shown in the center
panel of Figure 10. See the text for further details.
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Non-Gaussianities of curvature perturbations



Non-Gaussianity

Generally speaking, the inflation predicts
almost Gaussian density and tensor perturbations.

(¢€¢C)?
(¢¢)3

® ¢ is exactly Gaussian = fNL=0

® standard inflation = fNL ~0.01
(canonical Kinetic + potential)

® non-canonical Kinetic term = large fNL (5~100)

= fR4¢¢) ~ fRp 1071



Shapes of bispectrum

(C(k1)¢(k2)¢(k3)) = (2m)38° (k1 + ko + k3) B(k1, ko, k3).

4

Length of three sides !! _ triangle tzquilﬂterol)triongle
k =k =k
1 2 3

® Equilateral type :

» 1 1 1 2 1 _ ]
Bequil(k1, k2, k3) = 6P2fgi"" :F 53 30 B8 it [ ~— + (5 perm.) |
\ kik3  k3k3  k3ki  (kikoks)? RIASAS 1)

(P : normalization of powerspectrum)

k
1

& originates from an inflaton and the non-G is generated at the horizon exit.

. 3
® Local (squeezed) type : ¢() = (o(a) + _fyré(@). squeezed triangle
] : (k =k >>k,)
Biocal(k1, k2, k3) :’T-'H:..'rr‘:fir- ! , -:1. =+ (2 perm.)|, 2 ’
kK3
k

¢ originates from a light field other than inflaton and <2k5
the non-G is generated during superhorizon evolution. '

Though there are other types such as orthogonal and folded ...



Local and equilateral shapes

Figure 29: 3D plote of the local and equilaferal bispectra. The coordinates z- and z; are the
rescaled momenta ko /Ky and ks /%y, respectively. Momenta are order such that zs <
e < 1 and satzify the triangle inequality @z + x3 > 1.

k3 < ko < k1, ko + k3 > k1.

Baumann 0907.5424



Planck constraints on non-Gaussianity

| |
flocal =2 7+58

(10)

8.9 < fiofal < 14.3

20)

WMAP 9yr
—3< fofdl <« 77
(20)

equil __
fNL = —42 41+ 75

(10)

~192 < 50l < 108

20)

WMAP 9yr

-221 < f3" < 323
20)

tho _
FUho = _25 4+ 39

(10)

—103 < fiho < 53

(20)

WMAP 9yr
—445 < fYH° < _45
(20)

No significant non-Gaussianities are observed.



Equilateral type bispectrum



Bispectrum of curvature perturbations of k-inflation

Maldacena 2003.
1 Seery & Lidsey 2005.

S = / d*z /=g [5 M(% R—K(p,X)|, x= _%gwa@a‘,{;} Chen et al. 2007,

(‘
ADM formalism :

ds® = —NZdt? + h;;(dz' + N'dt)(dz? + N?dt)

< hz‘j = ﬂfz(t)ﬁchsij, N=14ai14+a>+---,
N;=a(Br+ B2+ )+ N+, ON,=o0.
_ Unitary gauge: ¢ = ¢(t), d¢=0.
Prescription:

® Expand the action up to the third order
® Eliminate & and S by use of the constraint equations
® Obtain the cubic action for &

® Calculate 3-point functions by using the in-in formalism.



S3

Cubic action

C1 ; . .
M¢ f dtd>z a> [Elﬁ +C2¢C2 + C3HCA + a—iazx(c‘?c: - 0x)

Cs o >, Co 2, Cria0 2 oL
+-20°0(0x)° + —5¢(90)° + —5¢(9¢ - 9x) + —= £ (O) 50

cs
e d[n
2¢Z2H dt \ c2
f <
2'!
€
41:'!
: 2
E(E—ZS+1—L3)
€
—-2—.
c3

y)

( 5 H2¢
> = XKX—I—QX KXX= 5
CS
2
A = XEKXX+§X3KXXX.
2
x = 87 2A, J"h.=ﬂ';(;‘.
Cﬁ
SL| _ [dA 2
5|, =< la +HA ac].

1

\_ REYEIT,

7 1 . 1 - =2 efnif 8.
1O =75+ 2+ o [~ (8¢)% + 0720'09 (9:¢0;¢)]

[ox - 8¢ — 07200 (9,¢9;x)) -



In-in formalism

What we want 1.s .the expe?tatlon value - IRk alism
instead of transition amplitude.

(Ciey Gy Clcs) = —4 A’ dt'([¢ (k1. £)C (Ko, 1) (K3, ), Hing(t))]),

to is some early time when the fluctuation is well inside the horizon,
t is a several e-folds time after the horizon exit.

| Cq
Cubic action S3 - Hint (1) = —/ &>z a® | =¢3

—L. + CoCC2 + ]
A
- (C; CkrCs) = (2m)76) (k1 + ko + k3)?1’§k3k3k3.

