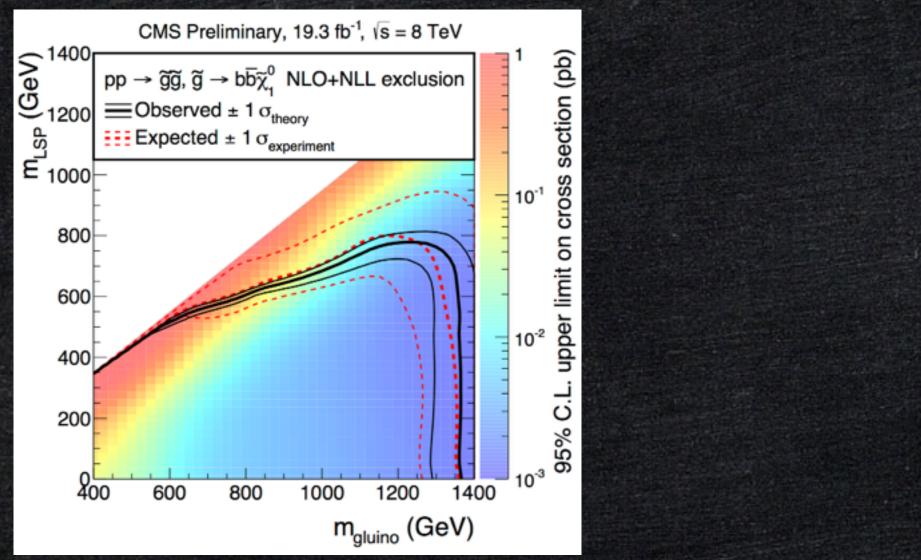
ATOM/Fastlim Recasting LHC constraints on new physics models

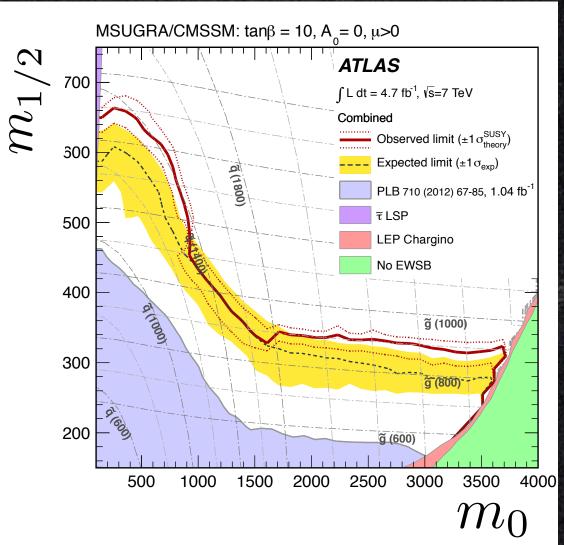
Kazuki Sakurai (King's College London)

ATOM collaboration: Ian-Woo Kim, Michele Papucci, KS, Andreas Weiler Fastlim collaboration: Michele Papucci, KS, Andreas Weiler, Lisa Zeune

Contents

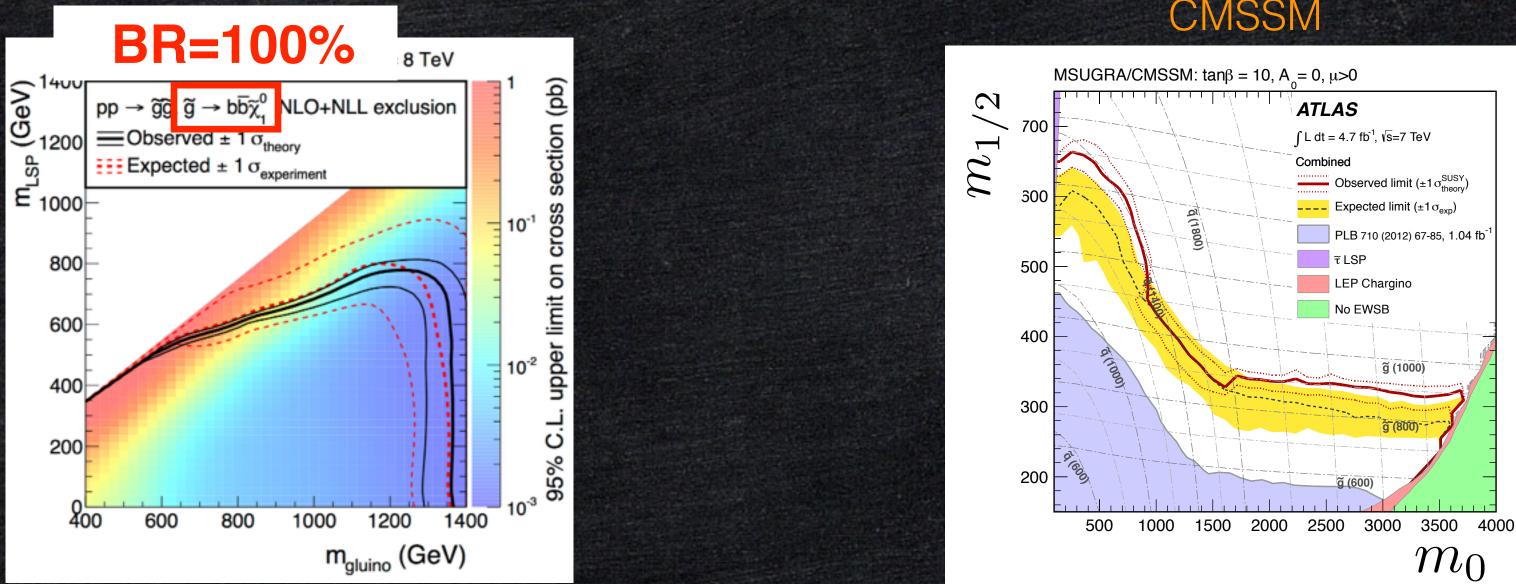
Introduction
ATOM
Fastlim
Application
Summary

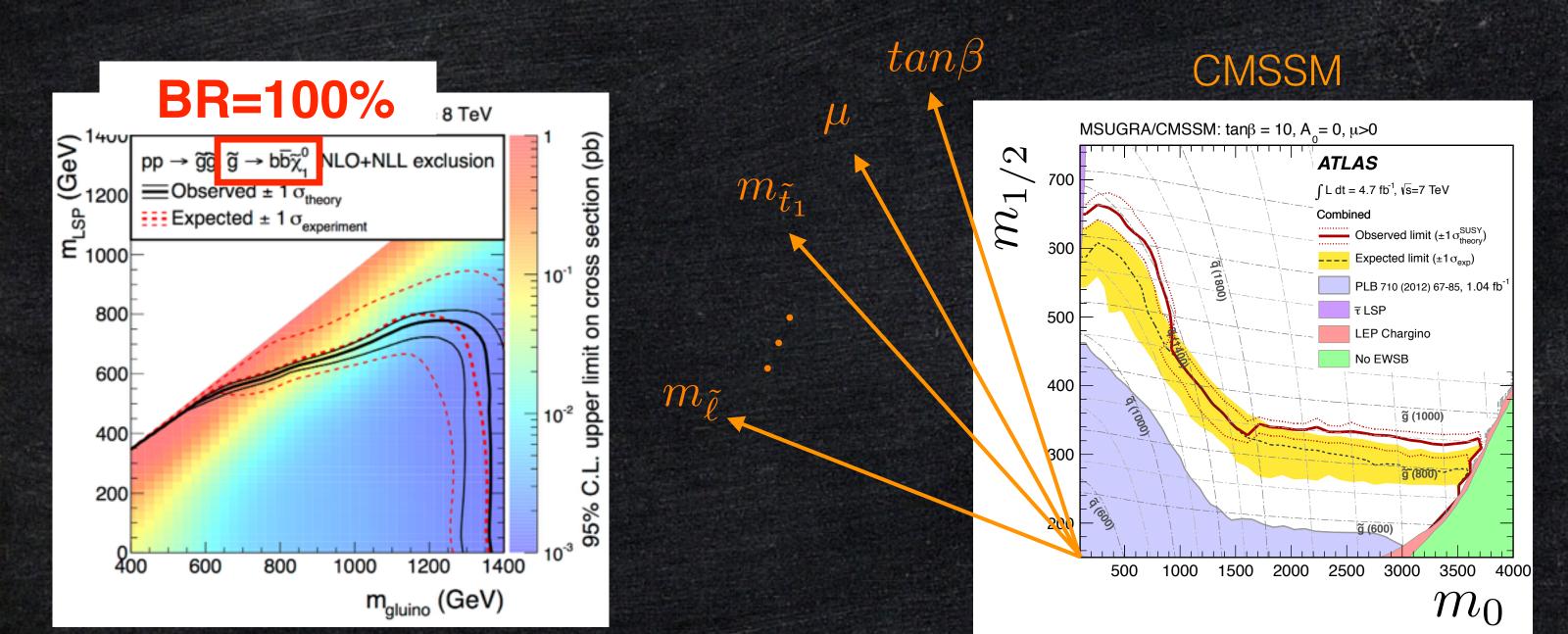



- For the long time (between LEP and LHC), the pheno community had been hungry for data to have hints and inputs into new physics models.
- Now, we have a lot of data from the LHC.

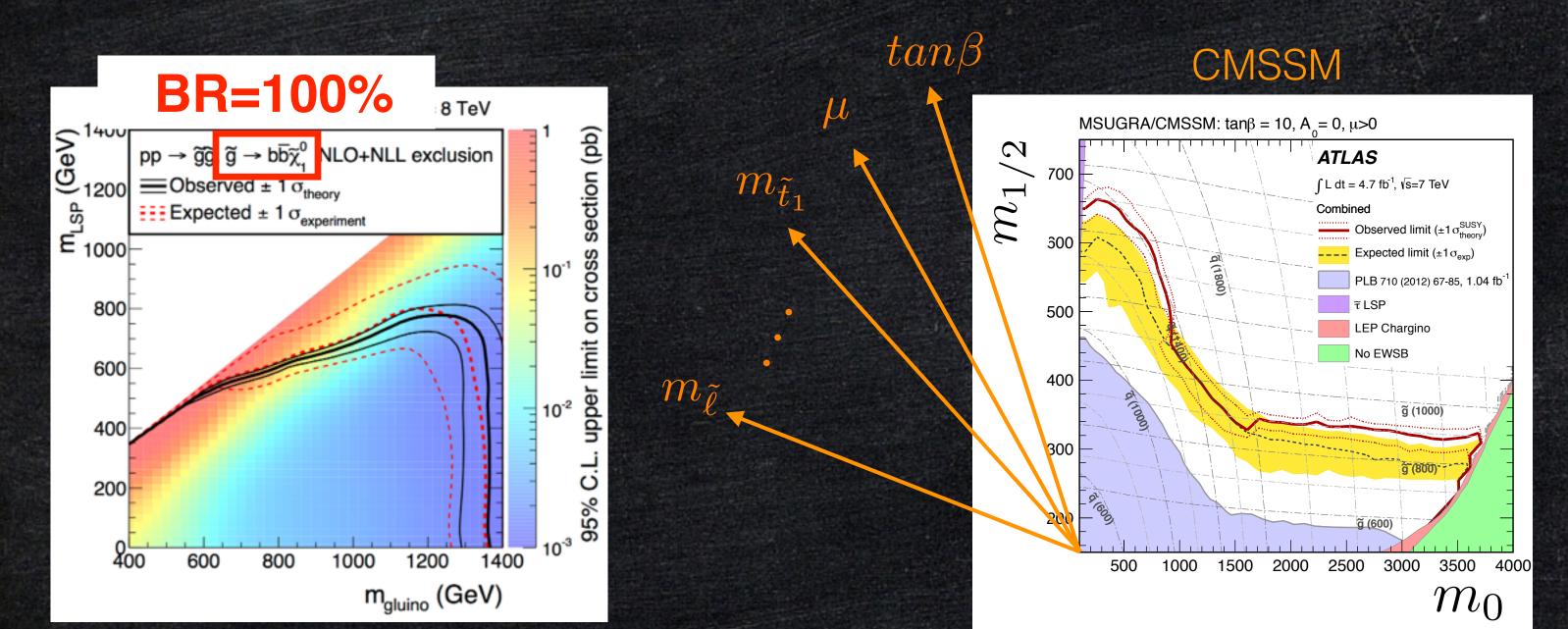
We should make use of the LHC results and extract information on new physics models as much as possible.

 ATLAS and CMS often present their results by showing the constraints on simplified models or the CMSSM.


simplified model

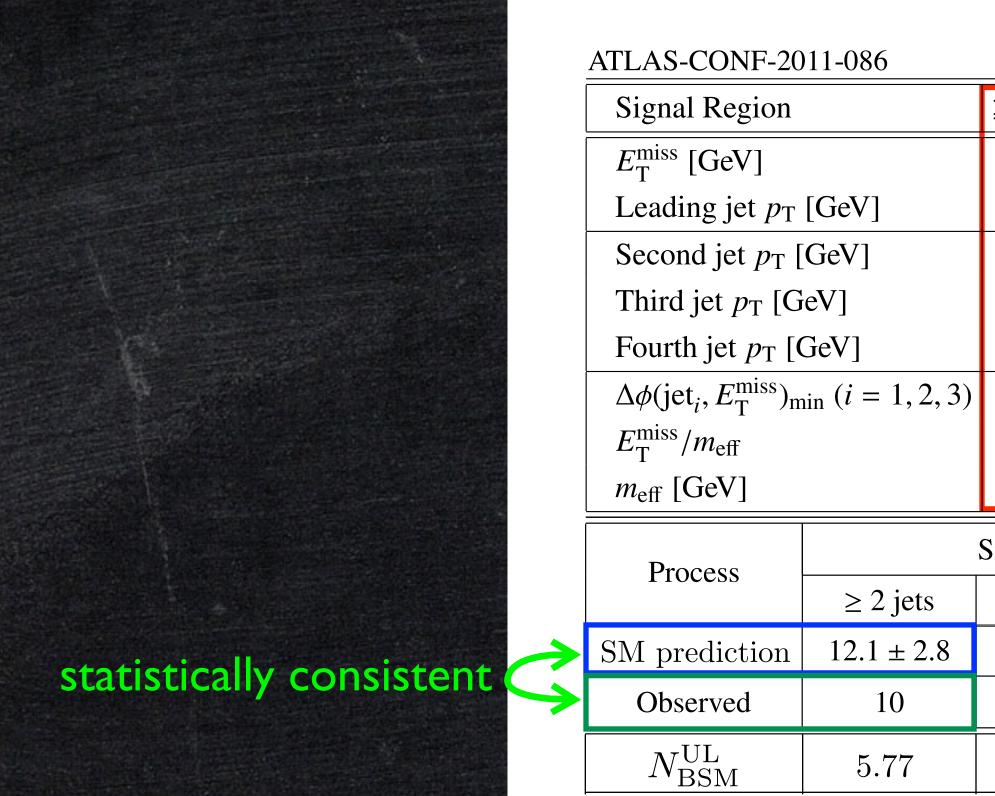


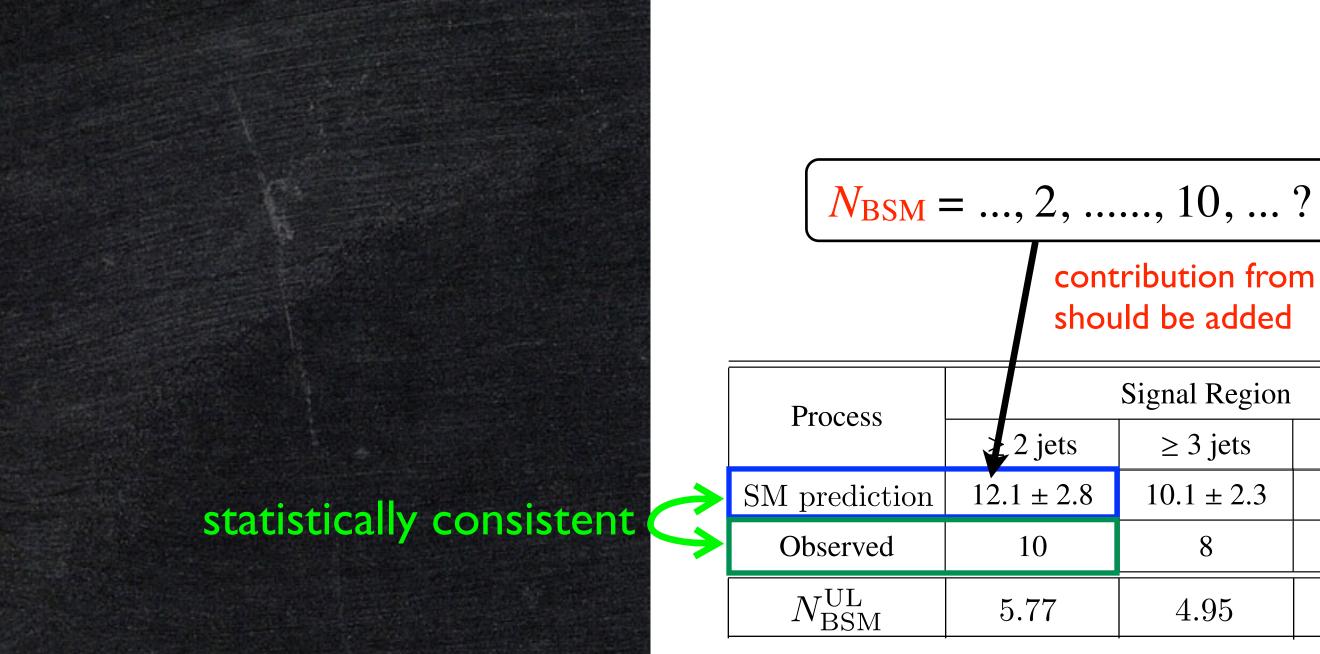
 ATLAS and CMS often present their results by showing the constraints on simplified models or the CMSSM.



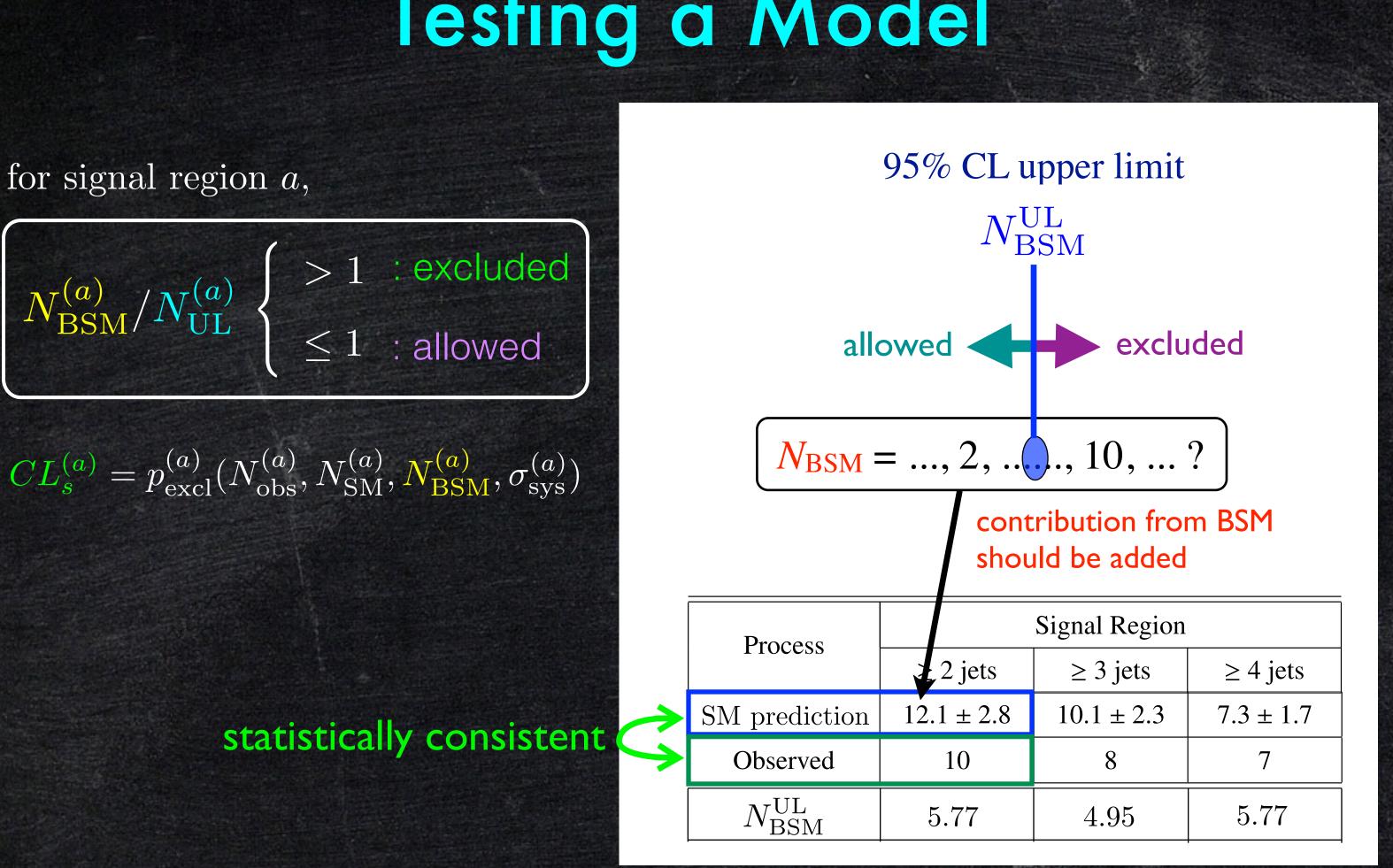
 ATLAS and CMS often present their results by showing the constraints on simplified models or the CMSSM.

- ATLAS and CMS often present their results by showing the constraints on simplified models or the CMSSM.
- To survey the generic pMSSM parameter space, a fast and systematic evaluation of LHC constraints is required.




