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Gauge symmetry implies massless gauge bosons

Origin of the Higgs Particle!
in the Standard Model
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Not Gauge invariant

Introduce scalar field
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Gauge invariant

Spontaneous symmetry breaking
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Origin of the Higgs Particle!
in the Standard Model
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Gauge couplings

Origin of the Higgs Particle!
in the Standard Model
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Origin of the Higgs Particle!
in the Standard Model
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gauge boson masses
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Higgs in SM
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Unitary problem

∴
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WW Scattering and Unitarity Violation

FμνFμν-term contains
self couplings between
gauge bosons.

WLWL scattering probability becomes larger than unity for Ecm > 1.2 TeV ... 
Violation of unitarity if force remains weak at this scale ...

σWW ~ Ecm

WW ! WW possible; 
cross section:

massive gauge bosons: ! 2 transverse d.o.f. + 1 longitudinal d.o.f.
massless  gauge bosons: ! 2 transverse d.o.f.

L L

To restore unitary it needs 
some scalar boson “H” with

gHWW!  ~ MW

gHff!  ~ mf

MH !  < 1 TeV
σ ! const

for large energies
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Fermion masses

SM is a chiral theory
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Fermion masses

Gauge invariant
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Yukawa coupling with scalar field
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Higgs and fermion massesUsual: Scale140
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H couples to mass

Without symmetry breaking
W, Z massless and massless fermions Usual: Scale140
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H couples to photons and gluons2.3 Loop induced decays into γγ, γZ and gg

Since gluons and photons are massless particles, they do not couple to the Higgs boson

directly. Nevertheless, the Hgg and Hγγ vertices, as well as the HZγ coupling, can be

generated at the quantum level with loops involving massive [and colored or charged] particles

which couple to the Higgs boson. The Hγγ and HZγ couplings are mediated by W boson and

charged fermions loops, while the Hgg coupling is mediated only by quark loops; Fig. 2.14.

For fermions, only the heavy top quark and, to a lesser extent, the bottom quark contribute

substantially for Higgs boson masses MH >∼ 100 GeV.

a)

•H
W

γ(Z)

γ

• F
H

γ(Z)

γ

+

•H
Q

g

g

b)

Figure 2.14: Loop induced Higgs boson decays into a) two photons (Zγ) and b) two gluons.

For masses much larger than the Higgs boson mass, these virtual particles do not decouple

since their couplings to the Higgs boson grow with the masses, thus compensating the loop

mass suppression. These decays are thus extremely interesting since their strength is sensitive

to scales far beyond the Higgs boson mass and can be used as a possible probe for new charged

and/or colored particles whose masses are generated by the Higgs mechanism and which are

too heavy to be produced directly.

Unfortunately, because of the suppression by the additional electroweak or strong cou-

pling constants, these loop decays are important only for Higgs masses below ∼ 130 GeV

when the total Higgs decay width is rather small. However, these partial widths will be

very important when we will discuss the Higgs production at hadron and photon colliders,

where the cross sections will be directly proportional to, respectively, the gluonic and pho-

tonic partial decay widths. Since the entire Higgs boson mass range can be probed in these

production processes, we will also discuss the amplitudes for heavy Higgs bosons.

In this section, we first analyze the decays widths both at leading order (LO) and then

including the next–to–leading order (NLO) QCD corrections. The discussion of the LO

electroweak corrections and the higher–order QCD corrections will be postponed to the next

section.

88

coupling through loops
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H(125)  Couplings  are  SM-like 
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Strong evidence 
for  H  coupling 
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David, Kado 

Higgs Particle at LHC

Higgs couples to masses (tree-level)

Consistent with SM Higgs

to photon-photon and gluon-gluon (loop-level)
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Search for SUSY and other BSM Signatures
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BSM Signatures

Still believe BSM is there, at high energies

Expect effects on Higgs couplings

Analysis

- in specific BSM models

Model independent, 	


but have their own assumptions

- using effective Lagrangians



Integrate heavy BSM dof 	


obtain d=6 operators formed with SM fields
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i.e. SM field with (slightly) modified couplings

quasi-SM Higgs
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This talk

Based on work EM 1406.6376

see also 	


Gupta Pomarol Riva 1405.0181	


Elias-Miro Espinosa EM Pomarol 1308.1879	


Elias-Miro Grojean Gupta 1312.2928	


.. others … 

Concentrate on the issues

different basis can be used

correlations among physical predictions

connection with experiments
related



How many independent d=6 operators in       	


!
(after using EOM, partial int., identities to eliminate redundancies)

Buchmuller & Wyler 86
Grzadkowski, Iskrzynski, Misiak, Rosiek10

59 (one family)

59 ways to modify the SM !!	


(many more for 3 families)

Operator Basis

JR

JL,R

v

L
6

g, g0

MW =

g

2

v

? ?