1 2)\\ 3k7k3k3 [ 1
o (3 2 () (g i
%(——Z&3+ Zuz—i-KZFA?) —é( ZE)

:;t‘—'_;r i1>]

cs(Ase ke S ) (K = ky + ko + k)

*}J i7j

cs2 << 1 =» Large non-Gaussianity is produced.



fNL

fNL is defined to characterize the size of the three-point correlation function,

5 B(Ig:f. J'E':.'. 1117) - Eiﬁllz,{,zzﬁ3:;.

INL= 15 P2 (k) 9 k3
(C(k1)¢(k2)C(k3)) = (2m)36° (kl-l-kz-l-kz)ﬂ(f»'lvfze%)
= (2m) 6 (k; + ko + kg)“PCEW,
1"2™3

H2¢

i 5 1 2\ 35 1 ¥ = _"{I{_y—}-ﬂ."'[?.‘f_\-_\-:—z.
) sl ) sl 2
1 \es 2 108 \ ¢35 P— _k'zh’_*.;x—|—3X3h'|\*_-.;r\-.

cs << 1 =» large non-Gaussianity can be easily generated !!

(The Planck results give the constraint, ¢s > 0.02(95% CL).)

How can we understand the relation between ¢s & fNL ?



Effective field theory of inflation



Basic idea of effective field theory of inflation

(Cheung et al. 2008)

Inflation must end to be followed by hot big bang Universe.

‘ spontaneously breaks time diffeomorphism inv.

” Time-dependent spatial diffeo is unbroken.
ox' = €'(t, x2")

- In the low energy effective theory, any term
respecting the unbroken symmetry is allowed.

We can investigate the properties of perturbations generated
during inflation without resort to a particular Lagrangian.



Unitary (comoving) gauge
t

b (1)

:Xl

Unitary(Comoving) gauge : |

Time slice (t = const. hypersurface) coincides with
¢ = const. hypersurface.

= ¢(t, ) = go(t) + IPET).

‘ The scalar field perturbation is eaten by the metric.

(That is, the scalar perturbations correspond to the NG bosons)

- The graviton (metric) has three degree of freedom:

7~

Curvature perturbation ¢

Tensor perturbations Y ij

.




Action in unitary gauge

Any quantities respecting the time-dependent diffeo. inv.

® 4-dim scalar
® generic function of t, {(t)

® o,t =, in unitary gauge, which allows
any tensor with 0 upper index (g0, R0, ...)

® Extrinsic curvature : Ky = h,Vony.

All covariant derivatives of nu can be written using K » and derivatives of g00
g g
At
V"If—‘ff'““aﬂ TEJ}U?

huw = guw + nuny : projection tensor to t =const.

Ny =

: unit vector orthogonal to t =const.

Note that @ r.s.; = W B5000S Ruvpe — Koy Kss + KpKes. G)R is redundant.

I::> !5- — / (!4_ff a’_.(!liiﬁ(”rﬁff‘ 1(””_;_ -!{;'J'V* jfﬁ.“;”o—, v}r; fiE. f)

(all indices are contracted)



Expanding around FLRW background

Fluctuations around FLRW background:

:5900 = g0 4 1.

< 5Kﬁp = K#p — thu-,

SRuvpo = Ruwpo — 2(H? + k/a®)hyho1, + (H + H?)(hupdso + (3 perms)).
.

® (th and Ist order in fluctuations: —

| 1
) 5(O+1) — / 4o /—q l§M§|R — e(£)g90 — /\(t)] |
(Terms such as 9°4°° g R°° can be absorbed into
the above terms by integration by parts)

ariation w.r.t. g0 & gii
Variat t. g0 & gl 3M§|H2 - C(t) + A(t),,
HM2| — —C(t)

D
: 1 . .
) O+ = / d*zv/—g bﬂpfglf?, + MZH® — M2 (3H? + H)|.




Expanding around FLRW background 11

s = [ d*ay=g S MER+ MZH )% - MAGHA(®) + H(®))

+F@+E)F (5690 5K, 6Ryuwpo; 69, gy, 9", Vs t)]

1 ) 2 1 - 3
F2)+GE)+ — 5;‘1&’2(@4 (rﬁgOD) —+ E;‘Wg(ﬁ)zl (fﬁf;oﬂ)

1 . 005 Lo N
— 5;141(t)3a;;0%;~;;; = 5,-142(1&)3&;&;: KY — E;L»fg,(t)%h LY 4 ...

vt

This is the most general action in unitary gauge (¢(¢,z) = 0),
which satisfies the time-dependent spatial diffeo. invariance.

Note, however, that time diffeo. :

t —t =1t

¢9(z), @ —» @ is broken.