ATLAS-CONF-2011-086										
Signal Region		≥ 2 jets	≥ 3	jets	\geq 4 jets					
$E_{\rm T}^{\rm miss}$ [GeV]		> 130	>]	130	> 130					
Leading jet $p_{\rm T}$	[GeV]	> 130	>]	130	> 130					
Second jet $p_{\rm T}$ [GeV]	> 40	>	40	> 40					
Third jet $p_{\rm T}$ [G	eV]	_	>	40	> 40					
Fourth jet $p_{\rm T}$ [0	GeV]	_	-	_	> 40					
$\Delta \phi(\text{jet}_i, E_{\text{T}}^{\text{miss}})_{\text{m}}$	(i = 1, 2, 3)	> 0.4	>	0.4	> 0.4					
$E_{\rm T}^{\rm miss}/m_{\rm eff}$	$E_{\rm T}^{\rm miss}/m_{\rm eff}$				> 0.25					
m _{eff} [GeV]		> 1000	> 1	000	> 1000					
Process		Signal Re	gion							
1100055	≥ 2 jets	\geq 3 jet	S	\geq 4 jets						
SM prediction	12.1 ± 2.8	10.1 ± 2	2.3	7.	3 ± 1.7					
Observed	10	8		7						
$N_{ m BSM}^{ m UL}$	5.77	4.95		5.77						

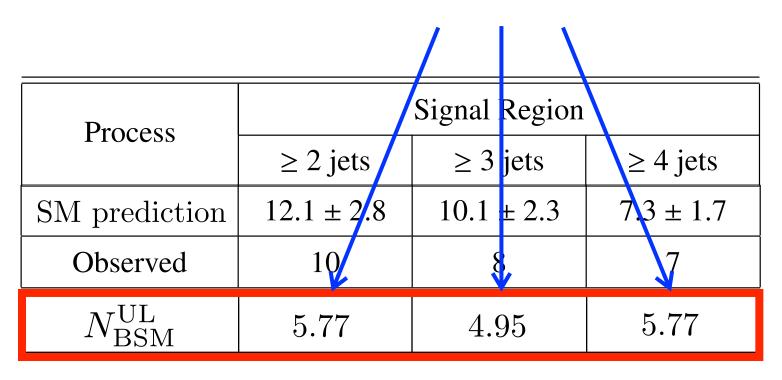
		Signa	al R	legi	ons		
ATLAS-CONF-20	011-086						
Signal Region		≥ 2 jets	≥ 3	jets	\geq 4 jets		
$E_{\rm T}^{\rm miss}$ [GeV]		> 130	> 1	130	> 130		
Leading jet $p_{\rm T}$	[GeV]	> 130	> 1	130	> 130		
Second jet $p_{\rm T}$ [[GeV]	> 40	>	40	> 40		
Third jet $p_{\rm T}$ [G	eV]	—	>	40	> 40		
Fourth jet $p_{\rm T}$ [0	GeV]	—	_		> 40		
$\Delta \phi(\text{jet}_i, E_{\text{T}}^{\text{miss}})_{\text{m}}$	(i = 1, 2, 3)	> 0.4	> 0.4		> 0.4		
$E_{\rm T}^{\rm miss}/m_{\rm eff}$		> 0.3	> 0	.25	> 0.25		
m _{eff} [GeV]		> 1000	1000 > 1000		> 1000		
Process		Signal Re	gion				
1100055	≥ 2 jets	\geq 3 jet	ZS	\geq	4 jets		
SM prediction	12.1 ± 2.8	10.1 ± 2	2.3	7.3 ± 1.7			
Observed	10	8		7			
$N_{ m BSM}^{ m UL}$	5.77	4.95		,	5.77		



Signal Regions												
≥ 3	jets	\geq 4 jets										
>]	130	> 130										
>]	130	> 130										
>	40	> 40										
>	40	> 40										
-	-	> 40										
> (0.4	> 0.4										
> 0).25	> 0.25										
> 1	000	> 1000										
gion												
Ś	\geq	4 jets										
2.3	7.	3 ± 1.7										
		7										
		5.77										
	≥ 3 > 1 > 2 > 1 > 0 > 1 gion s	$\ge 3 \text{ jets}$ > 130 > 130 > 40 > 40 - > 0.4 > 0.25 > 1000 gion s \ge 2.3 7.2										

contribution from BSM should be added

Signal Region									
\geq 3 jets	\geq 4 jets								
10.1 ± 2.3	7.3 ± 1.7								
8	7								
4.95	5.77								



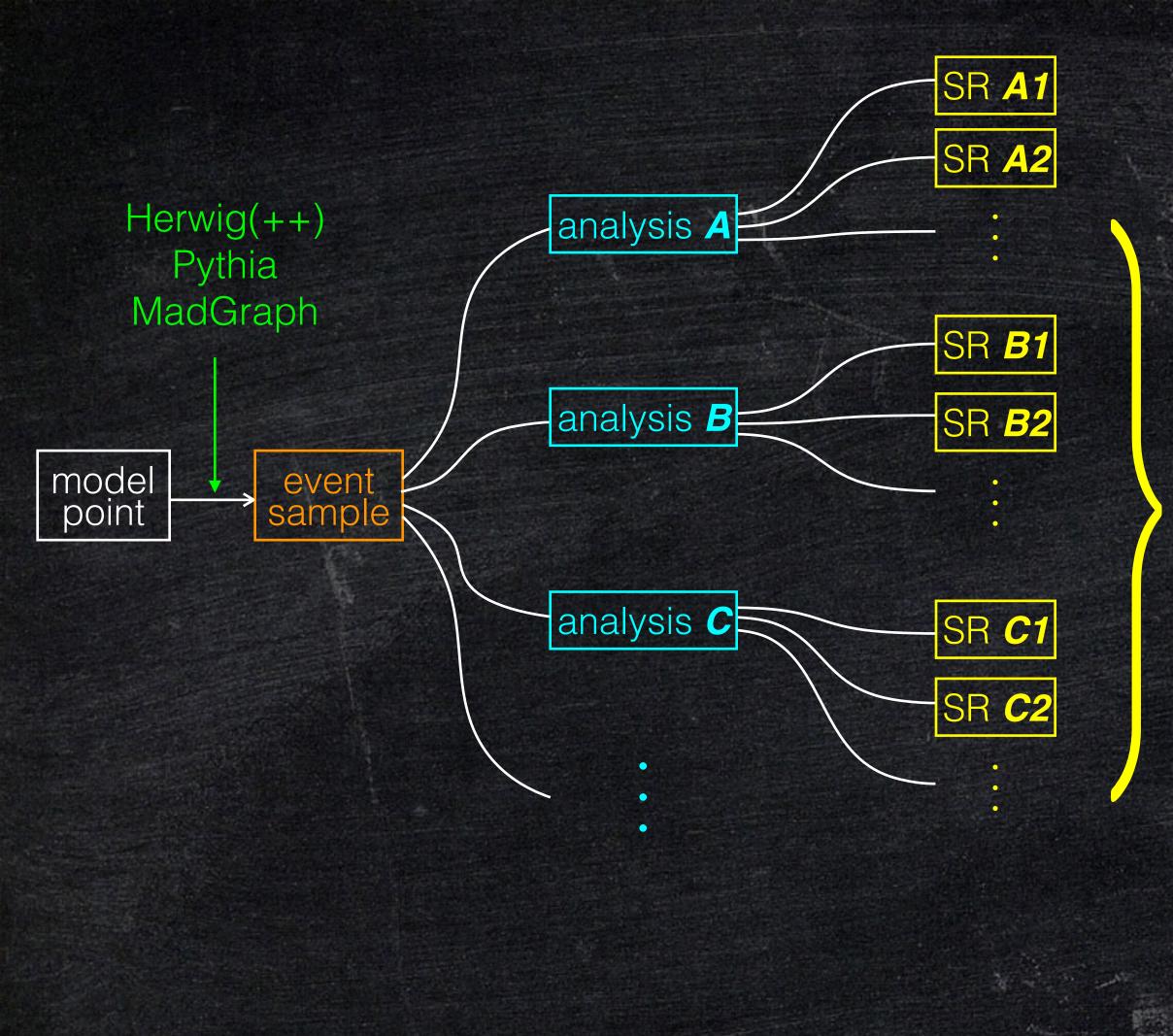
for signal region a,

$$N_{
m BSM}^{(a)}/N_{
m UL}^{(a)}$$
 $\begin{cases} >1 : excluded \\ \leq 1 : allowed \end{cases}$

$$CL_{s}^{(a)} = p_{\text{excl}}^{(a)}(N_{\text{obs}}^{(a)}, N_{\text{SM}}^{(a)}, N_{\text{BSM}}^{(a)}, \sigma_{\text{sys}}^{(a)})$$

several different tests per analysis

How to calculate N_{BSM}?

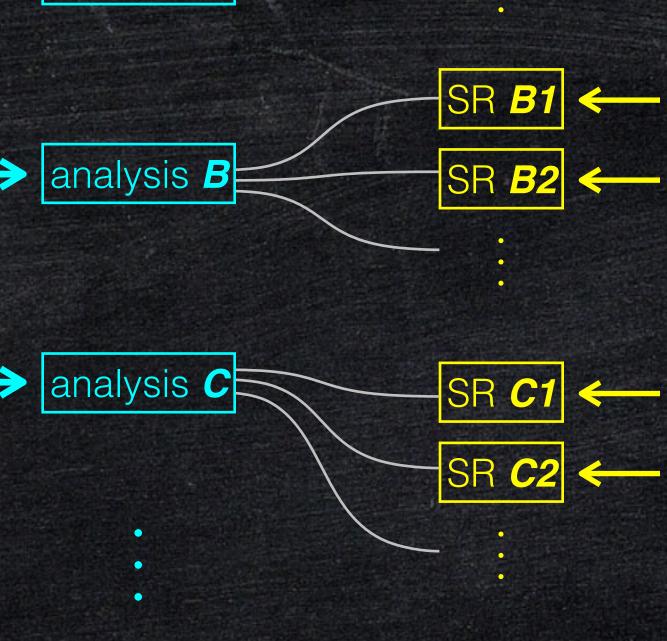

analytically calculable (factorisation)

 $N_{\rm BSM}^{(a)} = \epsilon_{\rm BSM}^{(a)} \cdot \sigma_{\rm BSM}^{\bullet} \cdot \mathcal{L}$

Events fall into $\sum_{i=1}^{n}$ signal region aN $\epsilon_{\rm BSN}^{(a)}$ $N_{\rm MC} \to \infty$ $N_{\rm MC}$

known

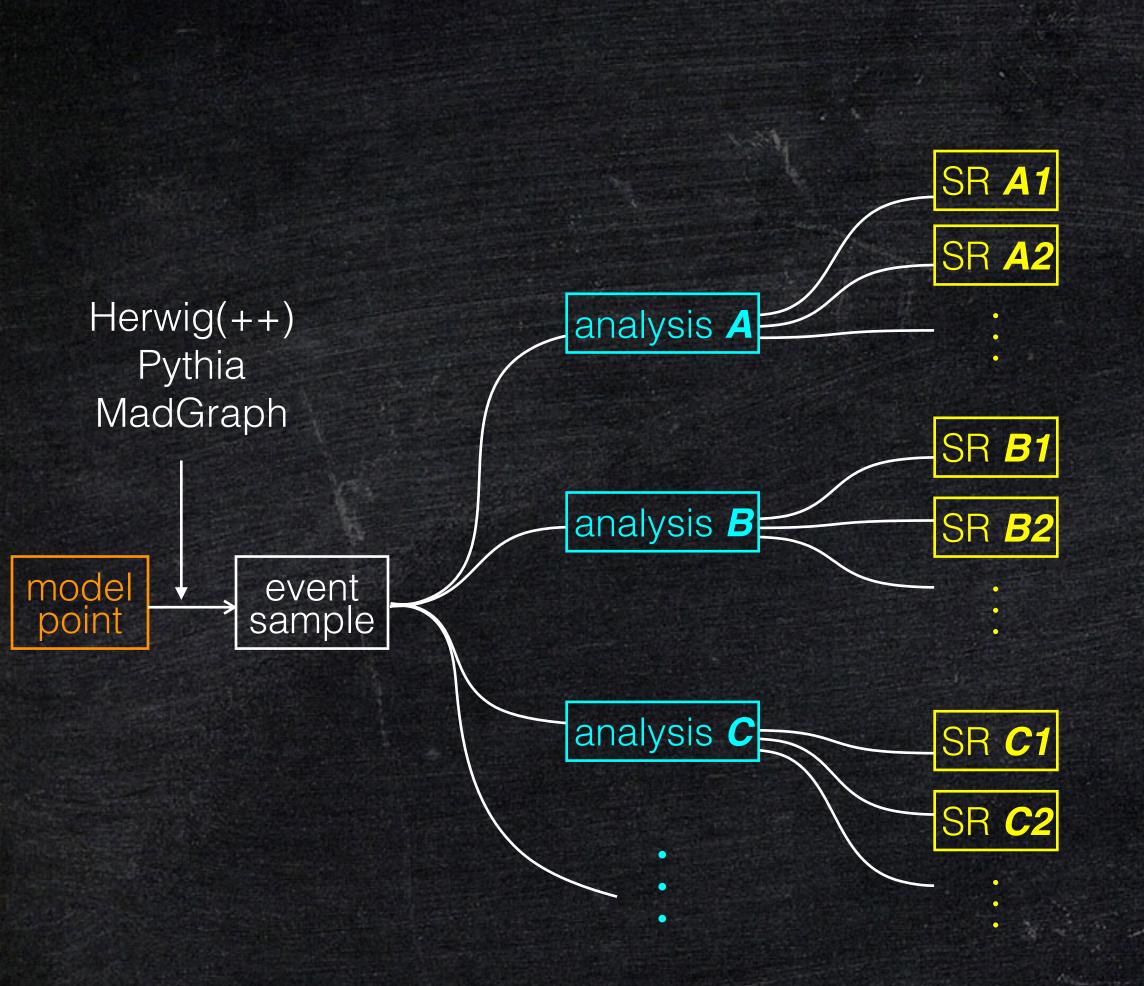
list of efficiencies: $\{\epsilon^{(a)}_{\rm BSM}\}$


 $(a = A1, A2, \cdots, B1, B2, \cdots, \cdots)$

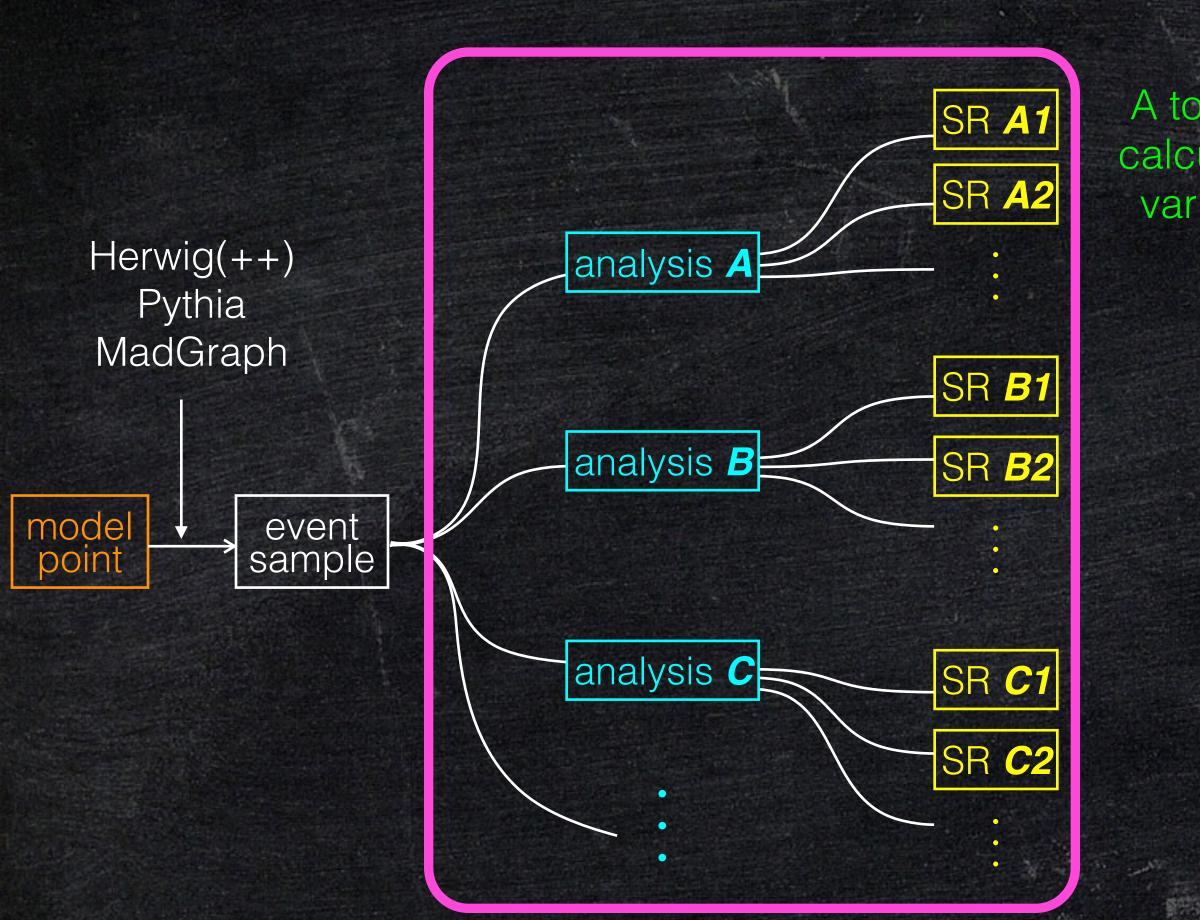
reconstructed objects (jets, electrons, ...) need to be tuned for each analysis

needs to write a detector card and run detector simulation for every analysis

A lot of work!


Validation is required for every analysis

generate an event sample at the benchmark point used in the analysis paper and compare the efficiency with the one reported in the paper for every signal region Y. Kats and D. Shih, JHEP 1108, 049 (2011) [arXiv:1106.0030 [hep-ph]], M. Lisanti, P. Schuster, M. Strassler and N. Toro, JHEP 1211, 081 (2012) [arXiv:1107.5055 [hep-ph]], R. Essig, E. Izaguirre, J. Kaplan and J. G. Wacker, JHEP 1201, 074 (2012) [arXiv:1110.6443 [hep-ph]], C. Brust, A. Katz, S. Lawrence and R. Sundrum, JHEP 1203, 103 (2012) [arXiv:1110.6670 [hep-ph]], T. J. LeCompte and S. P. Martin, Phys. Rev. D 85, 035023 (2012) [arXiv:1111.6897 [hep-ph]], B. He, T. Li and Q. Shafi, JHEP 1205, 148 (2012) [arXiv:1112.4461 [hep-ph]], Y. Kats, P. Meade, M. Reece and D. Shih, JHEP 1202, 115 (2012) [arXiv:1110.6444 [hep-ph]], K. Sakurai and K. Takayama, JHEP 1112 (2011) 063 [arXiv:1106.3794 [hep-ph]], B. C. Allanach, T. J. Khoo and K. Sakurai, JHEP 1111 (2011) 132 [arXiv:1110.1119 [hep-ph]], M. Badziak and K. Sakurai, JHEP 1202 (2012) 125 [arXiv:1112.4796] [hep-ph]], B. C. Allanach and B. Gripaios, JHEP 1205, 062 (2012) [arXiv:1202.6616 [hep-ph]], J. Fan, M. Reece and J. T. Ruderman, JHEP 1207, 196 (2012) [arXiv:1201.4875 [hep-ph]], G. D. Kribs and A. Martin, Phys. Rev. D 85, 115014 (2012) [arXiv:1203.4821 [hep-ph]], D. Curtin, P. Jaiswal and P. Meade, Phys. Rev. D 87, no. 3, 031701 (2013) [arXiv:1206.6888 [hep-ph]], J. A. Evans and Y. Kats, JHEP 1304, 028 (2013) [arXiv:1209.0764 [hep-ph]], P. Bechtle, T. Bringmann, K. Desch, H. Dreiner, M. Hamer, C. Hensel, M. Kramer and N. Nguyen et al., JHEP 1206, 098 (2012) [arXiv:1204.4199 [hep-ph]], K. Rolbiecki and K. Sakurai, JHEP **1210** (2012) 071 [arXiv:1206.6767 [hep-ph]], M. Asano, K. Rolbiecki and K. Sakurai, JHEP 1301 (2013) 128 [JHEP 1301 (2013) 128] [arXiv:1209.5778 [hep-ph]], M. Redi, V. Sanz, M. de Vries and A. Weiler, JHEP 1308, 008 (2013) [arXiv:1305.3818, arXiv:1305.388 [hep-ph]], K. Kowalska and E. M. Sessolo, Phys. Rev. D 88, 075001 (2013) [arXiv:1307.5790 [hep-ph]], J. A. Evans, Y. Kats, D. Shih and M. J. Strassler, arXiv:1310.5758 [hep-ph].


Many people have been performing similar studies....

duplicating effort

[...]

A tool to systematically calculate efficiencies for various signal regions

ATOM (Automated Testing Of Models)

Herwig(++)Pythia MadGraph

event file (HepMC, StdHep)

 \bigcirc

efficiency calculations are already validated

 appropriate definitions of reco objects are used for the analysis.