X3 ϕ6 and ϕ4D2 ψ2ϕ3

QG fABCGAν
µ GBρ

ν GCµ
ρ Qϕ (ϕ†ϕ)3 Qeϕ (ϕ†ϕ)(l̄perϕ)

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ Qϕ! (ϕ†ϕ)!(ϕ†ϕ) Quϕ (ϕ†ϕ)(q̄purϕ̃)

QW εIJKW Iν
µ W Jρ

ν WKµ
ρ QϕD

(
ϕ†Dµϕ

)⋆ (
ϕ†Dµϕ

)
Qdϕ (ϕ†ϕ)(q̄pdrϕ)

QW̃ εIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

X2ϕ2 ψ2Xϕ ψ2ϕ2D

QϕG ϕ†ϕGA
µνG

Aµν QeW (l̄pσµνer)τ IϕW I
µν Q(1)

ϕl (ϕ†i
↔

Dµ ϕ)(l̄pγµlr)

QϕG̃ ϕ†ϕ G̃A
µνG

Aµν QeB (l̄pσµνer)ϕBµν Q(3)
ϕl (ϕ†i

↔

D I
µ ϕ)(l̄pτ

Iγµlr)

QϕW ϕ†ϕW I
µνW

Iµν QuG (q̄pσµνTAur)ϕ̃GA
µν Qϕe (ϕ†i

↔

Dµ ϕ)(ēpγµer)

Q
ϕW̃

ϕ†ϕ W̃ I
µνW

Iµν QuW (q̄pσµνur)τ I ϕ̃W I
µν Q(1)

ϕq (ϕ†i
↔

Dµ ϕ)(q̄pγµqr)

QϕB ϕ†ϕBµνBµν QuB (q̄pσµνur)ϕ̃Bµν Q(3)
ϕq (ϕ†i

↔

D I
µ ϕ)(q̄pτ

Iγµqr)

QϕB̃ ϕ†ϕ B̃µνBµν QdG (q̄pσµνTAdr)ϕGA
µν Qϕu (ϕ†i

↔

Dµ ϕ)(ūpγµur)

QϕWB ϕ†τ IϕW I
µνB

µν QdW (q̄pσµνdr)τ IϕW I
µν Qϕd (ϕ†i

↔

Dµ ϕ)(d̄pγµdr)

QϕW̃B ϕ†τ Iϕ W̃ I
µνB

µν QdB (q̄pσµνdr)ϕBµν Qϕud i(ϕ̃†Dµϕ)(ūpγµdr)

Table 2: Dimension-six operators other than the four-fermion ones.

3 The complete set of dimension-five and -six operators

This Section is devoted to presenting our final results (derived in Secs. 5, 6 and 7) for the basis

of independent operators Q(5)
n and Q(6)

n . Their independence means that no linear combination
of them and their Hermitian conjugates is EOM-vanishing up to total derivatives.

Imposing the SM gauge symmetry constraints on Q(5)
n leaves out just a single operator [20],

up to Hermitian conjugation and flavour assignments. It reads

Qνν = εjkεmnϕ
jϕm(lkp)

TClnr ≡ (ϕ̃†lp)
TC(ϕ̃†lr), (3.1)

where C is the charge conjugation matrix.2 Qνν violates the lepton number L. After the
electroweak symmetry breaking, it generates neutrino masses and mixings. Neither L(4)

SM nor
the dimension-six terms can do the job. Thus, consistency of the SM (as defined by Eq. (1.1)
and Tab. 1) with observations crucially depends on this dimension-five term.

All the independent dimension-six operators that are allowed by the SM gauge symmetries
are listed in Tabs. 2 and 3. Their names in the left column of each block should be supplemented
with generation indices of the fermion fields whenever necessary, e.g., Q(1)

lq → Q(1)prst
lq . Dirac

indices are always contracted within the brackets, and not displayed. The same is true for the

2 In the Dirac representation C = iγ2γ0, with Bjorken and Drell [21] phase conventions.
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(L̄L)(L̄L) (R̄R)(R̄R) (L̄L)(R̄R)

Qll (l̄pγµlr)(l̄sγµlt) Qee (ēpγµer)(ēsγµet) Qle (l̄pγµlr)(ēsγµet)

Q(1)
qq (q̄pγµqr)(q̄sγµqt) Quu (ūpγµur)(ūsγµut) Qlu (l̄pγµlr)(ūsγµut)

Q(3)
qq (q̄pγµτ Iqr)(q̄sγµτ Iqt) Qdd (d̄pγµdr)(d̄sγµdt) Qld (l̄pγµlr)(d̄sγµdt)

Q(1)
lq (l̄pγµlr)(q̄sγµqt) Qeu (ēpγµer)(ūsγµut) Qqe (q̄pγµqr)(ēsγµet)

Q(3)
lq (l̄pγµτ I lr)(q̄sγµτ Iqt) Qed (ēpγµer)(d̄sγµdt) Q(1)

qu (q̄pγµqr)(ūsγµut)

Q(1)
ud (ūpγµur)(d̄sγµdt) Q(8)

qu (q̄pγµTAqr)(ūsγµTAut)

Q(8)
ud (ūpγµTAur)(d̄sγµTAdt) Q(1)

qd (q̄pγµqr)(d̄sγµdt)