Stuckelberg trick

In order to (apparently) recover broken time diffeo. :
t —t=t+&%%), r — z,

we introduce the Stuckelberg field 7, which corresponds
to the Goldstone boson and transforms as

m(z) — 7(#(z)) = n(z) — ().
- t + 7t (x) is invariant under this time diffeo.

We have only to make the following replacements :

") — S+, |
57 — Ot +m) = 65(1 + 7) + 8,9,
< gDD — g;r.ua(t + ﬂ-)a(t + TT)

=14+ #)%¢°° +2(1 + ?i')gm@z-?r + g:"j&z-?rajfr:

oxt oxV
, ,0(t + ) S P
gm — {;‘L“ = — (1 + ﬂ_)gﬂr + gwd,:_?n




Relation between 7T and ¢
Flat gauge : Unitary gauge (71 =0) :

dI? = a?(t)d;;dx'dx?,  diI? = a2(t)(1 + 2¢)d; da'da’.

h a2(t) = a®(f— m) = a®(H(1 - 2Hr)

gauge transformation

2) = n(2)
{t—>5=t+go(m),

m(z) — 7(@(z)) = n(z) — ().

=) (= —Hm

We can easily evaluate observable quantities like powerspectrum.




Mixing terms

S = fd4:{:\/—_g {% 2R — M2 [3H(t + ) + H(t + )]
+MBH (t + ) [(1 +7)%9% + 2(1 + 1)g% 0 + 9"/ 0;m ;]
+1M§(t + ) [(1 +#)2g%° + 2(1 + 7)g% O + g O;md;m + 1]2
+5 Ma(t +m) [(1 4 #)26%° + 2(1 + 7)g% 0w + ¢ ;707 + 1] L. }

(7T= 0 recovers the action in unitary gauge)

Mixing terms between 7T & g have fewer derivatives :
e.g. MJH - (1+7)%g%° 5 M3 H (-7 4 2759°°)

Canonical normalization - - 2 ]. / 2 . OO
— 72 + 26 /2 Hired g

The Goldstone boson 7T decouples from graviton g
(lapse & shift) at the energy scale E >> Emix = € I/2 H.

E >>Emix €= & <<1 (inflation)



S

(DL limit)

Decoupling limit

(i}jﬂ')z 1 .. :
- )+5M§(r + 2ir -

2

(L L

_ 2
1 . 7 2
— frfﬂ';t.'\f—g Eﬂ«faﬂ— M'ng (?'rz (8;m) ) By

1 : 97 )2 | d;m)? .

(L =

1 : 97 )2 . am)2\ 4
= f(ﬁ;t.‘w"r_—_{.i E_Mg,n — M3 He;2 (fr? - r:ﬁ{‘ ”;] ) - M2H(c;2-1) (-:Tf-” o ’,,} ] - 3.1;‘3‘*-,%3 + - w

(L

~ M2 H
e PI"
= 121 +2015) «— Coefficient of (8 g00)2  (31a00° (35%)°)
E Kx 2 _ (1 00\ 52\ °
cf. 2 = T, _(2 (14 g )@)

® It is manifest which term leads to a non-trivial sound velocity.

® The (8 g%0 )2 term leads to not only non-trivial sound velocity
but also non-trivial cubic interactions, which leads to
large non-Gaussianities for cr <<1.

® Thus, the relation between each term (physics) and
observable quantities is clear in EFT.



Tensor perturbations



Sound speed of tensor perturbations



Sound speed of tensor perturbations
= S0

S = f d*zv/—g [EM&.R + MGH(t)g%° — M5 (3H?(t) + H(t))

+F(2)+{3)+ (ﬁﬂoo- 5‘{‘;!”:- fif?ﬁ;;ff)ﬂ; ﬁﬁ G, .5’1“”' vr”' I)] '

Ingredients of higher perturbations terms : §¢°° §K 6K Y SR, 0Ryuw,

1 ) v2 1 _ ) ; 1 _ ] 11, ) ,
- F{2}+{3}+"' = 211’1’24(1) (f‘!ﬁDD) — Qg’iafl(f.)ghyﬂﬂhff — 2;1{;(1’.)3 (r’!f‘f)z - 2;1*1’3(?)3;‘111?:]{;, + ...

ds® = —dt® + hijda‘da? = —dt® + a(t) (7);; da'da?, (i =0, 7 =0
. 1 _
- 6K] 3 5%ij  at linear order
1 2
- f‘i;’f;:r‘iffff > 7 ("}-}_};)

2
) S0V = [tz a®MES? (i — Smiaaisk |
M?Z,

)| :
L = e : sound speed of tensor perturbations

2 W
M2 — M3

(



Formal derivation of
primordial tensor fluctuations

ds® = —dt® + a>(t) (e 1);j da'da? = —dt? + a*(t) (51‘3-' + vij + > YikVkj i ) dz'da’

(’h'z' =0, 74, = U-)

So= [ atev=g [SMER+ MAHDG - MGH® + HD)]

2) _ 1 3, 3ar2 [+ . 1
‘ S,ET = éfdtd xa”M¢ (’ﬁj’m — ﬂ—z’)’i;j,m’ij,ﬁ:) *

‘ (Standard) quantization of free fields

Note that the whole metric is “not” quantized.