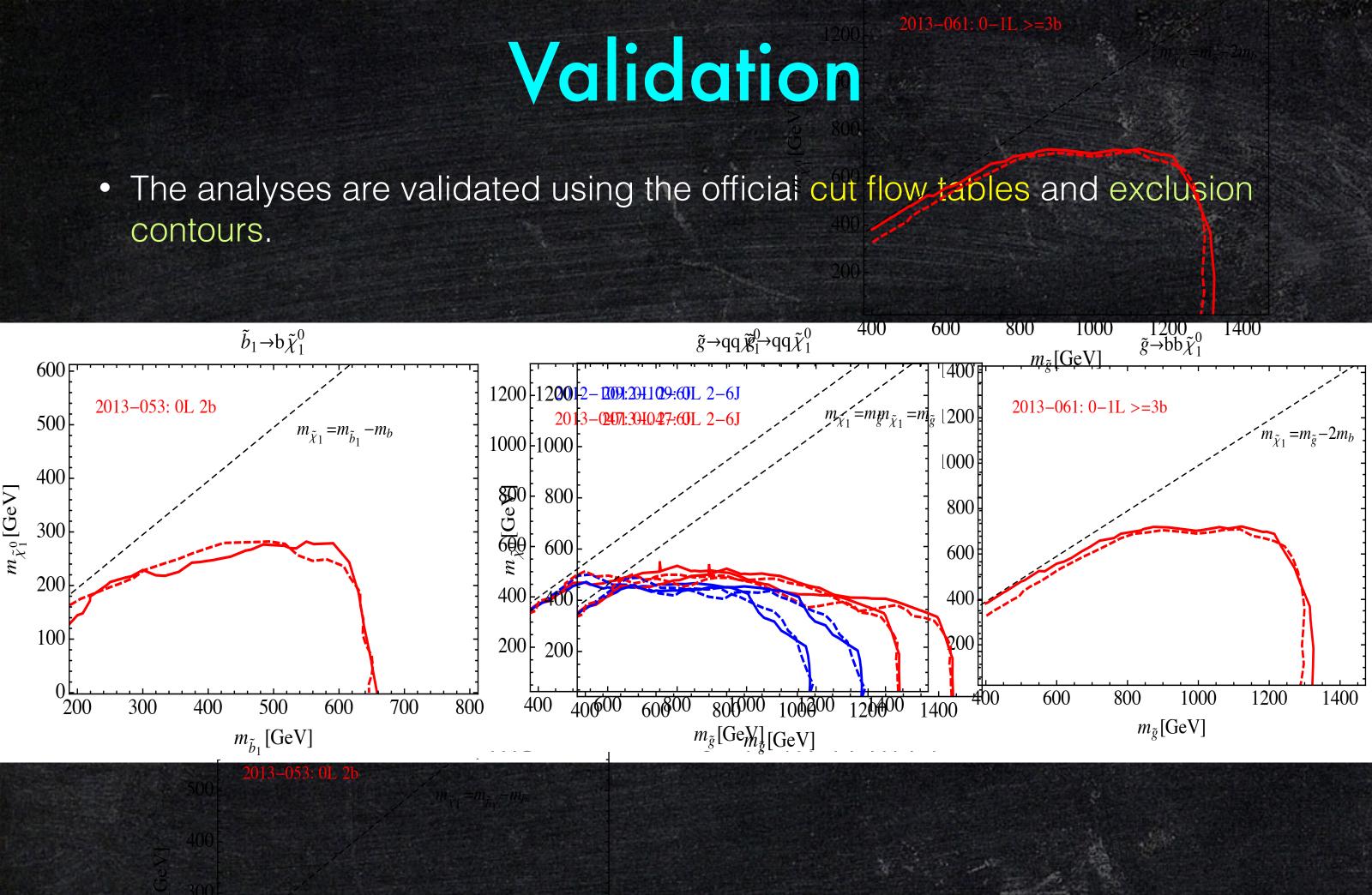
I-W.Kim, M.Papucci, KS, A.Weiler

A tool to systematically calculate efficiencies for various signal regions

 $\rightarrow \{\epsilon_{\rm BSM}^{(a)}\}$

histograms (MET, Meff, ...)

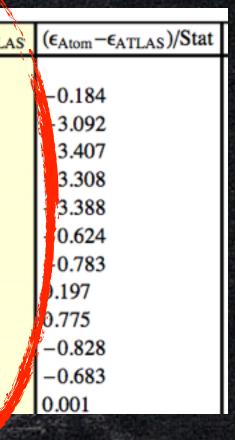
reco. objects (jets, leptons, ...)


Analyses in ATOM

Name	Short description	$E_{\rm CM}$	$\mathcal{L}_{\mathrm{int}}$	# SRs	Ref.
ATLAS_CONF_2013_024	0 lepton + (2 b-)jets + MET [Heavy stop]	8	20.5	3	[32]
ATLAS_CONF_2013_035	3 leptons + MET [EW production]	8	20.7	6	[33]
ATLAS_CONF_2013_037	1 lepton + 4(1 b-)jets + MET [Medium/heavy stop]	8	20.7	5	[34]
ATLAS_CONF_2013_047	0 leptons + 2-6 jets + MET [squarks & gluinos]	8	20.3	10	[35]
ATLAS_CONF_2013_048	2 leptons (+ jets) + MET [Medium stop]	8	20.3	4	[36]
ATLAS_CONF_2013_049	2 leptons + MET [EW production]	8	20.3	9	[37]
ATLAS_CONF_2013_053	0 leptons + 2 b-jets + MET [Sbottom/stop]	8	20.1	6	[38]
ATLAS_CONF_2013_054	0 leptons $+ \ge 7-10$ jets $+ \text{MET}$ [squarks & gluinos]	8	20.3	19	[39]
ATLAS_CONF_2013_061	0-1 leptons $+ \ge 3$ b-jets $+$ MET [3rd gen. squarks]	8	20.1	9	[40]
ATLAS_CONF_2013_062	1-2 leptons + 3-6 jets + MET [squarks & gluinos]	8	20.3	13	[41]
ATLAS_CONF_2013_093	1 lepton + bb(H) + Etmiss [EW production]	8	20.3	2	[42]

• Many ATLAS (a few CMS) analyses are implemented. Most of the 2013-2014 ATLAS MET searches are implemented.

Validation


contours.

Validation

• The analyses are validated using the official cut flow tables and exclusion contours.

#	Cut Name			ϵ_{ATLAS}	ϵ_{Atom}	± St	at ϵ_{At}	_{om} /€	ATLAS	(ϵ_{Atom})	$-\epsilon_{ATL}$	_{AS})/Stat				
1	[01] No cut			100.	100.	±										
2	[02] Lepton (=	=1 signal)	22.82	22.732	22.732 ± 0.477 0.996 -0			-0.18	0.184						
3	[03] 4 jets (80.	60.40.25)	12.33	11.291	<u>1.291 ± 0.336 0.916 -3</u>			-3.09	02				a de la compañía de l Compañía de la compañía		
4	[04] >= ♯	Cut Na	me		ϵ_{ATLAS}	ATLAS $\epsilon_{Atom} \pm Stat \frac{\epsilon_{Atom}}{\epsilon_{Atom}}$			EATLAS	TLAS $(\epsilon_{Atom} - \epsilon_{AT})$			/Stat			
5	[05] ME 1	same f	avour		100.											
6	[06] ME 2	SF: Op	posite S	ign	97.8	98.6	± 4.	28	1.01		0.1	8				
7	[07] del 3	SF:	11. 00	-	A	<u></u>		<u></u>	4	_		<u>^</u>				
8	[SRtN2 4	SF:					€ATLAS	€At	iom ±	Stat	ϵ_{Atom}	€ATLAS	(e _{Att}	om-€A	TLAS)/Sta	at
9	[SRtN2 5	SF: 1	MET :	> 50			100.	10	0. ±							
10	[SRtN2 6	SF: 2	>= 2 0	central je	ts		76.28	71	.27 ±	0.98	0.93		-5.	12		
11	[SRtN3]	5	2 lead										-			
12	[SRtN3]	SF: 4	4th lea	ading _1	‡ Cut	Name				€A	TLAS	ϵ_{Atom}	±	Stat	€ _{Atom}	ϵ_{ATL}
13	[SRtN3] 8	SF: 5	baselin	ne lep 🗌	l [01]	No cu	t			10)0.	100.	±		^	
14	[SRbC1 9	SF: 6	mjj > :	50 2	2 [02]	Lepto	n (=1 si	gna	l)	22	2.82	22.732	±	0.47	7 0.996	5
15	[SRbC1 10	SF: 7	mT > -	40 🔅	3 [03]	4 jets ((80,60,4	0,25	5)	12	2.33	11.291	±	0.33	6 0.916	5
16	[SRbC1 11	SF: 8	mCT :	> 160 🛛	4 [04]	>=1b	in 4 lea	din	g jets	10).53	9.481	±	0 30	8 0.9	
17	[SRbC1-3] M	ET > 9	MET :	> 100	5 [05]	MET	> 100			8.	64	7.721	±	0 27	8 0.894	4
18	[SRbC1-3] M	IET/s 10) exactly	y 2 le			sqrt(HT) >	5	8.	45	7.521	±	0 27	4 0.89	
19	[SRbC1-3] m					-	i(J2,ME	-			52	7.351	±		1 0.977	
20	[SRbC1-3] m	eff > 1	2 SRB:	mT >			ET > 2		0.0		31	4.15			4 0.963	
21	SRtN2	_		0.84	1°	-			D > 12		33	2.36			4 1.013	
22	SRtN3			0.38			IET/sqrt		() > 15							
23	SRbC1			13.11	10 [SRt	-					91	2.02		53	2 1.058	
24	SRbC2			0.55	11 [SRt						87	1.76		<u>4</u>	3 0.941	
25	SRbC3			0.10	12 [SRt		_		Г) > 11		82	1.73			0.951	L
			108- ISA	a line of	13 [SRt	N3] m	T > 200)		1.	06	1.06	±	0.10	3 1.	

Automated Validation

0	0 0 1	. sakurai@Kazukis	-MacBook-Pro: ~/a	atom/Atom-	-validation/Analys	es/AT	LAS_2013_CONF	_2013_04	7 (zsh)		HC III		
ATLAS	TLAS_2013_CONF_2013_047: GQdirect_1612-37												
#	cut name	eff_Exp	eff_Atom	Atom/Exp	(Atom-Exp)/Err	#/?	R_Exp	R_	Atom	Atom/Exp	(Atom-Exp)/Err		
0	No cut	100.0	100.0			 I							
1	base: 0 lepton	98.8 +- 1.41	99.96 +- 0.03	1.01	0.83	j 0	0.99 +- 0.01	1.0 +-	0.0	1.01	0.83		
2	base: MET > 160	95.9 +- 1.38	97.02 +- 0.24	1.01	0.8	j 1	0.97 +- 0.01	0.97 +-	0.0	1.0	-0.0		
3	base: pTj1 > 130	95.8 +- 1.38	97.02 +- 0.24	1.01	0.87	2	1.0 +- 0.01	1.0 +-	0.0	1.0	0.07		
4	base: pTj2 > 60	95.2 +- 1.38	96.96 +- 0.24	1.02	1.26	3	0.99 +- 0.01	1.0 +-	0.0	1.01	0.39		
5	pTj3 > 60	75.7 +- 1.23	93.02 +- 0.36	1.23	13.51	4	0.8 +- 0.01	0.96 +-	0.0	1.21	12.21		
6	<pre>B base: dphi_min_23 > 0.4 </pre>	66.2 +- 1.15	77.58 +- 0.59	1.17	8.8	5	0.87 +- 0.02	0.83 +-	0.01	0.95	-2.46		
7	BM: MET/meff_3j > 0.3	31.8 +- 0.8	50.7 +- 0.71	1.59	17.73	6	0.48 +- 0.01	0.65 +-	0.01	1.36	11.46		
8	BM: meff_inc > 1800	22.8 +- 0.68	45.48 +- 0.7	1.99	23.25	7	0.72 +- 0.02	0.9 +-	0.01	1.25	7.1		

0.1 $\tilde{q}\tilde{g}$ direct (1612, 37): (ATLAS_CONF_2013_047)

- Process: $pp \to \tilde{q}\tilde{g} \to (q\chi_1^0)(qq\chi_1^0)$.
- Mass: $m_{\tilde{g}} = 1612 \text{ GeV}, m_{\tilde{q}} = 1548 \text{ GeV}, m_{\tilde{\chi}_1^0} = 37 \text{ GeV}.$
- The number of events: $5 \cdot 10^3$.
- Event Generator: MadGraph 5 and Pythia 6. The MLM merging is used with the shower- k_T scheme implemented in MadGraph 5 and Pythia 6, where we take xqcut = $qcut = M_{SUSY}/4$ with MSUSY being the mass of the heavier SUSY particles in the production.

#	cut name	ϵ_{Exp}	$\epsilon_{ m Atom}$	Atom Exp	$\frac{(\text{Exp}-\text{Atom})}{\text{Error}}$	#/?	$R_{\rm Exp}$	R_{Atom}	Atom Exp	$\frac{(\text{Exp}-\text{Atom})}{\text{Error}}$
0	No cut	100.0	100.0							
1	base: 0 lepton	98.8 ± 1.41	99.96 ± 0.03	1.01	0.83	0	0.99 ± 0.01	1.0 ± 0.0	1.01	0.83
2	base: MET > 160	95.9 ± 1.38	97.02 ± 0.24	1.01	0.8	1	0.97 ± 0.01	0.97 ± 0.0	1.0	-0.0
3	base: $p_T(j_1) > 130$	95.8 ± 1.38	97.02 ± 0.24	1.01	0.87	2	1.0 ± 0.01	1.0 ± 0.0	1.0	0.07
4	base: $p_T(j_2) > 60$	95.2 ± 1.38	96.96 ± 0.24	1.02	1.26	3	0.99 ± 0.01	1.0 ± 0.0	1.01	0.39
5	$p_T(j_3) > 60$	75.7 ± 1.23	93.02 ± 0.36	1.23	13.51	4	0.8 ± 0.01	0.96 ± 0.0	1.21	12.21
6	B base: $\Delta \phi(j_i, \text{MET}) > 0.4$	66.2 ± 1.15	77.58 ± 0.59	1.17	8.8	5	0.87 ± 0.02	0.83 ± 0.01	0.95	-2.46
7	BM: MET $/m_{\rm eff}(3j) > 0.3$	31.8 ± 0.8	50.7 ± 0.71	1.59	17.73	6	0.48 ± 0.01	0.65 ± 0.01	1.36	11.46
8	BM: $m_{\rm eff}(\rm inc) > 1800$	22.8 ± 0.68	45.48 ± 0.7	1.99	23.25	7	0.72 ± 0.02	0.9 ± 0.01	1.25	7.1

Table 1: The cut-flow table for B tight signal region: $\tilde{q}\tilde{q}$ direct (1612, 37).

 ATOM automatically generates cutbetween ATOM and experimental collaborations.

If significant deviation is found, it provides warnings.

flow tables and checks the efficiencies

Automated Validation

0	0 1	1. sakurai@Kazukis	-MacBook-Pro: ~/a	atom/Atom-	validation/Analys	es/AT	LAS_2013_CONF_2	2013_047 (zsł	1)	H.		
ATLAS	TLAS_2013_CONF_2013_047: GQdirect_1612-37											
#	cut name	eff_Exp	eff_Atom	Atom/Exp	(Atom-Exp)/Err	#/?	R_Exp	R_Atom	Atom/Exp	(Atom-Exp)/Err		
0	No cut	100.0	100.0									
1	base: 0 lepton	98.8 +- 1.41	99.96 +- 0.03	1.01	0.83	0	0.99 +- 0.01	1.0 +- 0.0	1.01	0.83		
2	base: MET > 160	95.9 +- 1.38	97.02 +- 0.24	1.01	0.8	1	0.97 +- 0.01	0.97 +- 0.0	1.0	-0.0		
3	base: pTj1 > 130	95.8 +- 1.38	97.02 +- 0.24	1.01	0.87	2	1.0 +- 0.01	1.0 +- 0.0	1.0	0.07		
4	base: pTj2 > 60	95.2 +- 1.38	96.96 +- 0.24	1.02	1.26	3	0.99 +- 0.01	1.0 +- 0.0	1.01	0.39		
5	pTj3 > 60	75.7 +- 1.23	93.02 +- 0.36	1.23	13.51	4	0.8 +- 0.01	0.96 +- 0.0	1.21	12.21		
6	<pre>B base: dphi_min_23 > 0.4 </pre>	66.2 +- 1.15	77.58 +- 0.59	1117	8.8	5	0.87 +- 0.02	0.83 +- 0.01		-2.46		
7	BM: MET/meff_3j > 0.3	31.8 +- 0.8	50.7 +- 0.71	1.59	17.73	6	0.48 +- 0.01	0.65 +- 0.01	1.36	11.46		
8	BM: meff_inc > 1800	22.8 +- 0.68	45.48 +- 0.7	1.99	23.25	7	0.72 +- 0.02	0.9 +- 0.01		7.1		

0.1 $\tilde{q}\tilde{g}$ direct (1612, 37): (ATLAS_CONF_2013_047)

- Process: $pp \to \tilde{q}\tilde{g} \to (q\chi_1^0)(qq\chi_1^0)$.
- Mass: $m_{\tilde{g}} = 1612 \text{ GeV}, m_{\tilde{q}} = 1548 \text{ GeV}, m_{\tilde{\chi}_1^0} = 37 \text{ GeV}.$
- The number of events: $5 \cdot 10^3$.
- Event Generator: MadGraph 5 and Pythia 6. The MLM merging is used with the shower- k_T scheme implemented in MadGraph 5 and Pythia 6, where we take xqcut = $qcut = M_{SUSY}/4$ with MSUSY being the mass of the heavier SUSY particles in the production.

#	cut name	ϵ_{Exp}	$\epsilon_{ m Atom}$	$\frac{\text{Atom}}{\text{Exp}}$	$\frac{(\text{Exp}-\text{Atom})}{\text{Error}}$	#/?	$R_{\rm Exp}$	R _{Atom}	Atom Exp	$\frac{(\text{Exp}-\text{Atom})}{\text{Error}}$
0	No cut	100.0	100.0							
1	base: 0 lepton	98.8 ± 1.41	99.96 ± 0.03	1.01	0.83	0	0.99 ± 0.01	1.0 ± 0.0	1.01	0.83
2	base: MET > 160	95.9 ± 1.38	97.02 ± 0.24	1.01	0.8	1	0.97 ± 0.01	0.97 ± 0.0	1.0	-0.0
3	base: $p_T(j_1) > 130$	95.8 ± 1.38	97.02 ± 0.24	1.01	0.87	2	1.0 ± 0.01	1.0 ± 0.0	1.0	0.07
4	base: $p_T(j_2) > 60$	95.2 ± 1.38	96.96 ± 0.24	1.02	1.26	3	0.99 ± 0.01	1.0 ± 0.0	1.01	0.39
5	$p_T(j_3) > 60$	75.7 ± 1.23	93.02 ± 0.36	1.23	13.51	4	0.8 ± 0.01	0.96 ± 0.0	1.21	12.21
6	B base: $\Delta \phi(j_i, \text{MET}) > 0.4$	66.2 ± 1.15	77.58 ± 0.59	1.17	8.8	5	0.87 ± 0.02	0.83 ± 0.01	0.05	0.40
7	BM: MET $/m_{\rm eff}(3j) > 0.3$	<u>91.0 ± 0.0</u>	30.7 ± 0.71	1.59	17.73	6	0.48 ± 0.01	0.65 ± 0.01	1.36	11.46
8	BM: $m_{\rm eff}(\rm inc) > 1800$	22.8 ± 0.68	45.48 ± 0.7	1.99	23.25	7	0.72 ± 0.02	0.9 ± 0.01	1.25	7.1

Table 1: The cut-flow table for B tight signal region: $\tilde{q}\tilde{q}$ direct (1612, 37).

 ATOM automatically generates cutbetween ATOM and experimental collaborations.

If significant deviation is found, it provides warnings.

can easily catch anomaly

flow tables and checks the efficiencies

Coding in Atom

ATLAS-CONF-2013-093

Contents

- **1** Introduction
- The ATLAS detector and data samples $\mathbf{2}$
- 3 Simulated event samples
- 4 Physics object reconstruction
- 5 Event selection
- 6 Background estimate
- Systematic uncertainties 7
- **Results and interpretation** 8
- Conclusions 9

Introduction

Supersymmetry (SUSY) [1–9] provides an extension that solves the hierarchy problem [10-13] by introdu

ATLAS_CONF_2013_093.cc

void initLocal() {

+ JET DEFINITION + TIGHT ELECTRON DEFINITION + LOOSE ELECTRON DEFINITION

7// Perform the per-event analysis bool analyzeLocal(const Event& event, const double weight) {

if(jets.size() >= 4){ _effh.PassEvent("Njet >= 4"); }else{ vetoEvent; }

```
if( jets[0].momentum().pT() > 100 ){
    _effh.PassEvent("pT(j1) > 100");
}else{ vetoEvent; }
```


+ JET DEFINITION

RangeSelector jetrange =

RangeSelector(RangeSelector::TRANSVERSE_MOMENTUM, 20., 8000.) & RangeSelector(RangeSelector::PSEUD0_RAPIDITY, -4.5, 4.5);

radius

JetFinalState jets_Base = jetBase(base, muDetRange, FastJets::ANTIKT, jets_Base.setFSSmearing (dp.jetSim("Smear_TopoJet_ATLAS")); jets_Base.setFSEfficiency(dp.jetEff("Jet_ATLAS"));

void initLocal() {

-+ JET DEFINITION **+** TIGHT ELECTRON DEFINITION + LOOSE ELECTRON DEFINITION

 $\overline{7}/7$ Perform the per-event analysis bool analyzeLocal(const Event& event, const double weight) {

if(jets.size() >= 4){ _effh.PassEvent("Njet >= 4"); }else{ vetoEvent; }

```
if( jets[0].momentum().pT() > 100 ){
    _effh.PassEvent("pT(j1) > 100");
}else{ vetoEvent; }
```

0.4, hadRange, jetrange);

$p_T > 20 \,\mathrm{GeV}, \ |\eta| < 4.5$ anti-kT, $\Delta R=0.4$ (by Fastjet) **+ JET DEFINITION**

RangeSelector jetrange =

RangeSelector(RangeSelector::TRANSVERSE_MOMENTUN 20., 8000.) RangeSelector(RangeSelector::PSEUD0_RAPIDITY, -4.5, 4.5);

JetFinalState jets_Base = jetBase(base, muDetRange, FastJets::ANTIKT, jets_Base.setFSSmearing (dp.jetSim("Smear_TopoJet_ATLAS")); jets_Base.setFSEfficiency(dp.jetEff("Jet_ATLAS"));

void initLocal() {

+ JET DEFINITION **+** TIGHT ELECTRON DEFINITION + LOOSE ELECTRON DEFINITION

 $\overline{7}//$ Perform the per-event analysis bool analyzeLocal(const Event& event, const double weight) {

```
if( jets.size() >= 4 ){
    _effh.PassEvent("Njet >= 4");
}else{ vetoEvent; }
```

```
if( jets[0].momentum().pT() > 100 ){
    _effh.PassEvent("pT(j1) > 100");
}else{ vetoEvent; }
```


+ JET DEFINITION

RangeSelector jetrange =

RangeSelector(RangeSelector::TRANSVERSE_MOMENTUN 20., 8000.) 💋 RangeSelector(RangeSelector::PSEUD0_RAPIDITY, -4.5, 4.5);

JetFinalState jets_Base = jetBase(base, muDetRange, FastJets::ANTIKT, jets_Base.setFSSmearing (dp.jetSim("Smear TopoJet ATLAS")); jets_Base.setFSEfficiency(dp.jetEff("Jet_ATLAS"));

 $p_T > 20 \,\mathrm{GeV}, \ |\eta| < 4.5$

ATLAS-CONF-2013-004

Table 5: Summary of the *in situ* LCW+JES jet energy scale systematic uncertainties for different p_{T}^{jet} and $|\eta|$ values for anti-k_t jets with R = 0.4. These values do not include pile-up, flavour or topology uncertainties.