Q(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

(L̄R)(R̄L) and (L̄R)(L̄R) B-violating

Qledq (l̄jper)(d̄sq
j
t ) Qduq εαβγεjk

[
(dαp )

TCuβr
] [
(qγjs )TClkt

]

Q(1)
quqd (q̄jpur)εjk(q̄ksdt) Qqqu εαβγεjk

[
(qαjp )TCqβkr

] [
(uγs )

TCet
]

Q(8)
quqd (q̄jpT

Aur)εjk(q̄ksT
Adt) Q(1)

qqq εαβγεjkεmn

[
(qαjp )TCqβkr

] [
(qγms )TClnt

]

Q(1)
lequ (l̄jper)εjk(q̄

k
sut) Q(3)

qqq εαβγ(τ Iε)jk(τ Iε)mn

[
(qαjp )TCqβkr

] [
(qγms )TClnt

]

Q(3)
lequ (l̄jpσµνer)εjk(q̄

k
sσ

µνut) Qduu εαβγ
[
(dαp )

TCuβr
] [
(uγs )

TCet
]

Table 3: Four-fermion operators.

isospin and colour indices in the upper part of Tab. 3. In the lower-left block of that table,
colour indices are still contracted within the brackets, while the isospin ones are made explicit.
Colour indices are displayed only for operators that violate the baryon number B (lower-right
block of Tab. 3). All the other operators in Tabs. 2 and 3 conserve both B and L.

The bosonic operators (classes X3, X2ϕ2, ϕ6 and ϕ4D2) are all Hermitian. Those containing
X̃µν are CP-odd, while the remaining ones are CP-even. For the operators containing fermions,
Hermitian conjugation is equivalent to transposition of generation indices in each of the fermionic
currents in classes (L̄L)(L̄L), (R̄R)(R̄R), (L̄L)(R̄R), and ψ2ϕ2D2 (except for Qϕud). For the
remaining operators with fermions, Hermitian conjugates are not listed explicitly.

If CP is defined in the weak eigenstate basis then Q−
(+)

Q† are CP-odd (-even) for all the
fermionic operators. It follows that CP-violation by any of those operators requires a non-
vanishing imaginary part of the corresponding Wilson coefficient. However, one should remem-
ber that such a CP is not equivalent to the usual (“experimental”) one defined in the mass
eigenstate basis, just because the two bases are related by a complex unitary transformation.

Counting the entries in Tabs. 2 and 3, we find 15 bosonic operators, 19 single-fermionic-
current ones, and 25 B-conserving four-fermion ones. In total, there are 15+19+25=59 inde-
pendent dimension-six operators, so long as B-conservation is imposed.
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X3 ϕ6 and ϕ4D2 ψ2ϕ3

QG fABCGAν
µ GBρ

ν GCµ
ρ Qϕ (ϕ†ϕ)3 Qeϕ (ϕ†ϕ)(l̄perϕ)

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ Qϕ! (ϕ†ϕ)!(ϕ†ϕ) Quϕ (ϕ†ϕ)(q̄purϕ̃)

QW εIJKW Iν
µ W Jρ

ν WKµ
ρ QϕD

(
ϕ†Dµϕ

)⋆ (
ϕ†Dµϕ

)
Qdϕ (ϕ†ϕ)(q̄pdrϕ)

QW̃ εIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

X2ϕ2 ψ2Xϕ ψ2ϕ2D

QϕG ϕ†ϕGA
µνG

Aµν QeW (l̄pσµνer)τ IϕW I
µν Q(1)

ϕl (ϕ†i
↔

Dµ ϕ)(l̄pγµlr)

QϕG̃ ϕ†ϕ G̃A
µνG

Aµν QeB (l̄pσµνer)ϕBµν Q(3)
ϕl (ϕ†i

↔

D I
µ ϕ)(l̄pτ

Iγµlr)

QϕW ϕ†ϕW I
µνW

Iµν QuG (q̄pσµνTAur)ϕ̃GA
µν Qϕe (ϕ†i

↔

Dµ ϕ)(ēpγµer)

Q
ϕW̃

ϕ†ϕ W̃ I
µνW

Iµν QuW (q̄pσµνur)τ I ϕ̃W I
µν Q(1)

ϕq (ϕ†i
↔

Dµ ϕ)(q̄pγµqr)

QϕB ϕ†ϕBµνBµν QuB (q̄pσµνur)ϕ̃Bµν Q(3)
ϕq (ϕ†i

↔

D I
µ ϕ)(q̄pτ

Iγµqr)

QϕB̃ ϕ†ϕ B̃µνBµν QdG (q̄pσµνTAdr)ϕGA
µν Qϕu (ϕ†i

↔

Dµ ϕ)(ūpγµur)

QϕWB ϕ†τ IϕW I
µνB

µν QdW (q̄pσµνdr)τ IϕW I
µν Qϕd (ϕ†i

↔

Dµ ϕ)(d̄pγµdr)

QϕW̃B ϕ†τ Iϕ W̃ I
µνB

µν QdB (q̄pσµνdr)ϕBµν Qϕud i(ϕ̃†Dµϕ)(ūpγµdr)

Table 2: Dimension-six operators other than the four-fermion ones.