The background geometry exists classically and
only the perturbations are quantized.



Higher derivative term

F(8) (VuVug)? > f<<5><'52K”K5
Ny X Oy
‘ ny = —YVu@, = / /((f:ccg:::tt)

(h,uy — Juv + nuny, Kuy = hgvanu

- VuVop = —Vu(’}’_lﬂ;u)
— _’Y_l(Kj_LU — ?I;Hﬂy) + —R,UJVL;X.

This Kkind of term appears in Horndeski’s theory (Generalized Galileon):

Ga(9, X)R+ Gax [(O8)% = (VuVit)?] 3 Ga x (3,96 /2) (K2 - KlKL)



Effects of change of sound speed of tensor perturbations
s 1oV S 1M 1/, =
‘;)Krgftdﬁ‘ f/ =/ Z (’-};;) + O(T‘q-)

® The normalization of powerspectrum is changed.

2
) 1 B . cs
5@ = S f dtd3z a3 MZ s> ('nm;; — a—g’i'f;.k’hj,k) -

r 2 (H\?
Pr(k) =~ —
L) m2c, (MG) |
dln P’_f'(.‘c) - - CA
Ty = ————r~ 2T, T = :
) < 7T e He,
Pr(k) i
= %) o 16ecsc _8csny) .
r X0 ecsc - (F csny )
\ (parameter degeneracies)

® No cubic interaction of ¥ associated with this interaction !!
(different from the case of curvature perturbations)

- C v has nothing to do with the auto-bispectrum of tensor perturbations.
(N.B. 5 Kﬂ@' K5 K# can generate large tensor bispectrum)

How can we probe the tensor sound speed ?



Importance of cross bispectum

By using the Stuckelberg trick to recover the interaction of 7T,

(8%27)2 1 o|| 1. OpvijOkm
VS KM . —Aaell ZA.. J
0K, 0K}, > 2 + s | I (rrm
8i8j7r8;§ar 1 .. , aﬁ’}’?jj aiﬁajﬂ'
—2vi;—— 72— — ;i t Hyyj— =5 ) [ (Y T T
A490:1O:m — 2(0:0.:7)< A(O4)4

= (MO T (;4377) + 4(0<m) + (7T 7T 70)

operator 7’ (3;?;)2 (Sizr)g ("}’.-;9')2 (6’];{!:7;5)2 ’}‘3 ’}‘Q?T ’}”?'T2 w
So |V v v v Z The scalar-tensor-tensor
(8¢®Y || v v | interaction, the Y v T -type
5g°8K v v/ | v | Interaction, arises only from
(5K v | v | v | theoperatordK,;iK[.
SKLBKCE é | ¢ (v) v | v
A

TABLE I: Operators relevant to dispersion relations of pri-
mordial perturbations and the induced cubic interactions in

the decoupling limit. 1 . .
(SD = [d*av=g [EMDE,R + M2 H (£)g%° — M2 (3H2(t) + H(t))] )



Scalar-tensor-tensor bispectum

M2 | Op;;Om
[{.34:1: a’> 34, Ay k™

4 Y g2
S5 83 3¢3 ( )47?(;2
BEE)  (Guianid) = G0 (L) s Sy k2, ka).
In-in formalism
832,33(k11k2&k3) — E (kQ)E (k3)8(k11rk21 k3)
g g
polarization tensor
5 (k1 - ko)k3 1 | k1t ko | 2k1ko
Sk, ko ka) = (2 = 1) "2 (54 A2 4+ T2 ) o+ (kp 9 k).
(K = k1 + cyk2 + cyks)

_S:I::l:/F _S‘:'—‘F/E

One can observe
the ¢» dependence on
this cross bispectrum.

FIG. 1: Shape function Sty (ki , ko, ks) for e, = 08 FIG. 2: Shape function Si (ki , kg, ks) for e, = 0.8



Summary

® If the BICEP2 results are correct, we now observe
the powerspectrum of scalar and tensor perturbations.

® Non-Gaussianity (bispectrum) gives additional information.

® For example, the sound speed of the curvature perturbations
are strongly correlated with the their auto-bispectrum.

® On the other hand, the tensor sound speed has nothing to do
with their auto-bispectrum.

® Rather, it is related to the cross-bispectra, in particular,
the scalar-tensor-tensor bispectrum.

® The relevant CMB bispectra of two B-modes and one
temperature (or one E-mode) anisotropies become a powerful
tool to probe the tensor sound speed.
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