$ \eta $ region		Fractional JES uncertainty												
	$p_{\rm T}^{\rm jet} = 20 {\rm GeV}$	$p_{\rm T}^{\rm jet} = 40 \; {\rm GeV}$	$p_{\rm T}^{\rm jet} = 200 {\rm GeV}$	$p_{\rm T}^{\rm jet} = 800 {\rm GeV}$	$p_{\rm T}^{\rm jet} = 1.5 {\rm TeV}$									
$ \eta = 0.1$	2.4%	1.2%	0.8%	1.3%	3.2%									
$ \eta = 0.5$	2.5%	1.2%	0.8%	1.3%	3.2%									
$ \eta = 1.0$	2.6%	1.4%	1.1%	1.3%	3.2%									
$ \eta = 1.5$	3.1%	2.1%	1.7%	1.4%	3.3%									
$ \eta = 2.0$	3.9%	2.9%	2.6%	1.8%										
$ \eta = 2.5$	4.6%	3.9%	3.4%											
$ \eta = 3.0$	5.2%	4.6%	3.9%											
$ \eta = 3.5$	5.8%	5.2%	4.5%											
$ \eta = 4.0$	6.2%	5.5%	5.1%											

Smear_TopoJet_ATLAS.yaml ×

- Name: Smear_TopoJet_ATLAS 1
- Tag: ATLAS 2
 - **Description: topojet**
 - Comment: table
 - **Reference: XXX**
- Smearing: 6

3

4

5

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

- **Type:** Interpolation IsEtaSymmetric: True
 - Interpolation: EtaBound: 4.0 **EtaBinContent:**

anti-kT, $\Delta R=0.4$ (by Fastjet)


```
Type: PredefinedMode3
    - BinStart: 0.0
     BinContent:
          [ [ -2, 9.476216187754203 ]
              -1, -0.16939888048822812
              0, 1.096643215740863e-2 ]
              1, -1.147146295333292e-5
              2, 1.9289334367006085e-8
          , [ 3, -1.5000987275723775e-1
     RinStart. 0 75
```

+ TIGHT ELECTRONS


$p_T > 25 \,\mathrm{GeV}, \ |\eta| < 2.47$

// prepare for tight electrons RangeSelector ele_range =

RangeSelector(RangeSelector::TRANSVERSE_MOMENTUM, 25., 8000.) & RangeSelector(RangeSelector::PSEUD0_RAPIDITY, -2.47, 2.47); IsoElectron ele_smear(ele_range); ele_smear.setIso(TRACK_ISO_PT, 0.3, 0.01, 0.16, 0.0, CALO_ALL); ele_smear.setIso(CALO_ISO_ET, 0.3, 0.01, 0.18, 0.0, CALO_ALL); ele_smear.setVariableThreshold(0.0);

ele_smear.setFSSmearing (dp.electronSim("Smear_Electron_ATLAS")); ele_smear.setFSEfficiency(dp.electronEff("Electron_Tight_ATLAS"));

+ TIGHT ELECTRONS

$p_T > 25 \,\mathrm{GeV}, \ |\eta| < 2.47$

// prepare for tight electrons

RangeSelector ele_range =

RangeSelector(RangeSelector::TRANSVERSE_MOMENTUM, 25., 8000.) & RangeSelector(RangeSelector::PSEUD0_RAPIDITY, _-2.47, 2.47);

IsoElectron ele smear(ele range);

ele_smear.setIso(TRACK_ISO_PT, 0.3, 0.01, 0.16, 0.0, CALO_ALL); ele_smear.setIso(CAL0_IS0_ET, 0.3, 0.01, 0.18, 0.0, CAL0_ALL);

ele_smear.setVariableThreshold(0.0);

ele_smear.setFSSmearing (dp.electronSim("Smear_Electron_ATLAS")); ele_smear.setFSEfficiency(dp.electronEff("Electron_Tight_ATLAS"));

track calorimeter isolation

$< 0.18 \cdot p_T^e$

 $\sum p_T^i < 0.16 \cdot p_T^e$

+ TIGHT ELECTRONS

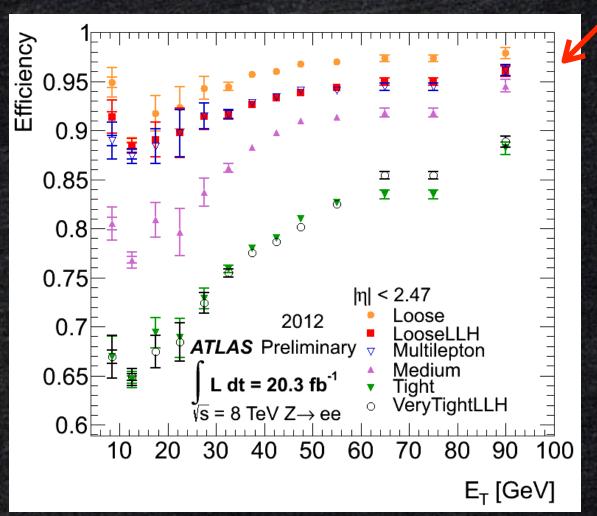
$p_T > 25 \,\text{GeV}, \ |\eta| < 2.47$

 $\Delta R = 0.3$

// prepare for tight electrons

RangeSelector ele_range =

RangeSelector(RangeSelector::TRANSVERSE_MOMENTUM, 25., 8000.) & RangeSelector(RangeSelector::PSEUD0_RAPIDITY, __2.47, 2.47);


IsoElectron ele smear(ele range);

ele_smear.setIso(TRACK_ISO_PT, 0.3, 0.01, 0.16, 0.0, CALO_ALL); ele_smear.setIso(CALO_ISO_ET, 0.3, 0.01, 0.18, 0.0, CALO_ALL);

ele_smear.setVariableThreshold(0.0);

ele_smear.setFSSmearing (dp.electronSim("Smear_Electron_ATLAS")); ele_smear.setFSEfficiency(dp.electronEff("Electron_Tight_ATLAS"));

reconstruction efficiencies

track calorimeter isolation

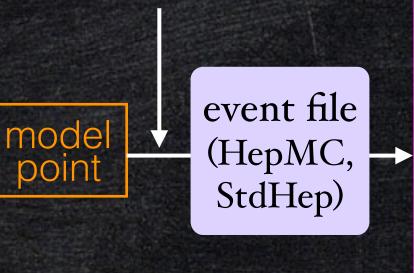
$< 0.18 \cdot p_T^e$

CAL

track

 $> p_T^i < 0.16 \cdot p_T^e$

Similar Projects


• There are several programs/ideas on the market

MadAnalysis 5: a general event analysis code E.Conte, B.Fuks, G.Serret, 2012 CheckMATE: a tool to test a generic BSM point agains ATLAS/CMS results M.Drees, H.Dreiner, J.S.Kim, D.Schmeier, J.Tattersall, 2013

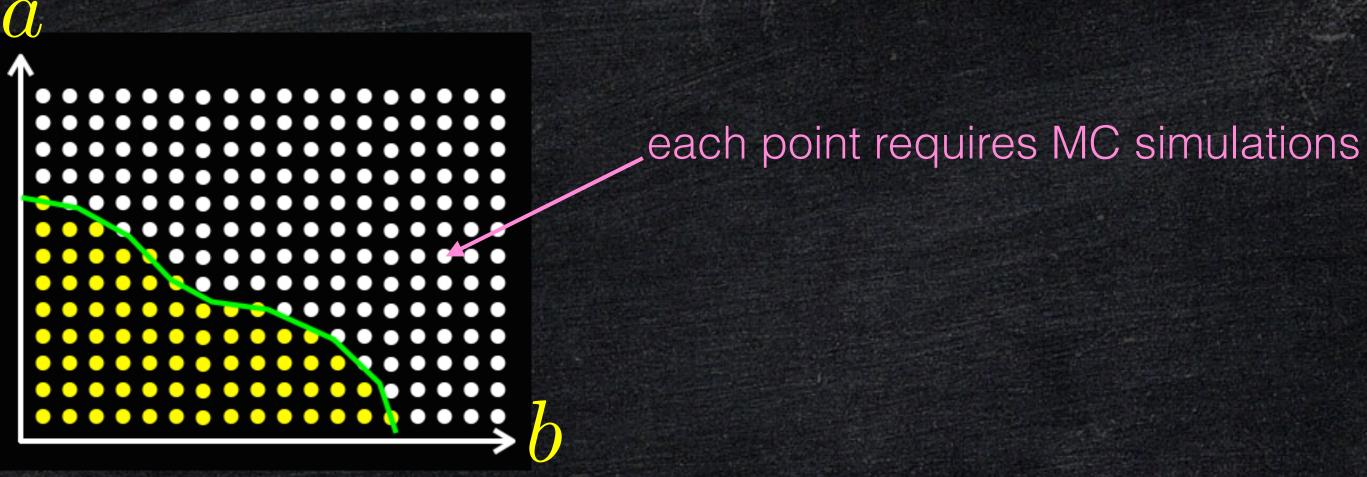
ATOM Summary

- ATOM is a tool to calculate efficiencies of various signal regions from a given event sample.
- Various BSM searches are available with appropriate detector objects definitions.
- All analyses are validated.

Herwig(++)Pythia MadGraph

ATOM (Automated Testing Of Models)

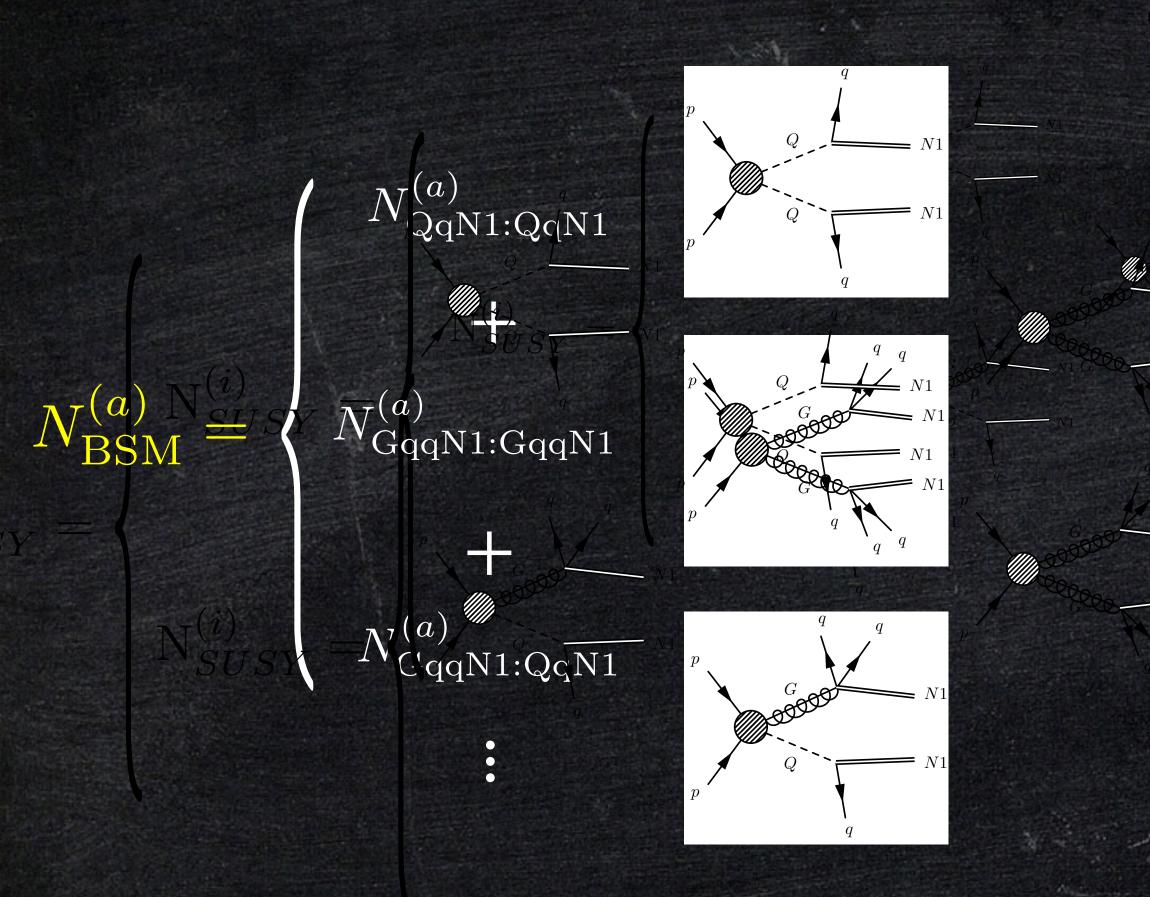
- efficiency calculations are already validated
- appropriate definitions of reco objects are used for the analysis.


 $\rightarrow \{\epsilon_{\rm BSM}^{(a)}\}$

histograms (MET, Meff, ...)

reco. objects (jets, leptons, ...)

Fastlim motivation


 In the standard procedure, testing model points requires time consuming MC simulations. This is problematic when performing parameter scans.

It is desirable to have a fast model testing method

N_{BSM} de/reconstruction

N_{BSM} de/reconstruction

depends *only* on 2 or 3 BSM particle masses

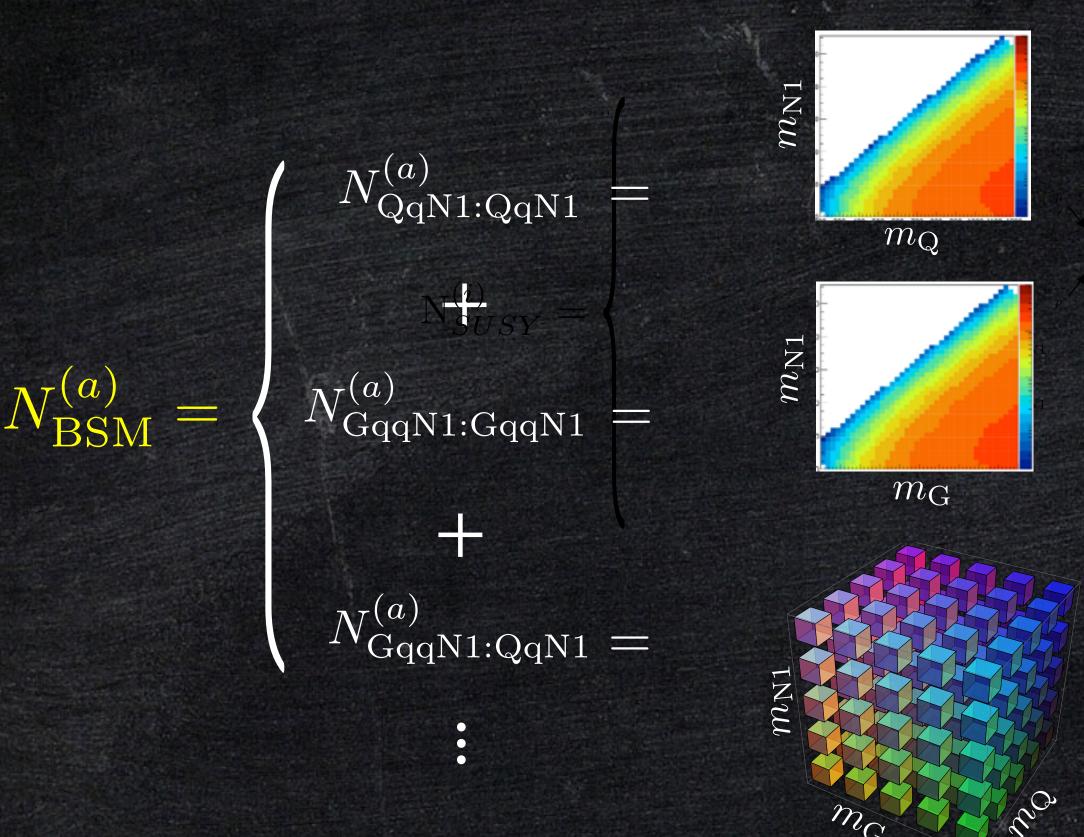
$$N_{\text{QqN1:QqN1}}^{(a)} = \epsilon_{\text{QqN1:QqN1}}^{(a)} (m_{\text{Q}}, m_{\text{N1}}) \cdot \frac{1}{2}$$

$$N_{\text{GqqN1:GqqN1}}^{(a)} = \epsilon_{\text{GqqN1:GqqN1}}^{(a)} (m_{\text{G}}, m_{\text{N1}})$$

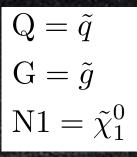
$$+ N_{\text{GqqN1:QqN1}}^{(a)} = \epsilon_{\text{GqqN1:QqN1}}^{(a)} (m_{\text{G}}, m_{\text{Q}}, m_{\text{Q}})$$

••••

 $\mathbf{Q} = \tilde{q}$ $G = \tilde{g}$ $N1 = \tilde{\chi}_1^0$


$\sigma_{\rm QQ} \cdot BR \cdot \mathcal{L}$

$\cdot \sigma_{ m GG} \cdot BR \cdot \mathcal{L}$


$(n_{\rm N1}) \cdot \sigma_{\rm GQ} \cdot BR \cdot \mathcal{L}$

N_{BSM} de/reconstruction

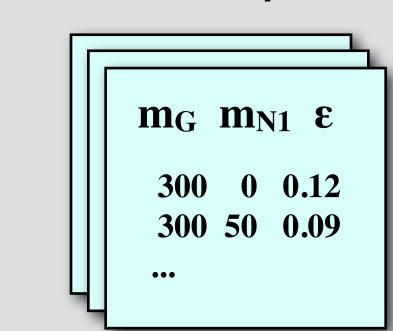
INC

$\sigma_{\mathrm{QQ}} \cdot BR \cdot \mathcal{L}$

$\sigma_{ m GG} \cdot BR \cdot \mathcal{L}$

$\sigma_{\mathrm{GQ}} \cdot BR \cdot \mathcal{L}$

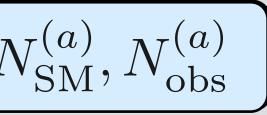
http://fastlim.web.cern.ch/fastlim/ Fastlin

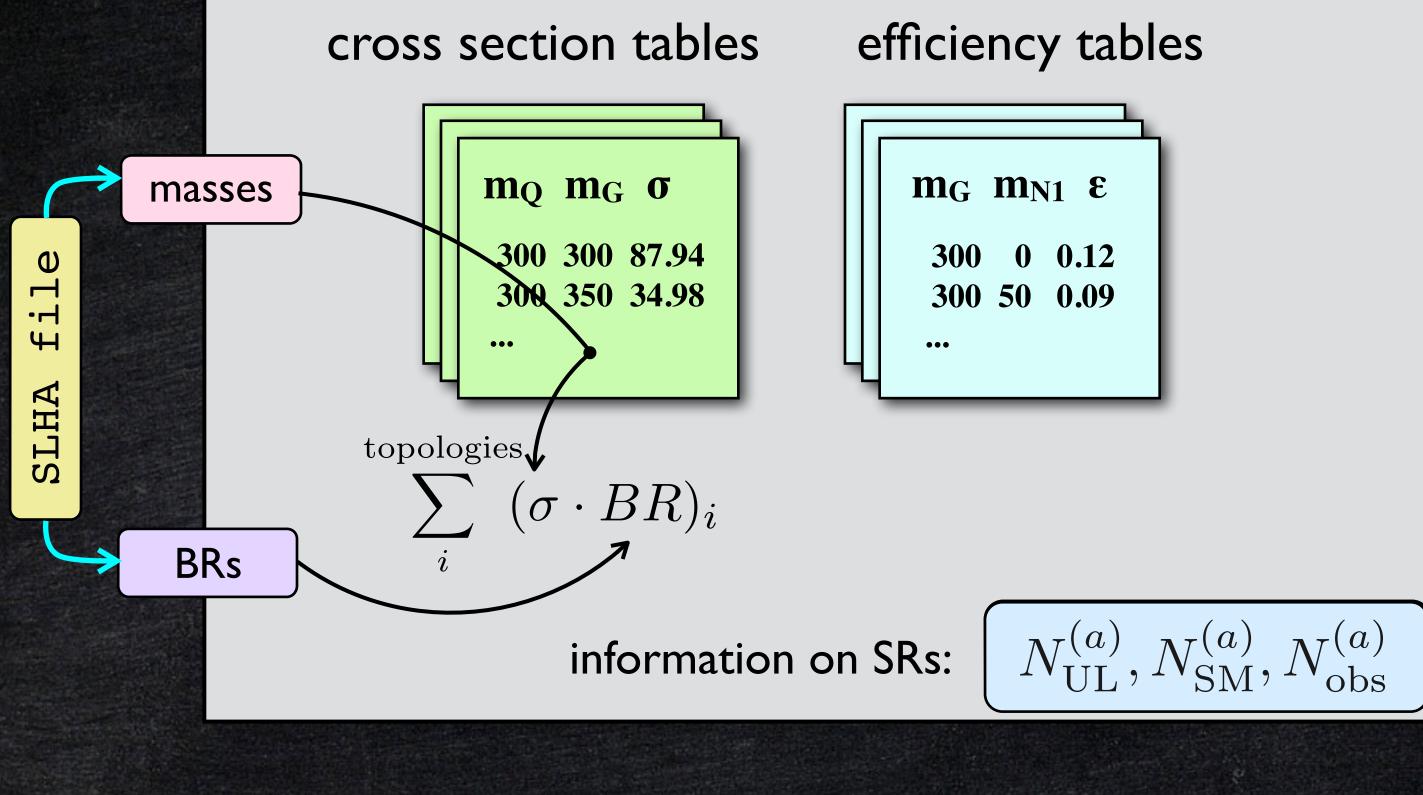

cross section tables

 $m_Q m_G \sigma$

...