3 The complete set of dimension-five and -six operators

This Section is devoted to presenting our final results (derived in Secs. 5, 6 and 7) for the basis

of independent operators Q(5)
n and Q(6)

n . Their independence means that no linear combination
of them and their Hermitian conjugates is EOM-vanishing up to total derivatives.

Imposing the SM gauge symmetry constraints on Q(5)
n leaves out just a single operator [20],

up to Hermitian conjugation and flavour assignments. It reads

Qνν = εjkεmnϕ
jϕm(lkp)

TClnr ≡ (ϕ̃†lp)
TC(ϕ̃†lr), (3.1)

where C is the charge conjugation matrix.2 Qνν violates the lepton number L. After the
electroweak symmetry breaking, it generates neutrino masses and mixings. Neither L(4)

SM nor
the dimension-six terms can do the job. Thus, consistency of the SM (as defined by Eq. (1.1)
and Tab. 1) with observations crucially depends on this dimension-five term.

All the independent dimension-six operators that are allowed by the SM gauge symmetries
are listed in Tabs. 2 and 3. Their names in the left column of each block should be supplemented
with generation indices of the fermion fields whenever necessary, e.g., Q(1)

lq → Q(1)prst
lq . Dirac

indices are always contracted within the brackets, and not displayed. The same is true for the

2 In the Dirac representation C = iγ2γ0, with Bjorken and Drell [21] phase conventions.
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Correlations
!
!
- gauge invariance restricts operator form	


- not all possible operators are independent

Simple example:

resulting e↵ective theory at energies below ⇤ can be described by a Lagrangian formed
by gauge-invariant operators formed by the Higgs, gauge bosons and fermion fields, in an
expansion according to the dimension d of the operators. The SM Lagrangian contains all
d = 4 terms. We assume that we can truncate the expansion of the e↵ective Lagrangian
at the dominant d = 6 operators,1

L6 =
X

i

ci
⇤2

Oi . (1)

The sum over i runs over a basis {Oi} in the d = 6 gauge-invariant operator space. One
of the guiding principles to elect a particular basis should be that it simplifies the path
to get to the desired goals.

To motivate our work we start with the well-know fact that the structure of the SM
Lagrangian implies relations among couplings. Consider for instance the SM Lagrangian
term

m2
W

✓
W+µW�

µ +
1

2 c2w
ZµZµ

◆ ✓
1 +

2h

v
+

h2

v2

◆
, (2)

where h stands for the physical Higgs boson, and v, cw = cos ✓w, etc., are defined in
Appendix A. From (2), we see for example that the couplings hWW and hZZ are related,
through the expected custodial-preserving form. The couplings h2WW -h2ZZ, hWW -
h2WW , and hZZ-h2ZZ are also related. These relations hold exactly at tree level, but
they are slightly changed by radiative corrections. In this paper we are interested in the
changes induced by d = 6 operators. It is well-known that the modifications coming from
L6 are not arbitrary. Indeed there are correlations amongst the induced modifications
which stem from the fact that gauge-invariance restricts the form of the operators, and
that not all the operators one can write are independent. However, as we now explain, to
see clearly those correlations in complete generality may be di�cult.

One uses (1) to predict modifications to couplings, which we denote generically by a.
The experimental values for the di↵erent a’s, obtained from measurements, constrain the
ci’s. However, in general, a d = 6 operator in (1) contributes to several couplings a, and
in turn each coupling a gets contributions from a certain number of operators. Thus, the
connection among ci’s and a’s may be involved. When doing a numerical fit of all ci using
observational data, one may loose sight of the correlations above mentioned and of some
other general properties of the physics of e↵ective Lagrangians. It would be desirable to
have a basis where the relations among ci’s and a’s are more direct.

The main purpose of this paper is to build a basis for L6 such that each d = 6 operator
Oa is related to a coupling a,

L6 =
X

a

ca
⇤2

Oa . (3)

Here the sum runs over a chosen set of couplings {a}. In order that the set of gauge-
invariant operators {Oa} is a basis, a necessary condition is that we have as many cou-
plings a in the sum in (3) as operators i in (1). We have some freedom in choosing which

1
The scale of d = 5 operators related to L non-conservation is at much higher scales.

2

In SM:

Relations preserved ?

JR

JL,R

v

L
6

L
4

L
6

+ L
4

In BSM:

JR

JL,R

v

L
6

L
4

L
4

+ L
6 ? ?

Correlations among observables are expected



Connection with Experiment!
Coupling Basis

resulting e↵ective theory at energies below ⇤ can be described by a Lagrangian formed
by gauge-invariant operators formed by the Higgs, gauge bosons and fermion fields, in an
expansion according to the dimension d of the operators. The SM Lagrangian contains all
d = 4 terms. We assume that we can truncate the expansion of the e↵ective Lagrangian
at the dominant d = 6 operators,1

L6 =
X

i

ci
⇤2

Oi . (1)

The sum over i runs over a basis {Oi} in the d = 6 gauge-invariant operator space. One
of the guiding principles to elect a particular basis should be that it simplifies the path
to get to the desired goals.