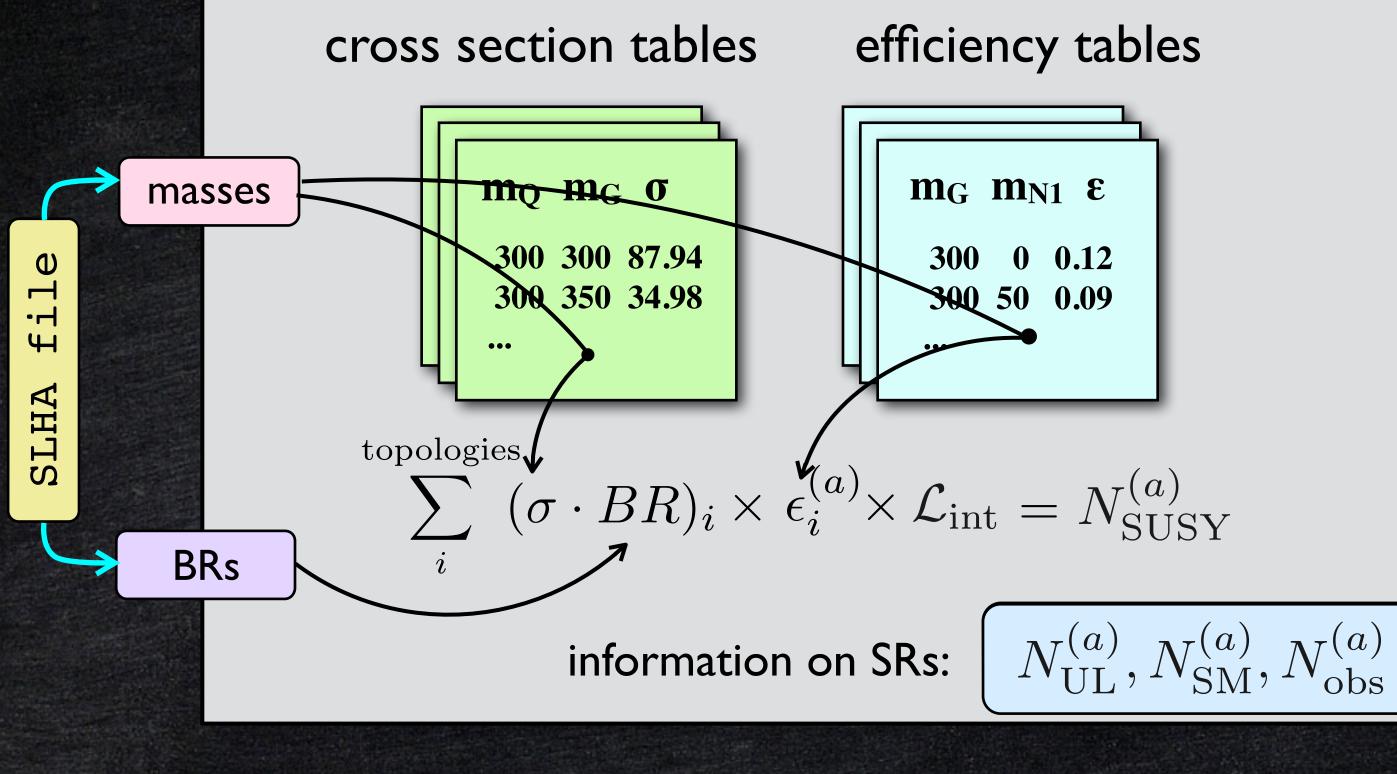
300 300 87.94


300 350 34.98


information on SRs: $N_{\rm UL}^{(a)}, N_{\rm SM}^{(a)}, N_{\rm obs}^{(a)}$

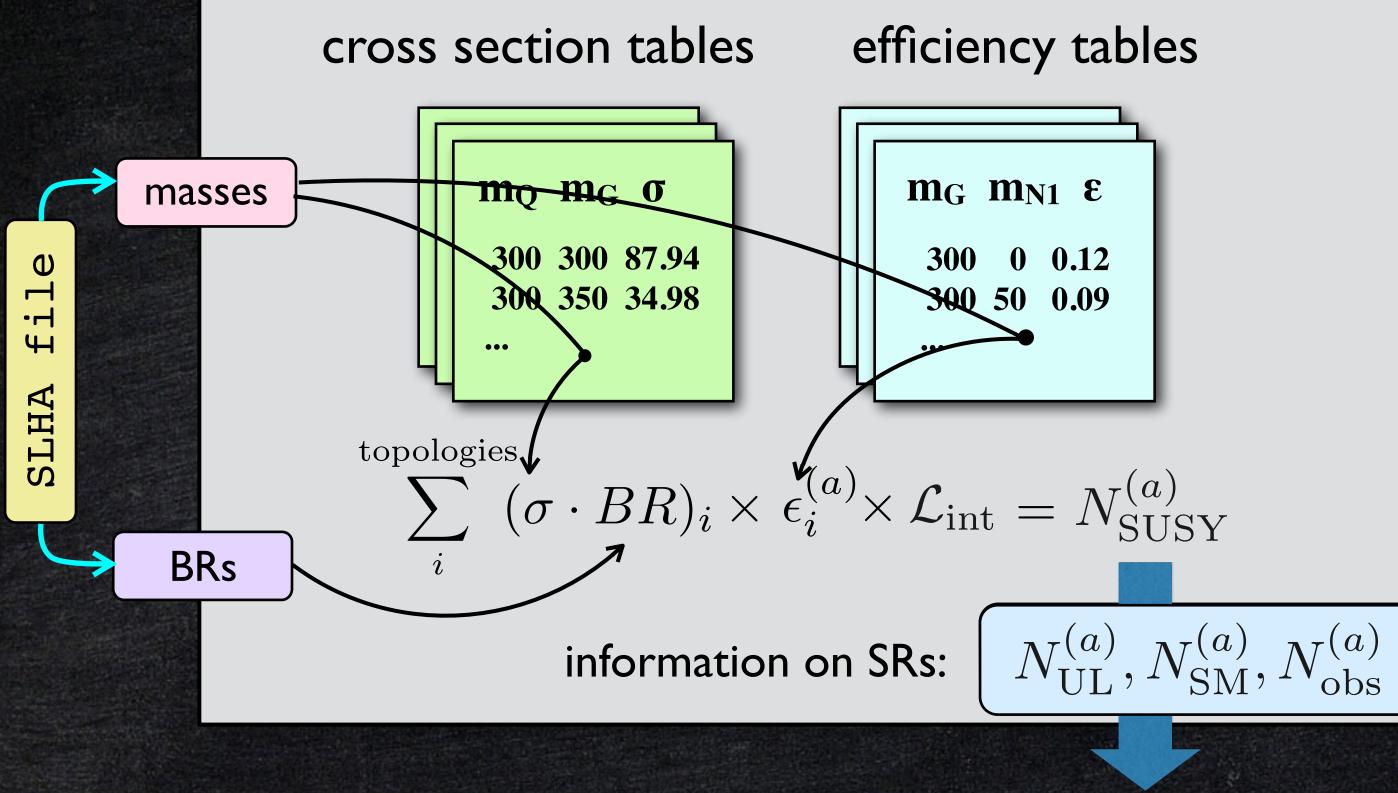
Papucci, KS, Weiler, Zeune 1402.0492

efficiency tables



http://fastlim.web.cern.ch/fastlim/

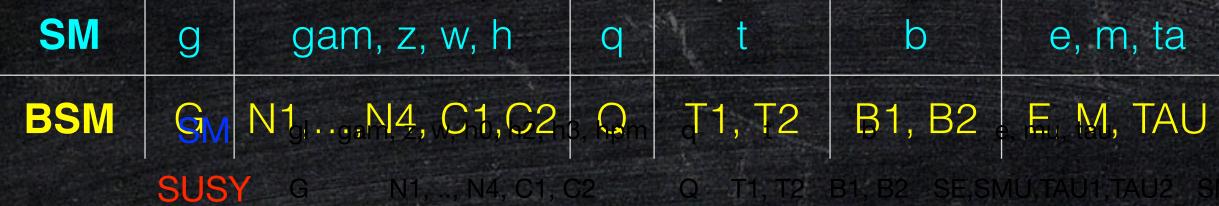
Papucci, KS, Weiler, Zeune 1402.0492

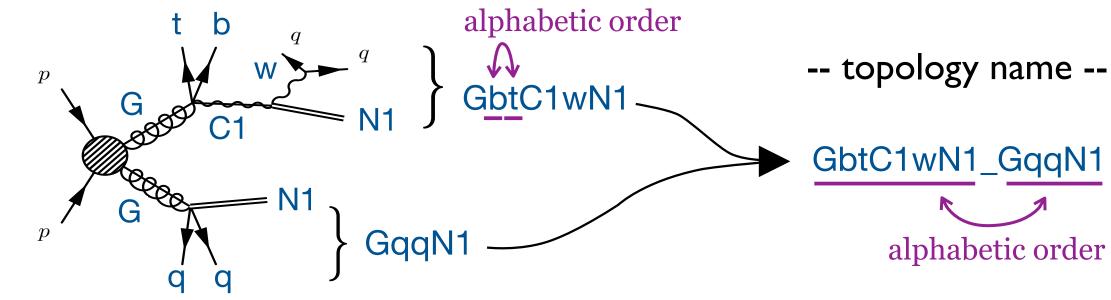

http://fastlim.web.cern.ch/fastlim/ Fastlin

Papucci, KS, Weiler, Zeune 1402.0492

http://fastlim.web.cern.ch/fastlim/

Fastlim




No MC sim. required

Papucci, KS, Weiler, Zeune 1402.0492

output: $N_{\rm SUSY}^{(a)}/N_{\rm III}^{(a)}, CL_s^{(a)}$

Naming topologies

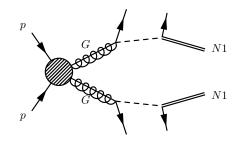
e, m, ta n NU, NUT

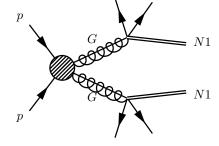
Truncation of soft decays

$m_{\rm C1} \simeq m_{\rm N1}$

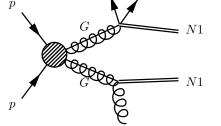
very soft and do not affect efficiencies $G \rightarrow btC1 \rightarrow qqN1$ \Box GbtN1

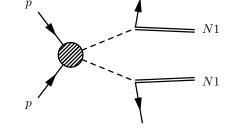
note: this introduces topologies as if EM charge is not conserved.


useful for wino and higgsino scenarios



Fastlim 1.0


topologies in Fastlim 1.0


GbB1bN1_GbB1bN1 GbB1bN1_GbB1tN1 GbB1tN1_GbB1tN1 GtT1bN1_GtT1bN1 GtT1bN1_GtT1tN1 GtT1tN1_GtT1tN1 (GbB2bN1_GbB2bN1) (GbB2bN1_GbB2tN1) (GbB2tN1_GbB2tN1) (GtT2bN1_GtT2bN1) (GtT2bN1_GtT2tN1) (GtT2tN1_GtT2tN1) GbB1bN1_GbB2bN1 GbB1bN1_GbB2tN1 GbB1tN1_GbB2bN1 GbB1tN1_GbB2tN1 GtT1bN1_GtT2bN1 GtT1bN1_GtT2tN1 GtT1tN1_GtT2bN1 GtT1tN1_GtT2tN1

GbbN1_GbbN1 GbbN1_GbtN1 GbbN1_GttN1 GbbN1_GqqN1 GbtN1_GbtN1 GbtN1_GttN1 GbtN1_GqqN1 GttN1_GttN1 GttN1_GqqN1 GqqN1_GqqN1

GbbN1_GgN1 GbtN1_GgN1 GgN1_GgN1 GgN1_GttN1 GgN1_GqqN1

T1bN1_T1bN1 T1bN1_T1tN1 T1tN1_T1tN1 (B1bN1_B1bN1) (B1bN1_B1tN1) (B1tN1_B1tN1) (B2bN1_B2tN1) (B2bN1_B2tN1) (B2tN1_B2tN1) (T2bN1_T2bN1) (T2bN1_T2tN1) (T2tN1_T2tN1)

not all topologies are implemented

the result may be underestimated but at least conservative

Fastlim 1.0

available analyses

Name	Short description	$E_{\rm CM}$	$\mathcal{L}_{\mathrm{int}}$	# SRs
ATLAS_CONF_2013_024	0 lepton + (2 b-)jets + MET [Heavy stop]	8	20.5	3
ATLAS_CONF_2013_035	3 leptons + MET [EW production]	8	20.7	6
ATLAS_CONF_2013_037	1 lepton + 4(1 b-)jets + MET [Medium/heavy stop]	8	20.7	5
ATLAS_CONF_2013_047	0 leptons + 2-6 jets + MET [squarks & gluinos]	8	20.3	10
ATLAS_CONF_2013_048	2 leptons (+ jets) + MET [Medium stop]	8	20.3	4
ATLAS_CONF_2013_049	2 leptons + MET [EW production]	8	20.3	9
ATLAS_CONF_2013_053	0 leptons + 2 b-jets + MET [Sbottom/stop]	8	20.1	6
ATLAS_CONF_2013_054	0 leptons $+ \ge 7-10$ jets $+$ MET [squarks & gluinos]	8	20.3	19
ATLAS_CONF_2013_061	0-1 leptons $+ \ge 3$ b-jets $+$ MET [3rd gen. squarks]	8	20.1	9
ATLAS_CONF_2013_062	1-2 leptons + 3-6 jets + MET [squarks & gluinos]	8	20.3	13
ATLAS_CONF_2013_093	1 lepton + bb(H) + Etmiss [EW production]	8	20.3	2

Most 2013 ATLAS analyses are implemented (CMS analyses will be implemented soon).

- Event generation was done using MadGraph 5. The sample include up to extra 1 parton • emission at ME level, matched to parton shower using MLM scheme.
- ATOM is used for efficiency estimation.

Efficiency tables

efficiency tables are standard text file.

- should be given for each signal region and each topology •
- any 3rd party's efficiency tables can be easily incorporated.

					·····································	
global coordinating effort to						🗋 ana_
generate efficiency maps and	FOLDERS					
	▼ fastlim-devel					
share	analyses_info	1	_		NF_2013_024	
https://indiag.com.ch/overt/272202/	AtomReader	2	mG	mN1	⁶ efficiency	error
https://indico.cern.ch/event/272303/	diagrams	4	300	114	0.0	0.0
	-	5	300	57	0.000412881915772	0.000103
	▼ efficiency_tables	6	300	1	0.000934725035052	0.000155
	GbB1bN1_GbB1bN1	7	350	164	0.000394331484904	9.856343
	GbB1bN1_GbB1tB1	8	350	82	0.00175910335989	0.0002100
	GbB1bN1_GbB1tN1	9	350	1	0.00211810983912	0.0002308
	-	10	410	224	0.000648757749051	0.000124
	GbB1tN1_GbB1tN1	11	410	149	0.00205605189083	0.0002241
	GbbN1_GbbN1	12	410	74	0.00413283771887	0.0003172
	GbbN1_GbtN1	13	410	1	0.00459346597887	0.0003351
	_	14	480	294	0.000765696784074	0.000133
	▼ 8TeV	15	480	196	0.00510688836105	0.0003473
	ATLAS_2012_CONF_2012_109	16	480	98	0.00833134399618	0.0004441
	ATLAS_2013_CONF_2013_007	17	480	1	0.00902741483347	0.0004610
		18	560	374	0.000838926174497	0.000137
	TLAS_2013_CONF_2013_024	19	560	280	0.00488321739531	0.0003345
	ana_3_cut_0.effi	20	560	186	0.012501161818	0.0005355
	ana 3 cut 1.effi	21	560	92	0.012756401352	0.0005399

The Durham HepData Project

REACTION DATABASE . DATA REVIEWS . PDF PLOTTER

Reaction Database Full Record Display

View short record or as: input, plain text, AIDA, PyROOT, YODA, ROOT, mpl, ScaVis or MarcXML

efficiency tables are standa •

- should be given for each si •
- any 3rd party's efficiency ta

global coordinating effort to generate efficiency maps and share

https://indico.cern.ch/event/272303/

can include efficiency maps on HepData very easily.

Please provide more maps!

AAD 2012 — Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using 4.7 fb^-1 of sqrt(s) = 7 TeV proton-proton collision data

Experiment: CERN-LHC-ATLAS (ATLAS) Preprinted as CERN-PH-EP-2012-195 Archived as: ARXIV:1208.0949 Record in: INSPIRE Rivet Analysis: ATLAS_2012_I1125961

CERN-LHC. Data from proton-proton interactions at a centre-of-mass energy of 7 TeV with a final state consisting of jets and missing transverse momentum and no high-pT electron or muons are interpreted in a number of SUSY model, listed in the table below.

The table below provides links to the following information for each of the SUSY models Nevt/Xsec Number of Monte Carlo events generated

The Total SUSY production cross section

Signal Acceptance (truth level)

AccEffUnc: Efficiency (reconstruction level)

Uncertainty on signal efficiencies due to detector effects and ISR

- CLs Observed and expected 95% CLs of signal models
- SLHA SLHA files from the analyses

Combined and inidividual signal level upper limits on the effective cross sections xsUL Exclusion The exclusion plot contours as presented in the figures

Nevt/Xsec	AccEffUnc	CLs	SLHA	xsUL	Exclusion
select	Scievel	select	select		select
select	select	select	select		select
select	select	select	select		select
select	select	select	select		select
select	select	select	select	select	select
select	select	select	select	select	select
select	select	select	select	select	select
select	select	select	select	select	select
select	select	select	select	select	select
select	select	select	select	select	select
select	select	select	select	select	select
select	select	select	select	select	select
select	select	select	select	select	select
	selectselectselectselectselectselectselectselectselectselectselectselectselectselectselectselectselectselect	select	select	select </td <td>select</td>	select

Fastlim demo

Fastlim Summary Fastlim $\rightarrow N_{\rm BSM}^{(a)}/N_{\rm UL}^{(a)}$ model point

- Fastlim computes N_{BSM}/N_{UL} from a given model file immediately without performing MC simulation.
- Only implemented topologies are considered \Rightarrow the limit may be (significantly) underestimated though it is at least conservative.
- Application is limited in SUSY-like models

Application

for experimentalists: - for various quick checks:

• quick implementation of a new analysis

• when designing a new search, check and make sure the existing searches are not sensitive to the target region to be searched for

no excess in data: - can study constraints on the BSM parameter space (look for blind spots in the current analyses coverage)

excess in data: - can study which new physics models can fit the observed excess

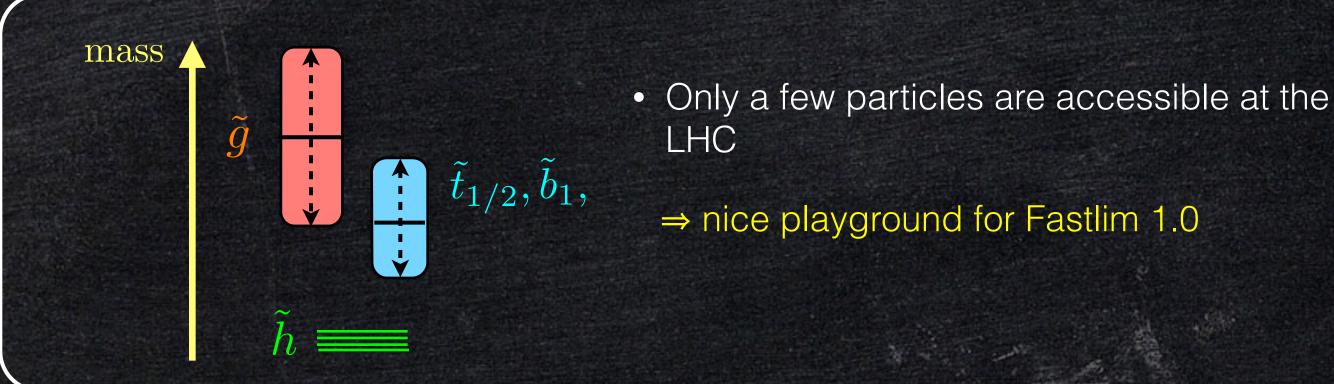
Application

for experimentalists: - for various quick checks:

- quick implementation of a new analysis
- when designing a new search, check and make sure the existing

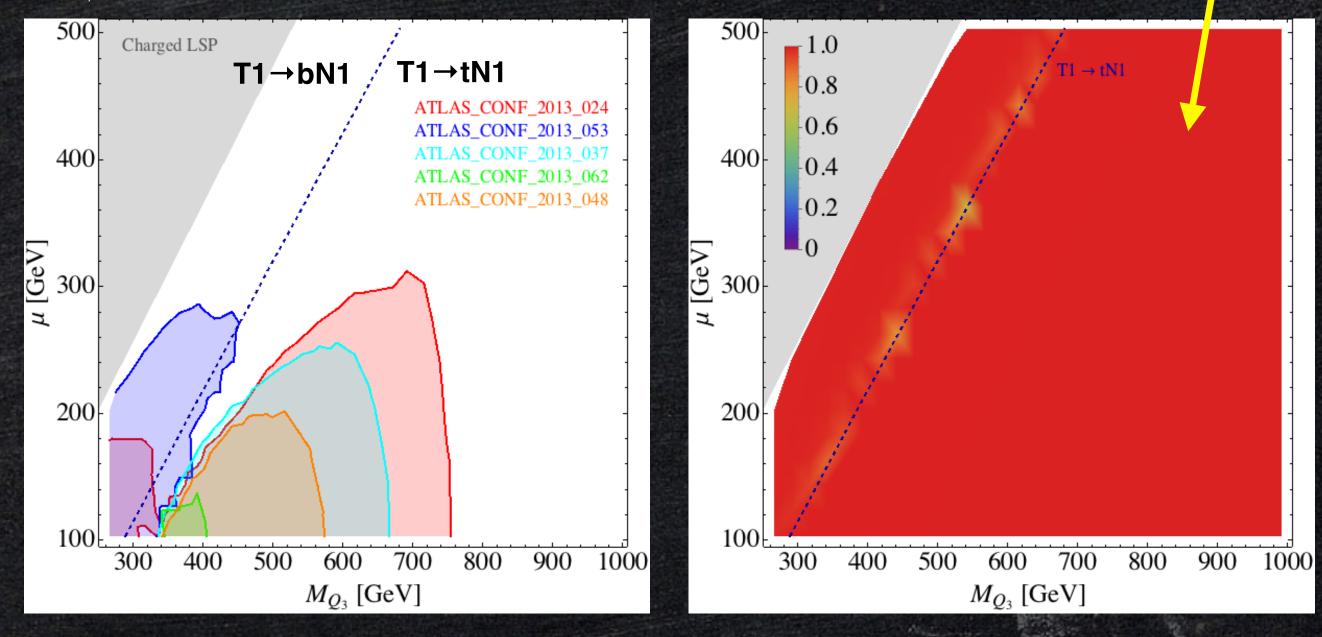
searches are not sensitive to the target region to be searched for

no excess in data: - can study constraints on the BSM parameter space (look for blind spots in the current analyses coverage)


excess in data: - can study which new physics models can fit the observed excess

Natural SUSY

Natural SUSY contains a minimum particle content that makes the EWSB natural.