To motivate our work we start with the well-know fact that the structure of the SM
Lagrangian implies relations among couplings. Consider for instance the SM Lagrangian
term

m2
W

✓
W+µW�

µ +
1

2 c2w
ZµZµ

◆ ✓
1 +

2h

v
+

h2

v2

◆
, (2)

where h stands for the physical Higgs boson, and v, cw = cos ✓w, etc., are defined in
Appendix A. From (2), we see for example that the couplings hWW and hZZ are related,
through the expected custodial-preserving form. The couplings h2WW -h2ZZ, hWW -
h2WW , and hZZ-h2ZZ are also related. These relations hold exactly at tree level, but
they are slightly changed by radiative corrections. In this paper we are interested in the
changes induced by d = 6 operators. It is well-known that the modifications coming from
L6 are not arbitrary. Indeed there are correlations amongst the induced modifications
which stem from the fact that gauge-invariance restricts the form of the operators, and
that not all the operators one can write are independent. However, as we now explain, to
see clearly those correlations in complete generality may be di�cult.

One uses (1) to predict modifications to couplings, which we denote generically by a.
The experimental values for the di↵erent a’s, obtained from measurements, constrain the
ci’s. However, in general, a d = 6 operator in (1) contributes to several couplings a, and
in turn each coupling a gets contributions from a certain number of operators. Thus, the
connection among ci’s and a’s may be involved. When doing a numerical fit of all ci using
observational data, one may loose sight of the correlations above mentioned and of some
other general properties of the physics of e↵ective Lagrangians. It would be desirable to
have a basis where the relations among ci’s and a’s are more direct.

The main purpose of this paper is to build a basis for L6 such that each d = 6 operator
Oa is related to a coupling a,

L6 =
X

a

ca
⇤2

Oa . (3)

Here the sum runs over a chosen set of couplings {a}. In order that the set of gauge-
invariant operators {Oa} is a basis, a necessary condition is that we have as many cou-
plings a in the sum in (3) as operators i in (1). We have some freedom in choosing which

1
The scale of d = 5 operators related to L non-conservation is at much higher scales.

2

couplings form such a complete set; whenever it is possible we will elect the couplings
that are better measured. We may say that {Oa} is a “coupling basis”.

At the Lagrangian level, a coupling a corresponds to a coe�cient multiplying an
operator bDa, formed by SM fields. We say that a and Oa are related when the operator
bDa is contained in Oa when the latter is written in the unitary gauge,

ca
⇤2

Ounit
a = ⌘a

⇣
bDa + �Da

⌘
. (4)

The coe�cients ⌘a are a measure of potential deviations from SM predictions (we choose
the ⌘a’s adimensional). In (4), �Da stands for a series of coupling terms that inevitably
accompany bDa. We define

Da = bDa + �Da . (5)

From a practical point of view, the Lagrangian in the unitary gauge to be added to the
SM, which describes BSM e↵ects, reads

�L =
X

a

⌘aDa . (6)

This Lagrangian is written in the unitary gauge and is to be used at tree-level. Radiative
corrections should be calculated with the full L6 in (3).

A crucial point of our work is that we manage to disentangle the couplings in {a}, i.e.,
Da does not contain bDb, for any a and b (b 6= a) in the set {a} over which the sum in (3)
extends. Then, measurement of all couplings {⌘a} determines the full Lagrangian. Given
a in the chosen set {a} the expressions for Da andOa are unique, up to partial integrations,
field redefinitions, etc. Thus, the coupling a generates a well-defined “direction” in the
operator space. With a bit of language abuse we refer to a, Da and Oa as “directions”.

To reach our goals we proceed in two steps. First, we choose what we call the “starting
basis” and the set of couplings {a}. The starting basis is a basis constituted by monomial
operators Oi with the criterium that it is close to the {Oa} basis we are looking for. There
is no precise definition of “close”; we simply mean that since we have some freedom in
the election of {Oi}, we will choose a basis that simplifies the algebra to be done in the
second step.

This second step consists in disentangling the starting basis {Oi}, so that we obtain
the coupling basis {Oa}. To do it, we will work in the unitary gauge and build first the
directions {Da}, taking care that a given bDa appears only in one of the directions, i.e.,
we have to define independent linear combinations of operators in the set {Oi} such that
each combination contributes to one coupling of the set {a} and not to any other. These
linear combinations will give the desired {Oa} basis.

Once this program is done, we may say that (3) is the most general d = 6 e↵ective
Lagrangian taking as directions a set of vertices that can be determined (or constrained)
experimentally, with the directions independent one from the other. We could work out
this program for all operators in a complete basis, which is formed by 59 operators in the
case of one family2 [9]. However, we will not consider all 59 operators; we shall ignore the

2
We do not consider B-violating operators.
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couplings {a}
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Higgs-only Sector
operators have form:

It can only be tested in Higgs physics:

M

VµV
µ

Vµ⌫V
µ⌫

V = W,Z

H = v + h

v2O
4

! OSM

Example:

vacuum

V = W,Z

H = v + h

v2O
4

! OSM

1

g2s
G2

µ⌫ + c
|�2|
⇤

2

G2

µ⌫ �!
✓

1

g2s
+ c

v2

2⇤

2

◆
G2

µ⌫

g, g0

MW =

g

2

v

MZ =

p
g2 + g02

2

v

MA = 0

W±
L , ZL

h

WW ! WW

s � M2

W

Mgauge ⇠ s

M2

W

Mhiggs ⇠ � s

M2

W

s

s�M2

h
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⇤
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O
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8 operators/couplings in Higgs-only Sector
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Further discussion of our starting basis is done in Appendix B
We separately consider the CP-even and CP-odd cases.

2.1 CP-even Basis

We first introduce operators which can only be tested in Higgs physics, i.e., operators such
that do not lead to any physical e↵ect when the physical Higgs field is set equal to zero.
For one family, the total number of such operators is eight [5]. There are di↵erent possible
choices; our election is motivated by simplicity in achieving our goals: We choose eight
operators most directly related to vertices which are or will be extracted from experiment.

We have five bosonic operators

Or = |�|2|Dµ�|2 , O6 = �|�|6 ,

OBB = g02|�|2Bµ⌫B
µ⌫ , OWW = g2|�|2Wa

µ⌫Waµ⌫ ,

OGG = g2s |�|2GA
µ⌫GAµ⌫ . (7)

Here � is the complex Higgs doublet, and GA
µ⌫ is the SU(3)c gluon field strength; for other

notation see Appendix A. We also have three operators involving fermions

Oyu = yu|�|2Q̄L
e�uR , Oyd = yd|�|2Q̄L�dR ,

Oye = ye|�|2L̄L�eR , (8)

where e� = i�2�⇤. Here and in the rest of the paper we restrict our analysis to one family.
Indeed, we see that in vacuum, �T = (0, v/

p
2), the operators in (7) and in (8) lead

to innocuous redefinitions of SM Lagrangian parameters. We shall refer to this group of
eight operators as “Higgs-only” operators.

There is a second class of operators which can be tested in h-physics as well as in
EWPT and TGC physics. There are two bosonic operators

OB �OW =
ig0

2
(�†

$
Dµ�)@⌫Bµ⌫ � ig

2
(�†�a

$
Dµ�)D⌫Wa

µ⌫

OHB = ig0(Dµ�)†(D⌫�)Bµ⌫ , (9)

where �†
$
Dµ� ⌘ �†Dµ� � (Dµ�)†�. The first operator in (9) is the di↵erence of two

monomials, rather than a single one. This is not a problem, after all we are going to
combine all these operators in the starting basis to get the coupling basis. The reason
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µuR) , Od
R = (i�†

$
Dµ�)(d̄R�

µdR) ,

Oe
R = (i�†

$
Dµ�)(ēR�
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µuR) , Od
R = (i�†

$
Dµ�)(d̄R�

µdR) ,

Oe
R = (i�†

$
Dµ�)(ēR�
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4.1.3 a = h (VV)c

Next we consider the coupling of h to WW and ZZ in (18). The relevant operator in the
starting basis is Or. It can written as

Or ⇠
✓
|�|2 � v2

2

◆
|Dµ�|2 , (40)

because the part proportional to v2 adds to the kinetic �-term and it can be reabsorbed
by redefining � and bare parameters in the SM Lagrangian.

Eq. (40), in the unitary gauge, gives
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@µH@µH +
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2
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µ +
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H2ZµZµ

◆
. (41)

We get the desired term h(V V )c, but to get rid of the term (@µH)2 we integrate by parts,

(H2 � v2) (@µH@µH) ⇠ �
✓
v +

h

3

◆
h2 @µ@µH (42)

and use the EoM in Eq. (97) for @µ@µH. The resulting expression contains a h3-term.
Since we wish the directions to be independent one from the other, we have to subtract
a term proportional to (38). The end result for the h(V V )c direction is given by

Dh(V V )c = v(hP3)


W+µW�

µ +
1

2c2w
ZµZµ

�
+

mf

4m2
W

(h2Q1)f̄f +
m2
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where there is a sum over all fermions f , and we have defined

P3 = 1 +
2h

v
+

4h2

3v2
+

h3

3v3
,

Q1 = 1 +
h

3v
,

Q2 = 1 +
3h

4v
+

h2

8v2
. (44)

We notice the appearance of the custodial-preserving combination

bDh(V V )c = vh

✓
W+µW�

µ +
1

2c2w
ZµZµ

◆
. (45)

as the coupling a = h(V V )c in the basis set {a}, as we anticipated in (18).
At the d = 6 operator level, this direction is obtained from the combination of two

operators in the starting basis: Or and O6. In order that the latter cancels de cubic Higgs
terms, the precise combination is

Oh(V V )c = Or � 1

2
O6 . (46)

To get Dh(V V )c fromOh(V V )c , one has to set the unitary gauge and redefine SM parameters,
specifically the Yukawa couplings and V (H) parameters.
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Further discussion of our starting basis is done in Appendix B
We separately consider the CP-even and CP-odd cases.