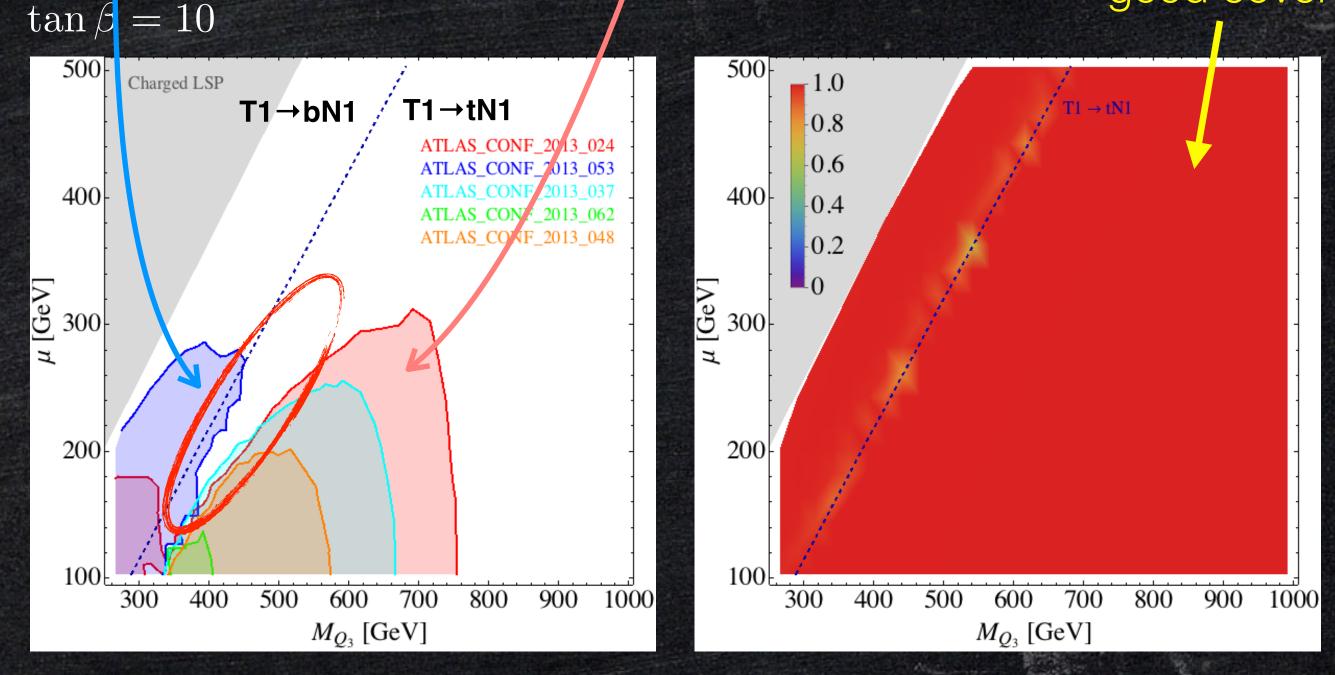

$$-\frac{m_Z^2}{2} \simeq |\mu|^2 + m_{H_u}^2(\Lambda) + \Delta m_{H_u}^2$$

µ is higgsino mass: higgsino is lightest stop 1 loop correction to Δm_{Hu^2} : stop is very light gluino 2-loop correction to Δm_{Hu^2} : gluino is light

$\mathcal{M}_{Q3} \ \mathsf{VS} \ \mu$ $\mathcal{L} \supset y_t \cdot t_R \widetilde{Q}_3 \widetilde{H}_u + y_b \cdot b_R \widetilde{Q}_3 \widetilde{H}_d \qquad \text{coverage} =$ $\begin{cases} T1 \rightarrow t \ N1 \\ B1 \rightarrow t \ C1 \ (C1 \rightarrow N1) \end{cases}$

 $\tan\beta = 10$

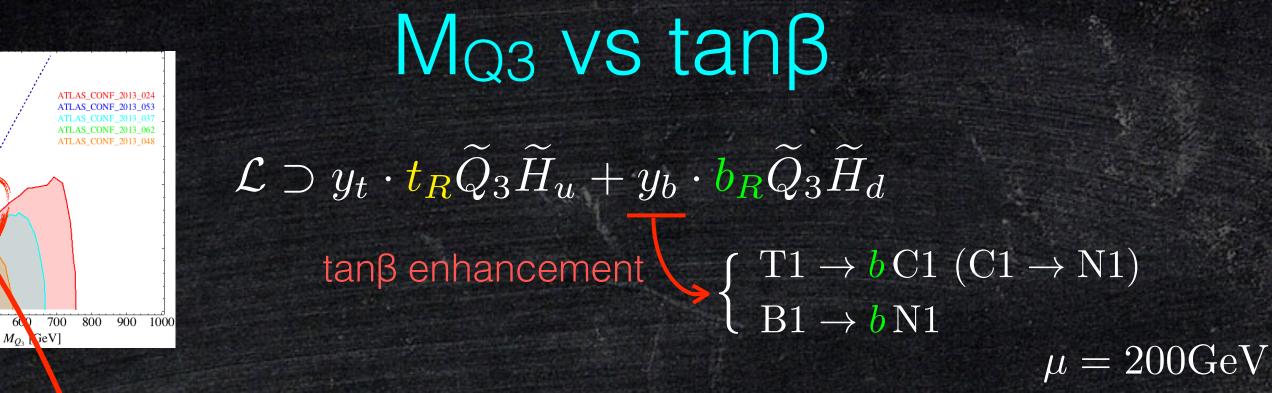
$\sigma^{ ext{implimented}}$

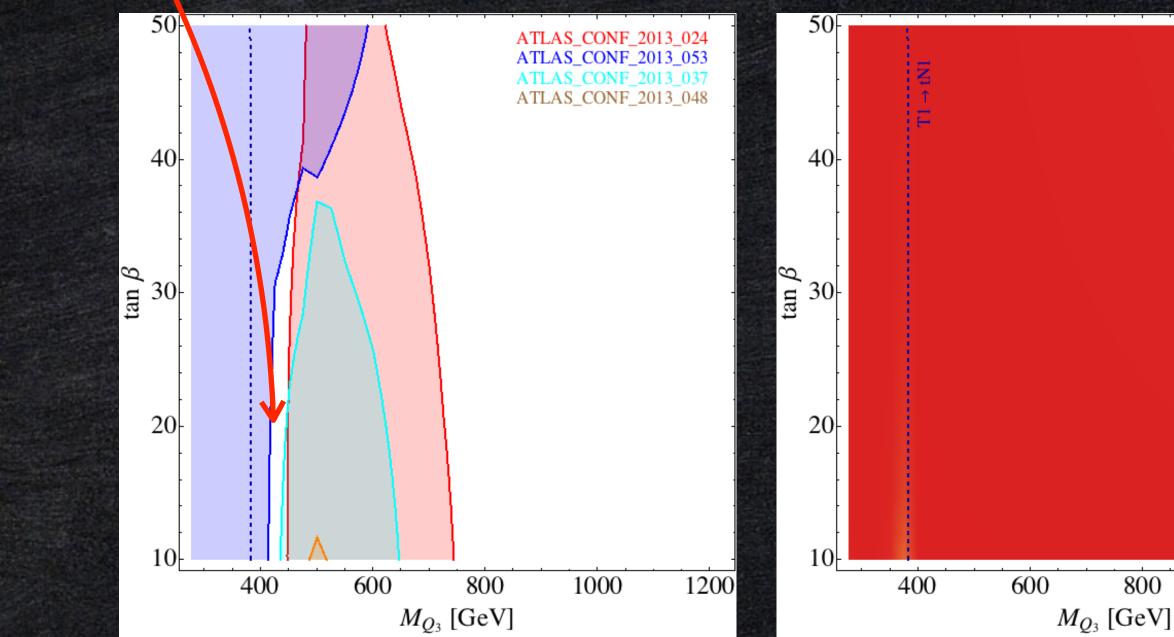

 σ_{tot}

good coverage

Mag vs µ

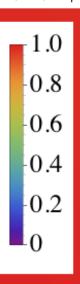
coverage =

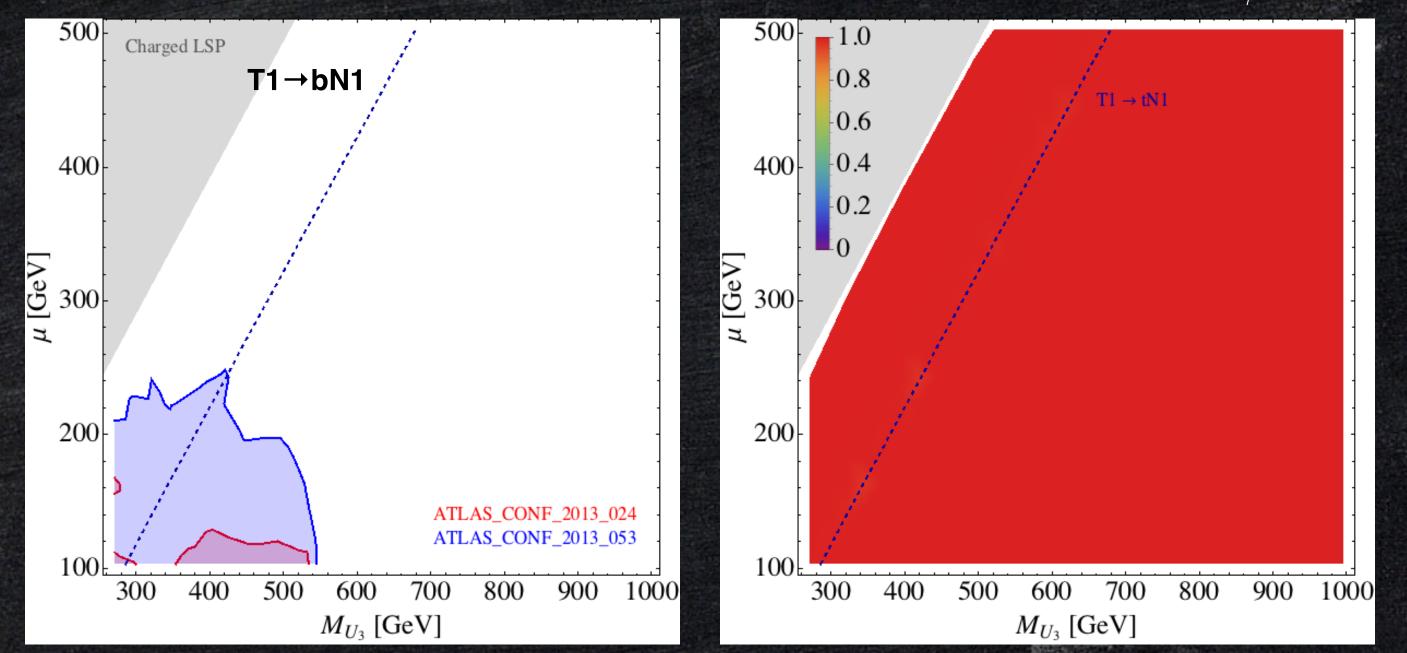

for B1 \rightarrow bN1 topology designed for T1 \rightarrow tN1 topology



$\sigma^{ ext{implimented}}$

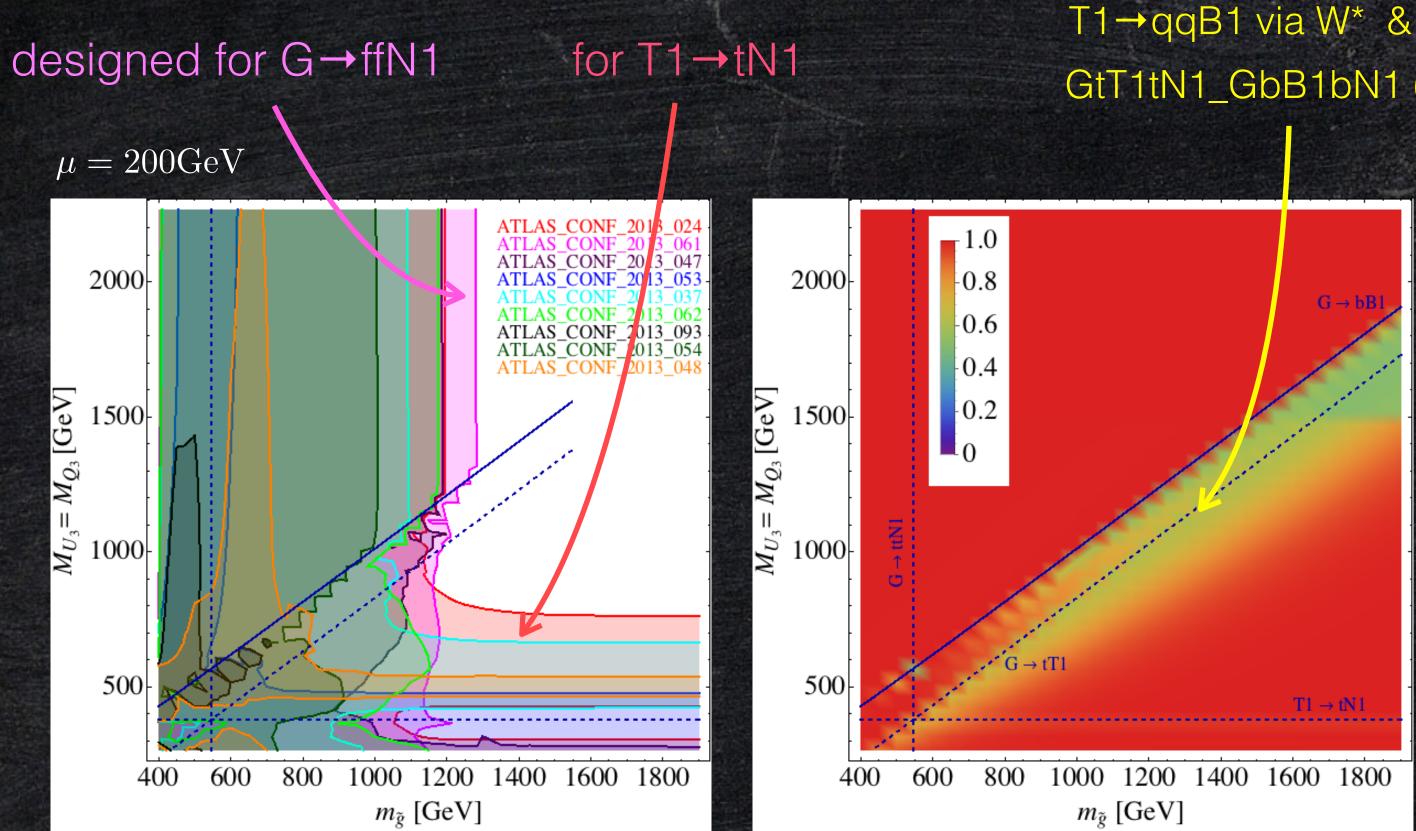
 σ_{tot}


good coverage

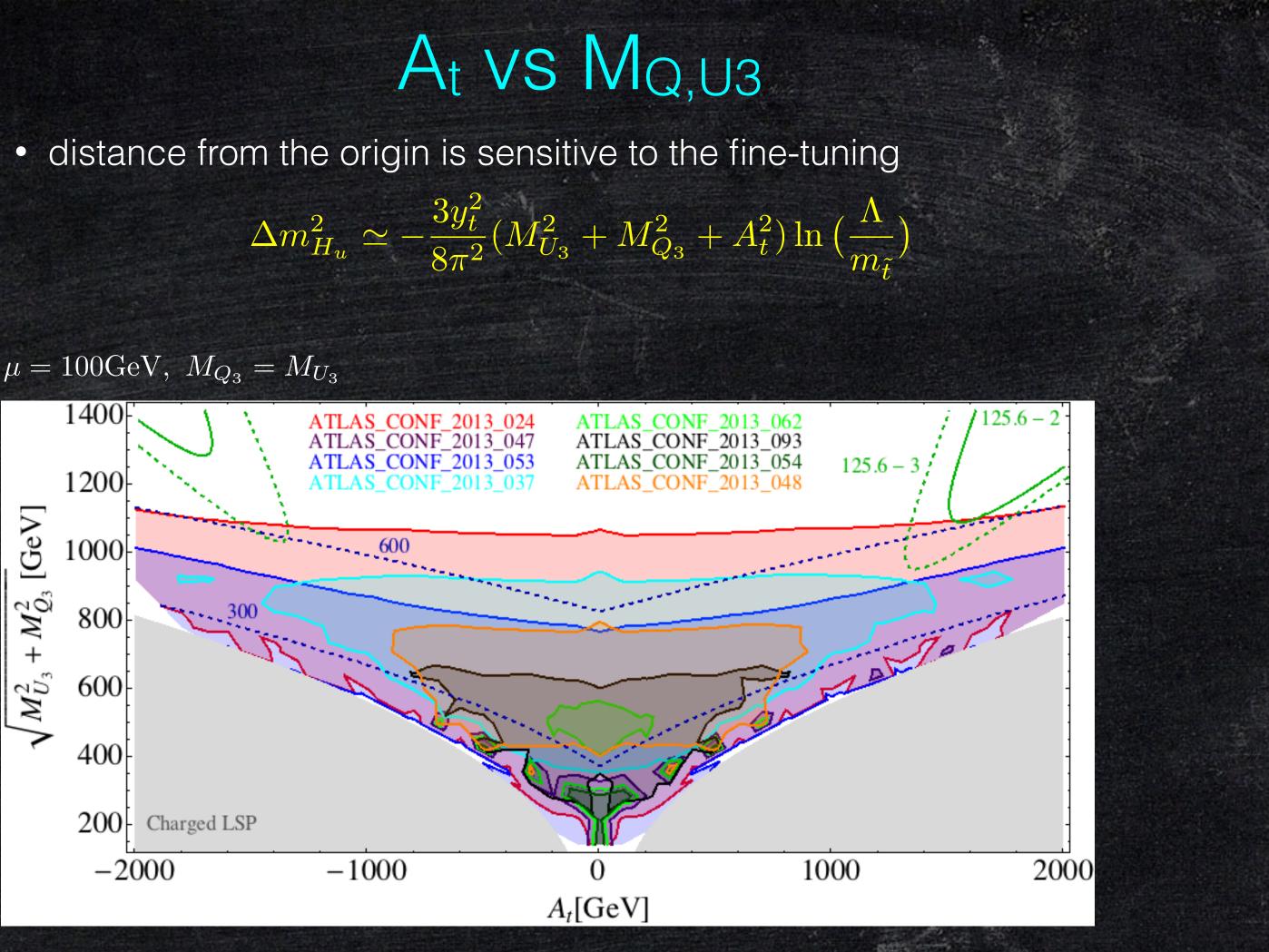


Charged LSP

μ [GeV]



$$\begin{split} & M_{U3} \text{ VS } \mu \\ & \mathcal{L} \supset y_t \cdot \widetilde{t}_R Q_3 \widetilde{H}_u \\ & \text{BR}(\text{T1bN1}_\text{T1tN1}) > \text{BR}(\text{T1bN1}_\text{T1bN1}) > \text{BR}(\text{T1tN1}_\text{T1tN1}) \\ & \text{asymmetric topology} \end{split}$$


$\tan\beta = 10$

Mg vs Mg3

GtT1tN1_GbB1bN1 (4D)

distance from the origin is sensitive to the fine-tuning

Application

for experimentalists: - for various quick checks:

- quick implementation of a new analysis
- when designing a new search, check and make sure the existing searches are not sensitive to the target region to be searched for