2.1 CP-even Basis

We first introduce operators which can only be tested in Higgs physics, i.e., operators such
that do not lead to any physical e↵ect when the physical Higgs field is set equal to zero.
For one family, the total number of such operators is eight [5]. There are di↵erent possible
choices; our election is motivated by simplicity in achieving our goals: We choose eight
operators most directly related to vertices which are or will be extracted from experiment.

We have five bosonic operators

Or = |�|2|Dµ�|2 , O6 = �|�|6 ,

OBB = g02|�|2Bµ⌫B
µ⌫ , OWW = g2|�|2Wa

µ⌫Waµ⌫ ,

OGG = g2s |�|2GA
µ⌫GAµ⌫ . (7)

Here � is the complex Higgs doublet, and GA
µ⌫ is the SU(3)c gluon field strength; for other

notation see Appendix A. We also have three operators involving fermions

Oyu = yu|�|2Q̄L
e�uR , Oyd = yd|�|2Q̄L�dR ,

Oye = ye|�|2L̄L�eR , (8)

where e� = i�2�⇤. Here and in the rest of the paper we restrict our analysis to one family.
Indeed, we see that in vacuum, �T = (0, v/

p
2), the operators in (7) and in (8) lead

to innocuous redefinitions of SM Lagrangian parameters. We shall refer to this group of
eight operators as “Higgs-only” operators.

There is a second class of operators which can be tested in h-physics as well as in
EWPT and TGC physics. There are two bosonic operators

OB �OW =
ig0

2
(�†

$
Dµ�)@⌫Bµ⌫ � ig

2
(�†�a

$
Dµ�)D⌫Wa

µ⌫

OHB = ig0(Dµ�)†(D⌫�)Bµ⌫ , (9)

where �†
$
Dµ� ⌘ �†Dµ� � (Dµ�)†�. The first operator in (9) is the di↵erence of two

monomials, rather than a single one. This is not a problem, after all we are going to
combine all these operators in the starting basis to get the coupling basis. The reason
why we choose such a combination will become clear below, in Eqs. (53) and (54).

In this second class, we also have fermionic operators. There are seven products of
Higgs and fermion currents

Ou
R = (i�†

$
Dµ�)(ūR�

µuR) , Od
R = (i�†

$
Dµ�)(d̄R�

µdR) ,

Oe
R = (i�†

$
Dµ�)(ēR�

µeR) ,

Oq
L = (i�†

$
Dµ�)(Q̄L�

µQL) , Ol
L = (i�†

$
Dµ�)(L̄L�

µLL) ,

O(3) q
L = (i�†�a

$
Dµ�)(Q̄L�

µ�aQL) , O(3) l
L = (i�†�a

$
Dµ�)(L̄L�

µ�aLL) . (10)
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4.1.3 a = h (VV)c

Next we consider the coupling of h to WW and ZZ in (18). The relevant operator in the
starting basis is Or. It can written as

Or ⇠
✓
|�|2 � v2

2

◆
|Dµ�|2 , (40)

because the part proportional to v2 adds to the kinetic �-term and it can be reabsorbed
by redefining � and bare parameters in the SM Lagrangian.

Eq. (40), in the unitary gauge, gives

1

4
(H2 � v2)

✓
@µH@µH +

g2

2
H2W+µW�

µ +
g2

4c2w
H2ZµZµ

◆
. (41)

We get the desired term h(V V )c, but to get rid of the term (@µH)2 we integrate by parts,

(H2 � v2) (@µH@µH) ⇠ �
✓
v +

h

3

◆
h2 @µ@µH (42)

and use the EoM in Eq. (97) for @µ@µH. The resulting expression contains a h3-term.
Since we wish the directions to be independent one from the other, we have to subtract
a term proportional to (38). The end result for the h(V V )c direction is given by

Dh(V V )c = v(hP3)


W+µW�

µ +
1

2c2w
ZµZµ

�
+

mf

4m2
W

(h2Q1)f̄f +
m2

h

12m2
W

(h4Q2) , (43)

where there is a sum over all fermions f , and we have defined

P3 = 1 +
2h

v
+

4h2

3v2
+

h3

3v3
,

Q1 = 1 +
h

3v
,

Q2 = 1 +
3h

4v
+

h2

8v2
. (44)

We notice the appearance of the custodial-preserving combination

bDh(V V )c = vh

✓
W+µW�

µ +
1

2c2w
ZµZµ

◆
. (45)

as the coupling a = h(V V )c in the basis set {a}, as we anticipated in (18).
At the d = 6 operator level, this direction is obtained from the combination of two

operators in the starting basis: Or and O6. In order that the latter cancels de cubic Higgs
terms, the precise combination is

Oh(V V )c = Or � 1

2
O6 . (46)

To get Dh(V V )c fromOh(V V )c , one has to set the unitary gauge and redefine SM parameters,
specifically the Yukawa couplings and V (H) parameters.
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Further discussion of our starting basis is done in Appendix B
We separately consider the CP-even and CP-odd cases.