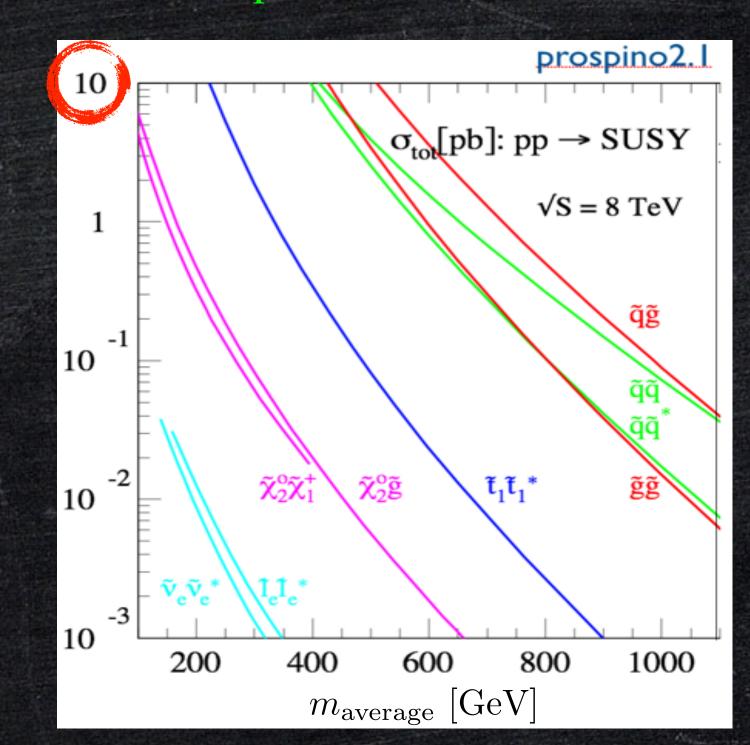
no excess in data: - can study constraints on the BSM parameter space (look for blind spots in the current analyses coverage)

excess in data: - can study which new physics models can fit the observed excess

Interesting excesses in data

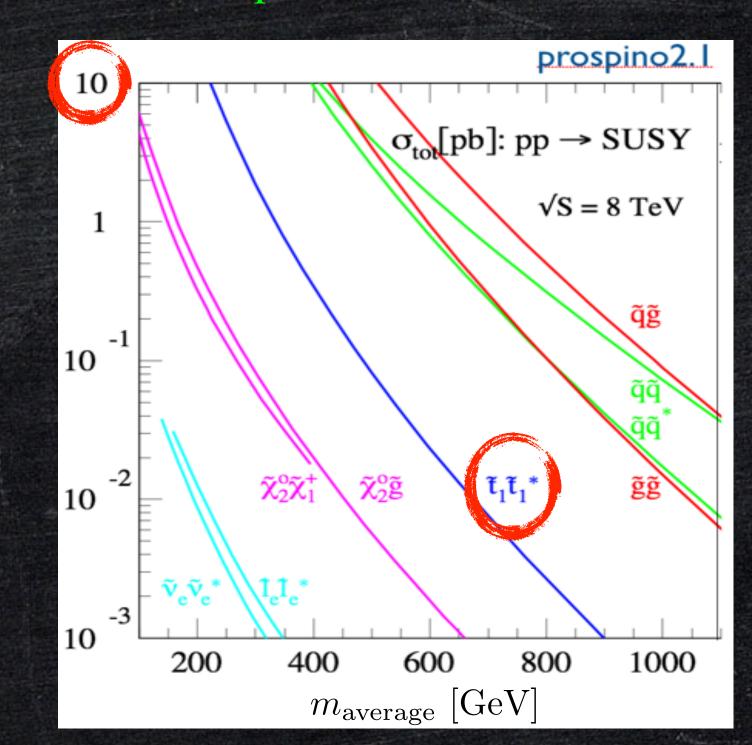
Study	\mathbf{SR}	Obs	Exp	SM s.d.
Atlas W^+W^- (7 TeV) [4]	Combined	1325	1192 ± 87	1.4σ
CMS W^+W^- (7 TeV) [6]	Combined	1134	1044 ± 62	1.4σ
CMS W^+W^- (8 TeV) [5]	Combined	1111	956 ± 60	1.6σ
Atlas Higgs W^+W^- CR [16]	WW CR	3297	3110 ± 186	0.9σ
ATLAS \tilde{q} and \tilde{g} (1-2 ℓ) [12]	Di-muon	7	1.7 ± 1	2.2σ
Atlas Electroweak	$\mathrm{SR0} au\mathrm{a}\mathrm{0}\mathrm{1}$	36	23 ± 4	2.1σ
$(3 \ \ell) \ [13]$	$\mathrm{SR0} au\mathrm{a06}$	13	6.6 ± 1.9	1.4σ
	$\mathrm{SR0} au\mathrm{a10}$	24	16.4 ± 2.4	1.6σ

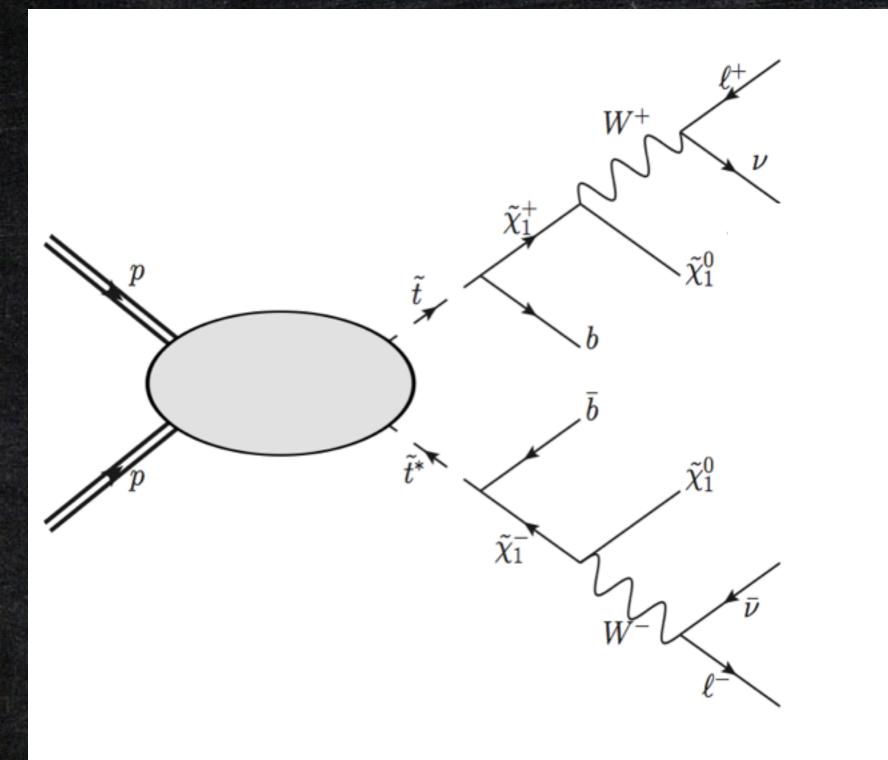
Can we explain these excesses by BSM?

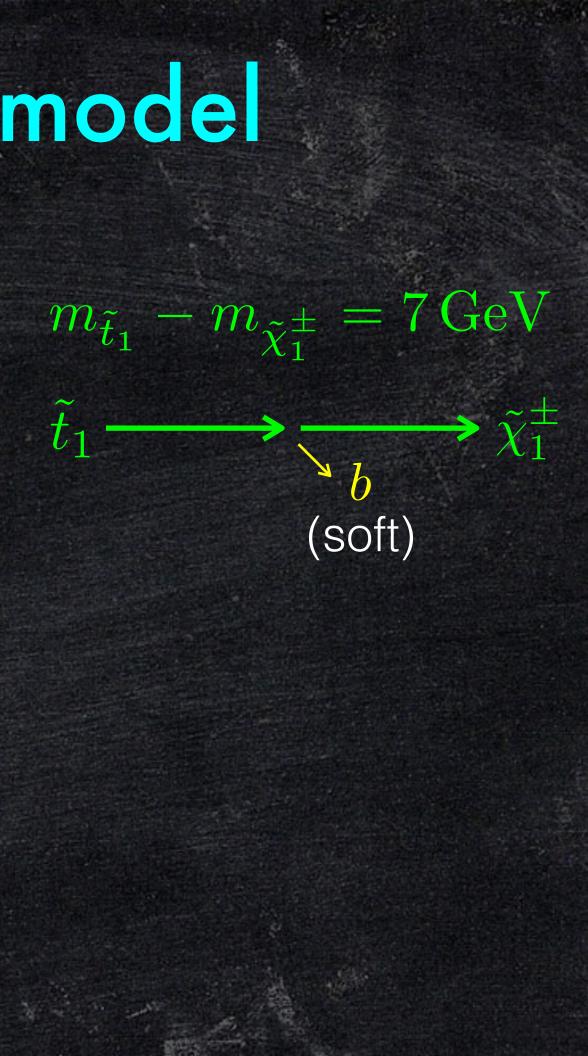

dileptonic mode $W^+W^- \to \ell \nu \ell \nu$

[CMS-12-005: *WW* 8TeV]

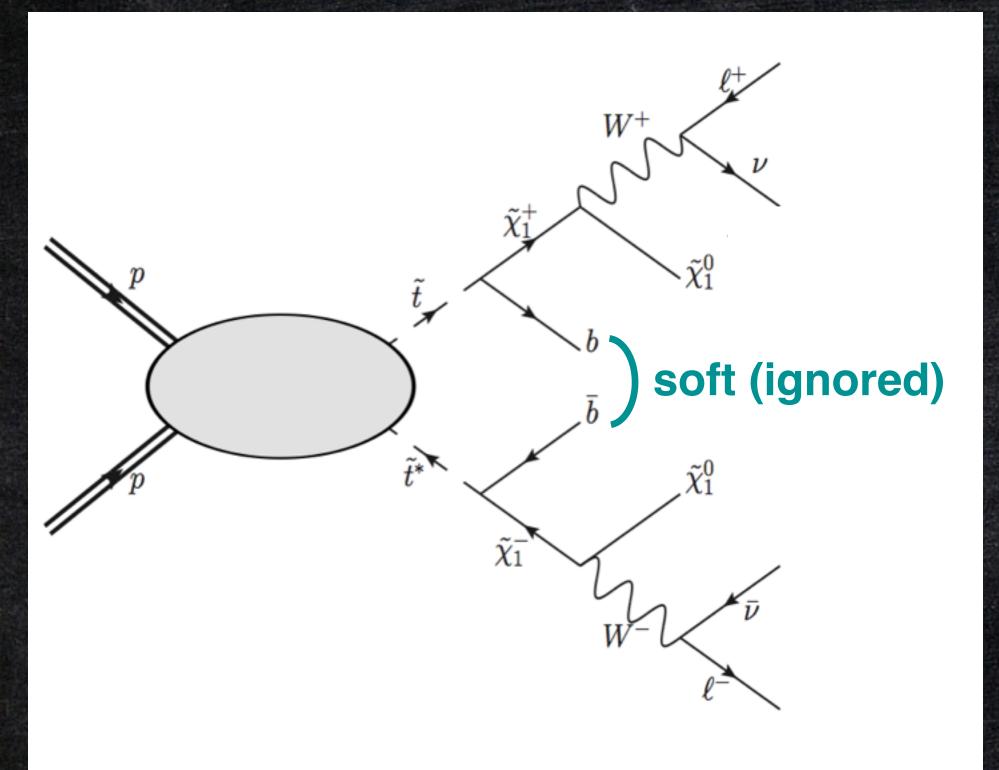
SM prediction: $\sigma = 57.3 \pm 2$ pb CMS observed: $\sigma = 69.9 \pm 2.8$ (stat) ± 5.6 (syst) ± 3.1 (lumi) pb


needs extra 10 pb

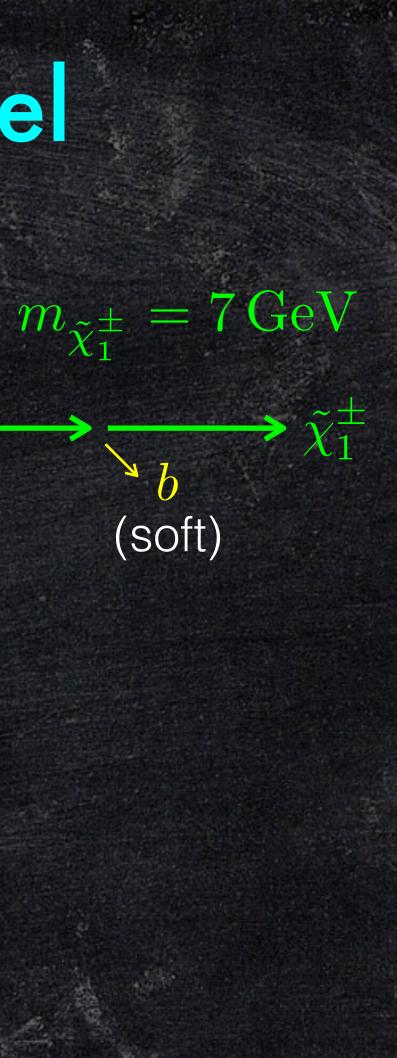

[CMS-12-005: *WW* 8TeV]

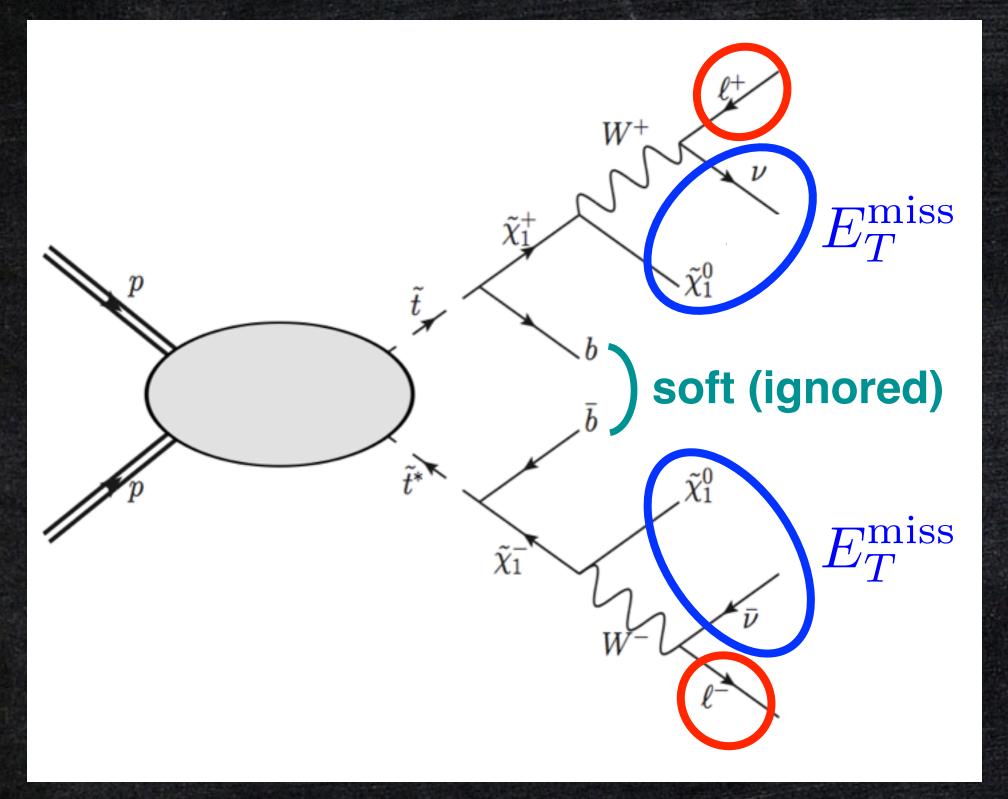

SM prediction: $\sigma = 57.3 \pm 2$ pb CMS observed: $\sigma = 69.9 \pm 2.8$ (stat) ± 5.6 (syst) ± 3.1 (lumi) pb

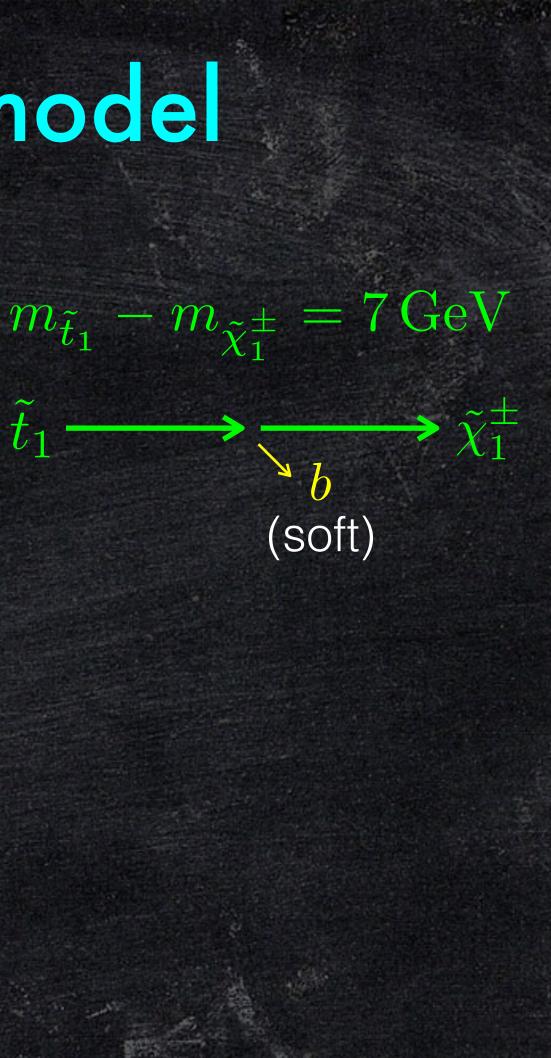
needs extra 10 pb



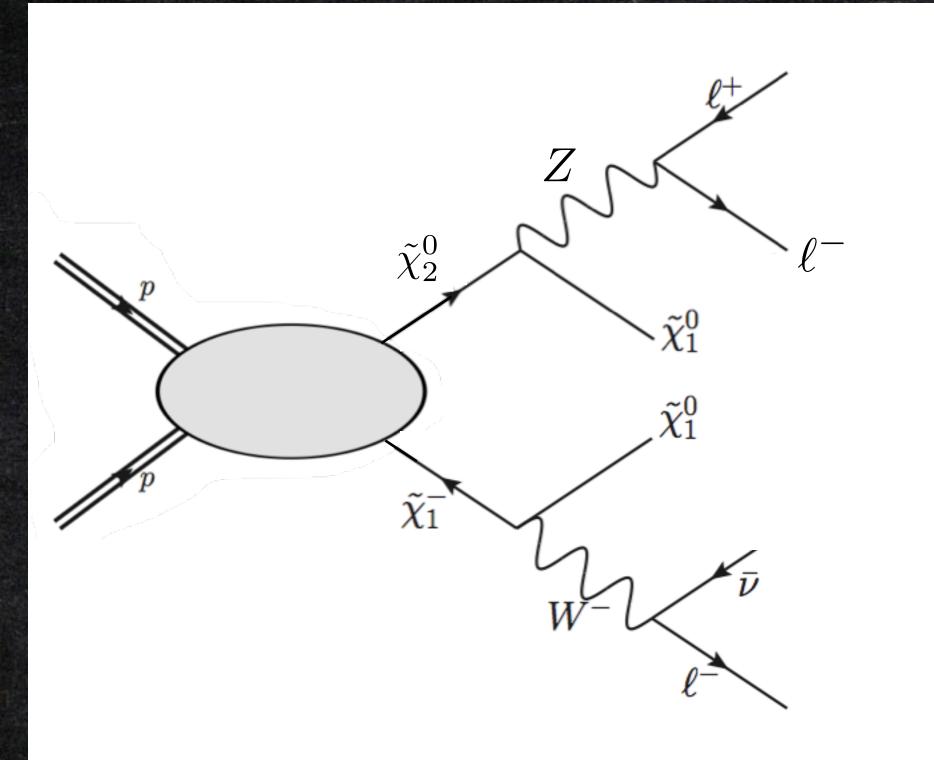
dilepton channel




dilepton channel

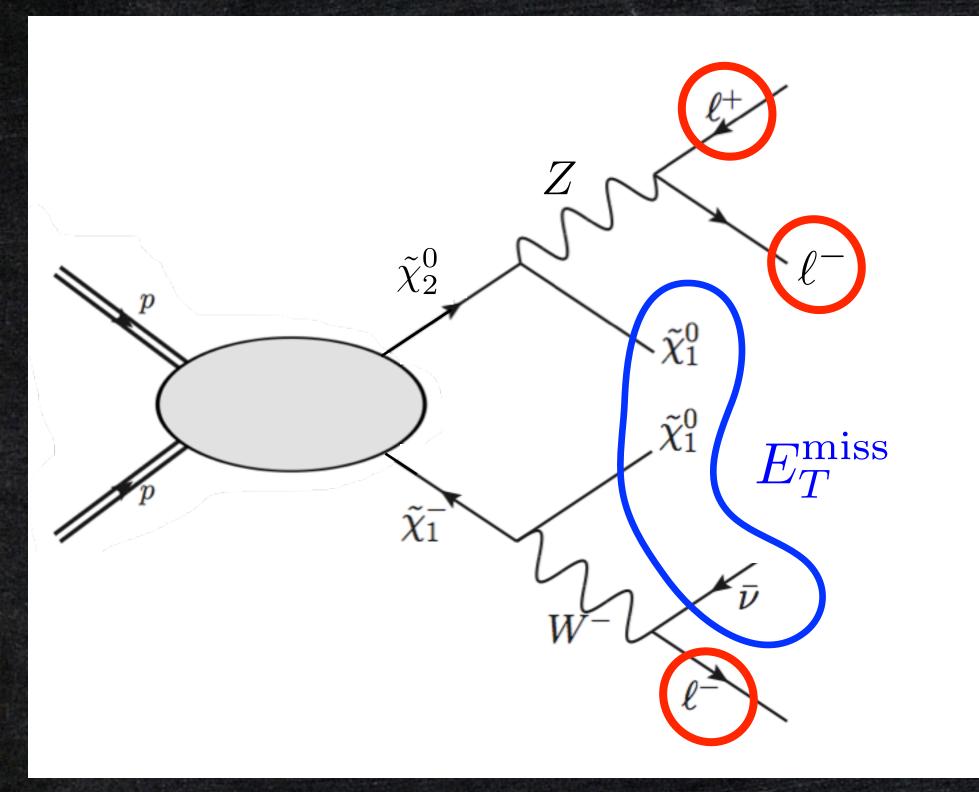


 $m_{\tilde{t}_1} - m_{\tilde{\chi}_1^{\pm}}$



dilepton channel

• trilepton channel



$m_{\tilde{t}_1} - m_{\tilde{\chi}_1^{\pm}} = 7 \,\mathrm{GeV}$

 $m_{\tilde{\chi}^0_2} \simeq m_{\tilde{\chi}^\pm_1}$

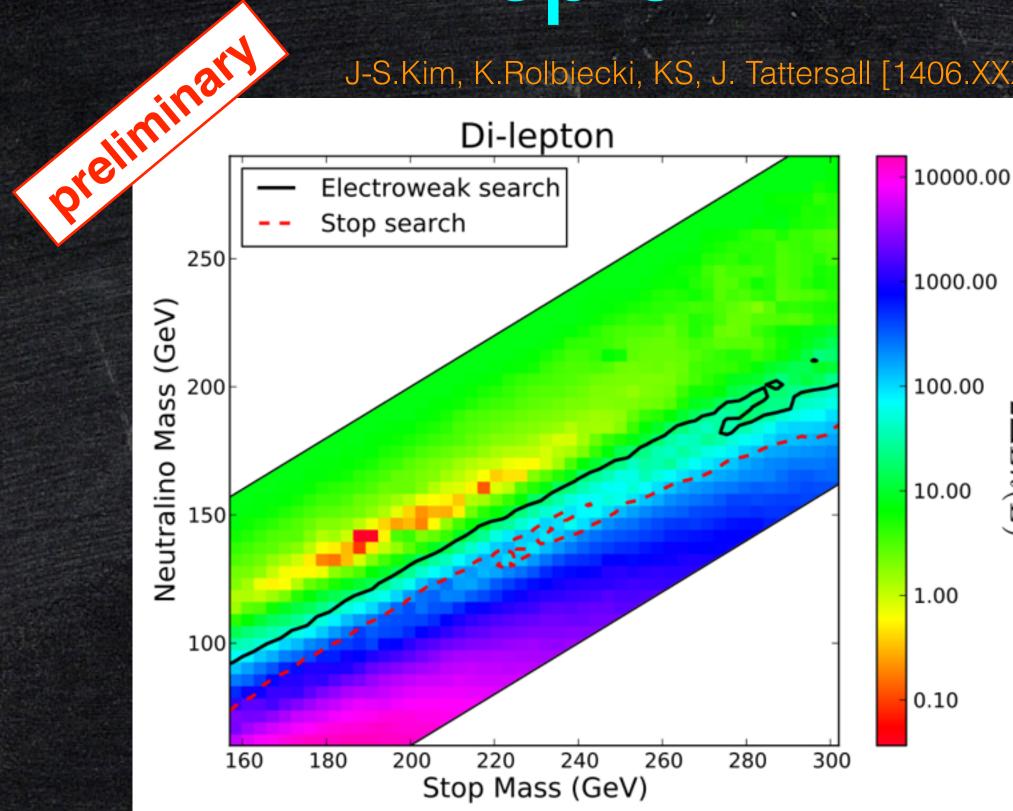
• trilepton channel

$m_{\tilde{t}_1} - m_{\tilde{\chi}_1^{\pm}} = 7 \,\mathrm{GeV}$

 $m_{\tilde{\chi}^0_2} \simeq m_{\tilde{\chi}^\pm_1}$

Analyses

Description	\sqrt{s} (TeV)	Luminosity (fb^{-1})	Number of SR	A
Atlas W^+W^- [4]	7	4.6	1	atla
CMS W^+W^- [6]	7	4.9	1	cn
CMS W^+W^- [5]	8	3.5	1	cn
Atlas Higgs $W^+W^- \operatorname{CR} [16]$	8	20.7	1	$atlas_c$
Atlas \tilde{t} $(2 \ \ell)$ [17]	8	20.3	12	atla
Atlas Electroweak (2ℓ) [14]	8	20.3	13	atla
Atlas \tilde{t} (1 ℓ) [18]	8	20.7	8	$atlas_c$
Atlas \tilde{q} and \tilde{g} (1-2 ℓ) [12]	8	20.1	19	$atlas_c$
Atlas Electroweak (3 ℓ) [13]	8	20.3	20	atla

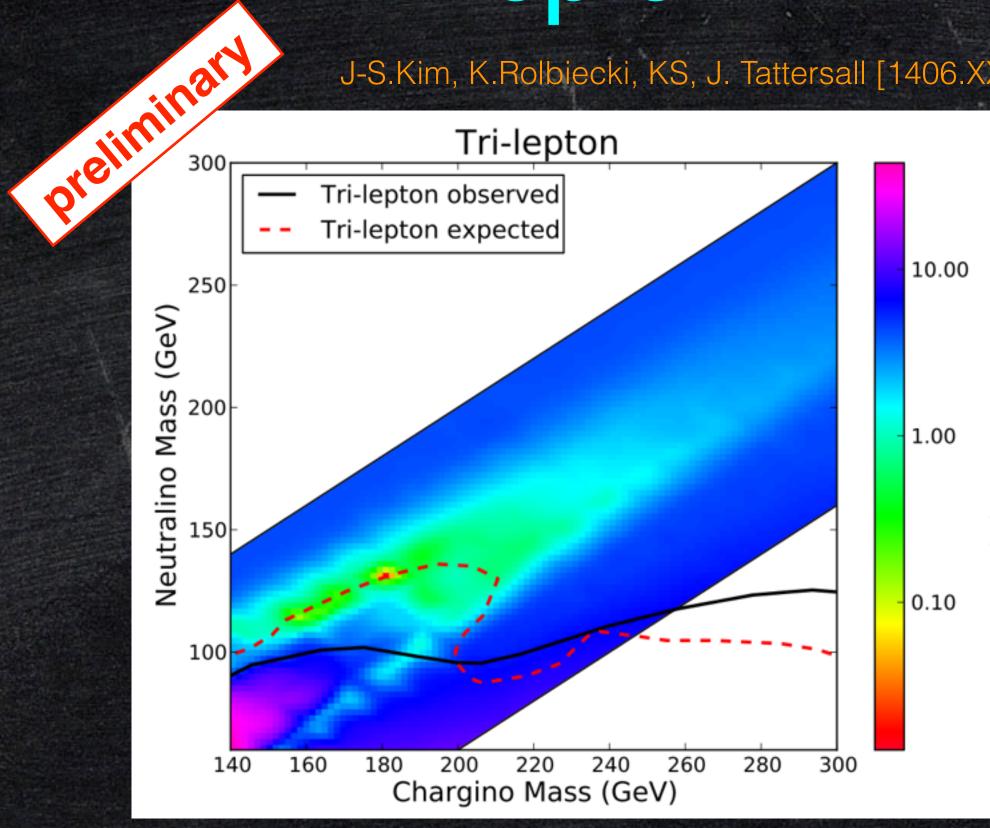

 $\ln L(m_{\tilde{t}_1}, m_{\tilde{\chi}_1^0}) = \sum_{a}^{\{\text{SRs}\}} \ln P(N_{\text{Data}}^{(a)} | N_{\text{SM}}^{(a)} + N_{\text{BSM}}^{(a)}(m_{\tilde{t}_1}, m_{\tilde{\chi}_1^0}))$ $P(n|\lambda) = \frac{\lambda^n e^{-\lambda}}{n!}$

Analysis code

las_1210_2979 ms_1306_1126 ms_1301_4698 conf_2013_031 las_1403_4853 las_1403_5294 conf_2013_037 conf_2013_062 las_1402_7029

Di-lepton fit

J-S.Kim, K.Rolbiecki, KS, J. Tattersall [1406.XXXX]



 $2\Delta \ln L(m_{\tilde{t}_1}, m_{\tilde{\chi}_1^0}) = 2 \left[\ln L(m_{\tilde{t}_1}, m_{\tilde{\chi}_1^0}) - \ln L_{\min} \right]$

 \sim $\Delta Ln(L$

Tri-lepton fit

J-S.Kim, K.Rolbiecki, KS, J. Tattersall [1406.XXXX]

 $2\Delta \ln L(m_{\tilde{t}_1}, m_{\tilde{\chi}_1^0}) = 2 \left[\ln L(m_{\tilde{t}_1}, m_{\tilde{\chi}_1^0}) - \ln L_{\min} \right]$

 $2\Delta Ln(L)$

Combined

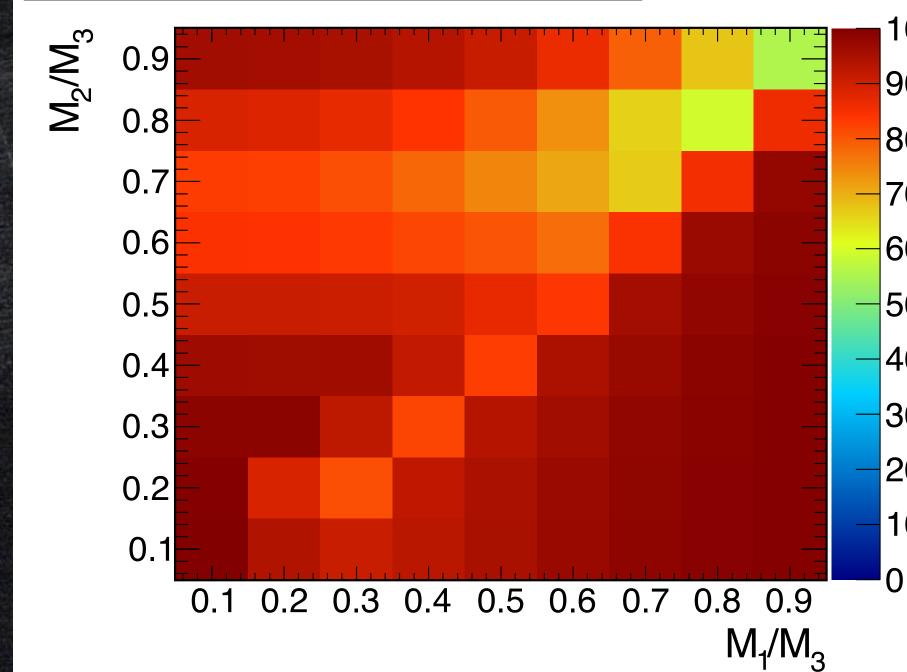
J-S.Kim, K.Rolbiecki, KS, J. Tattersall [1406.XXXX]

 $2\Delta \ln L(m_{\tilde{t}_1}, m_{\tilde{\chi}_1^0}) = 2 \left[\ln L(m_{\tilde{t}_1}, m_{\tilde{\chi}_1^0}) - \ln L_{\min} \right]$

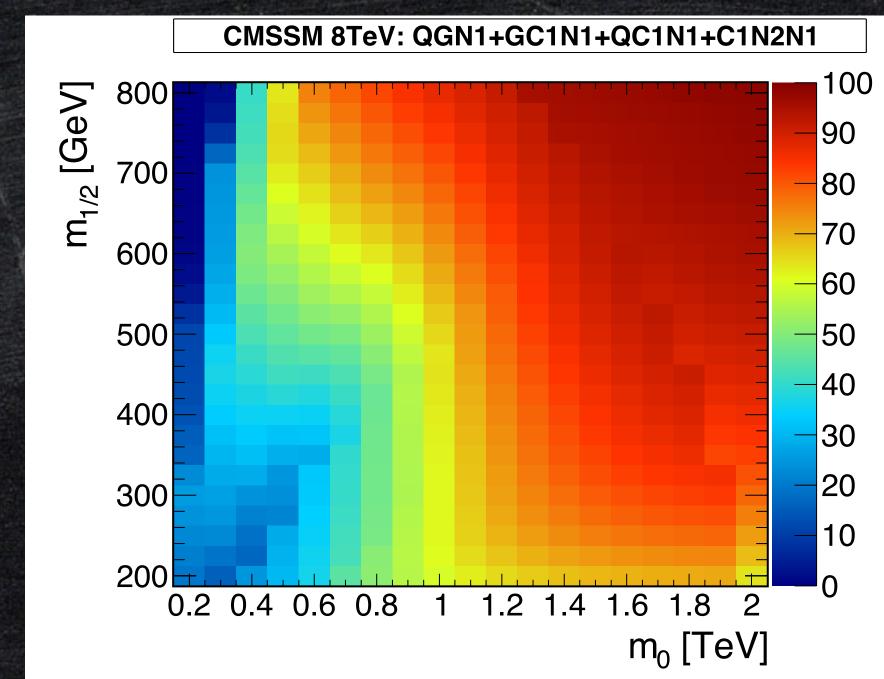
2 Ln(L)

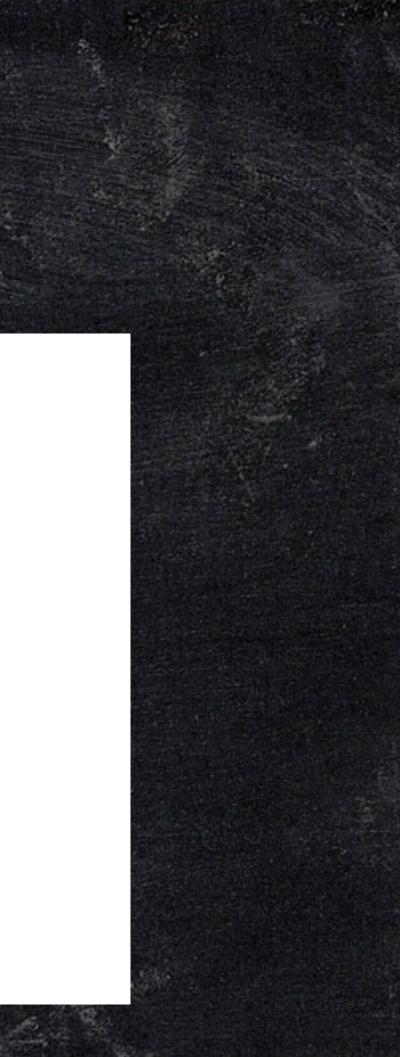
	input	output	application	li
ATOM:	event file	efficiency	any	f
Fastlim:	model file	N	SUSY-like	conse

There are useful tools, let's test your model

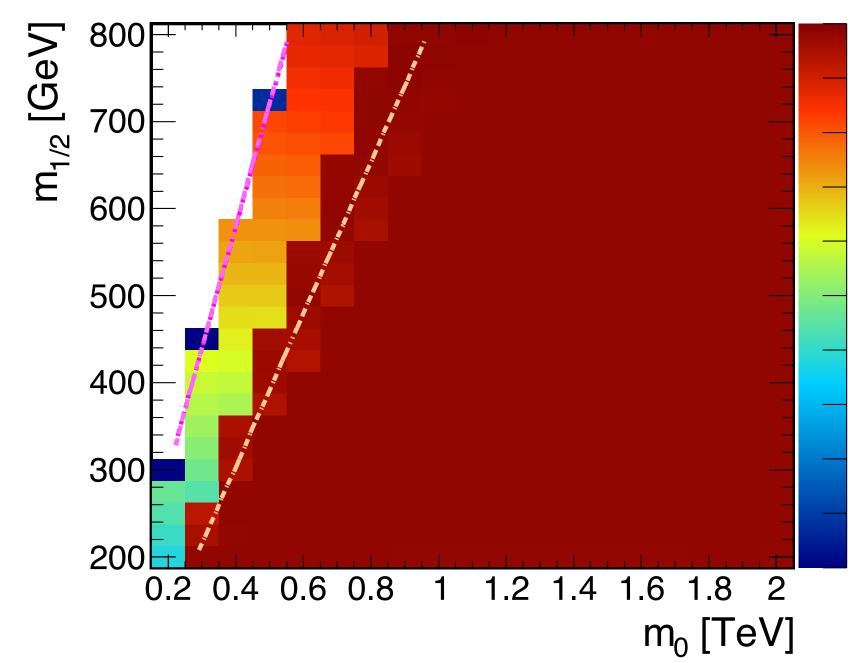


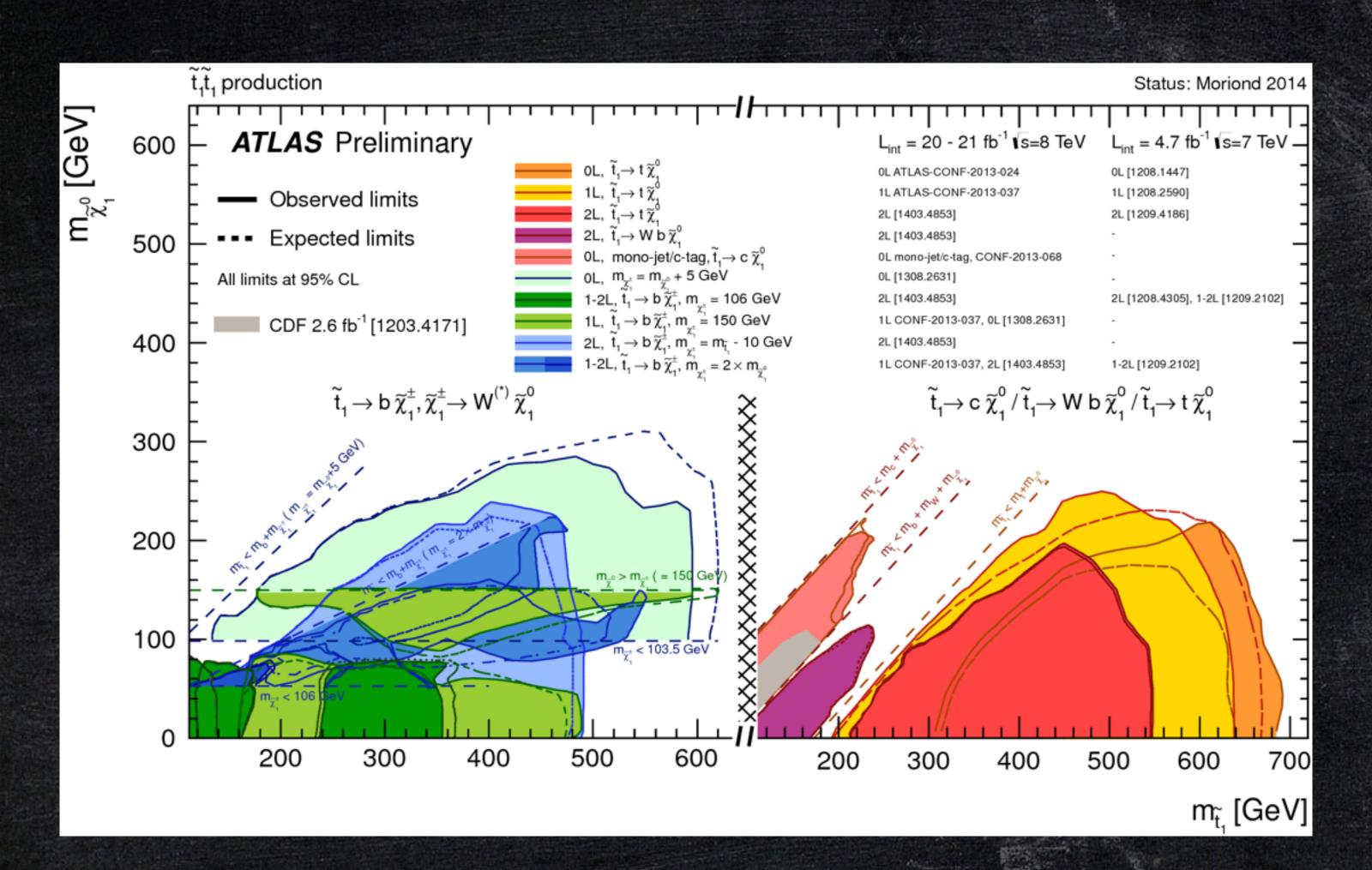
Backup




Split SUSY

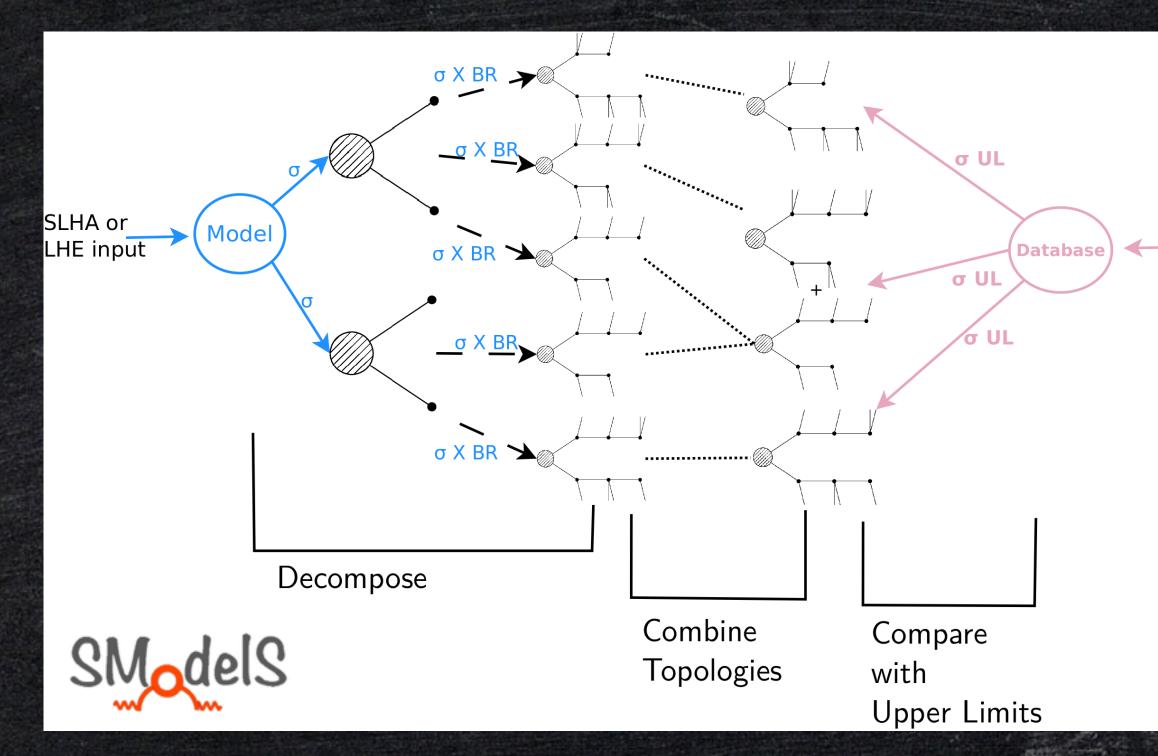
spread SUSY 8TeV: GC1N1 + C1N2N1


CMSSM



NUHM

NUHM 8TeV: QGC1N2N1+C1N2N1



SModelS

 SModelS is a tool to automatically check the simplified model constraints on a given BSM model.

Sabine Kraml, et.al, 2013

Experimental Analyses