2.1 CP-even Basis

We first introduce operators which can only be tested in Higgs physics, i.e., operators such
that do not lead to any physical e↵ect when the physical Higgs field is set equal to zero.
For one family, the total number of such operators is eight [5]. There are di↵erent possible
choices; our election is motivated by simplicity in achieving our goals: We choose eight
operators most directly related to vertices which are or will be extracted from experiment.

We have five bosonic operators

Or = |�|2|Dµ�|2 , O6 = �|�|6 ,

OBB = g02|�|2Bµ⌫B
µ⌫ , OWW = g2|�|2Wa

µ⌫Waµ⌫ ,

OGG = g2s |�|2GA
µ⌫GAµ⌫ . (7)

Here � is the complex Higgs doublet, and GA
µ⌫ is the SU(3)c gluon field strength; for other

notation see Appendix A. We also have three operators involving fermions

Oyu = yu|�|2Q̄L
e�uR , Oyd = yd|�|2Q̄L�dR ,

Oye = ye|�|2L̄L�eR , (8)

where e� = i�2�⇤. Here and in the rest of the paper we restrict our analysis to one family.
Indeed, we see that in vacuum, �T = (0, v/

p
2), the operators in (7) and in (8) lead

to innocuous redefinitions of SM Lagrangian parameters. We shall refer to this group of
eight operators as “Higgs-only” operators.

There is a second class of operators which can be tested in h-physics as well as in
EWPT and TGC physics. There are two bosonic operators

OB �OW =
ig0

2
(�†

$
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2
(�†�a
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where �†
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couplings form such a complete set; whenever it is possible we will elect the couplings
that are better measured. We may say that {Oa} is a “coupling basis”.

At the Lagrangian level, a coupling a corresponds to a coe�cient multiplying an
operator bDa, formed by SM fields. We say that a and Oa are related when the operator
bDa is contained in Oa when the latter is written in the unitary gauge,

ca
⇤2

Ounit
a = ⌘a

⇣
bDa + �Da

⌘
. (4)

The coe�cients ⌘a are a measure of potential deviations from SM predictions (we choose
the ⌘a’s adimensional). In (4), �Da stands for a series of coupling terms that inevitably
accompany bDa. We define

Da = bDa + �Da . (5)

From a practical point of view, the Lagrangian in the unitary gauge to be added to the
SM, which describes BSM e↵ects, reads

�L =
X

a

⌘aDa . (6)

This Lagrangian is written in the unitary gauge and is to be used at tree-level. Radiative
corrections should be calculated with the full L6 in (3).

A crucial point of our work is that we manage to disentangle the couplings in {a}, i.e.,
Da does not contain bDb, for any a and b (b 6= a) in the set {a} over which the sum in (3)
extends. Then, measurement of all couplings {⌘a} determines the full Lagrangian. Given
a in the chosen set {a} the expressions for Da andOa are unique, up to partial integrations,
field redefinitions, etc. Thus, the coupling a generates a well-defined “direction” in the
operator space. With a bit of language abuse we refer to a, Da and Oa as “directions”.

To reach our goals we proceed in two steps. First, we choose what we call the “starting
basis” and the set of couplings {a}. The starting basis is a basis constituted by monomial
operators Oi with the criterium that it is close to the {Oa} basis we are looking for. There
is no precise definition of “close”; we simply mean that since we have some freedom in
the election of {Oi}, we will choose a basis that simplifies the algebra to be done in the
second step.

This second step consists in disentangling the starting basis {Oi}, so that we obtain
the coupling basis {Oa}. To do it, we will work in the unitary gauge and build first the
directions {Da}, taking care that a given bDa appears only in one of the directions, i.e.,
we have to define independent linear combinations of operators in the set {Oi} such that
each combination contributes to one coupling of the set {a} and not to any other. These
linear combinations will give the desired {Oa} basis.

Once this program is done, we may say that (3) is the most general d = 6 e↵ective
Lagrangian taking as directions a set of vertices that can be determined (or constrained)
experimentally, with the directions independent one from the other. We could work out
this program for all operators in a complete basis, which is formed by 59 operators in the
case of one family2 [9]. However, we will not consider all 59 operators; we shall ignore the

2
We do not consider B-violating operators.
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Example of Correlations

facilitate the analyses looking for BSM signals. There are more advantages of our approach
that we now comment.

In general, e↵ective Lagrangians induce corrections to the fine structure constant ↵,
and to masses of particles in the SM. When we use, for example ↵ and mZ in the set
of input parameters, those corrections propagate to the predictions of the e↵ective La-
grangian. (These e↵ects were called indirect corrections in [14].) They appear because
the predictions of the SM have to be expressed as functions of ↵, mZ , etc. In this regard,
a positive aspect of our approach is that all the terms in our L6 are vertices containing
three or more particles. This means that there are no corrections to tree-level masses.
Also, there is no correction to ↵. The form of our e↵ective Lagrangian makes the use
of ↵, mZ , mW , mh and mf as input parameters very convenient. To use mW instead of
GF is simpler, because the use of the latter involves a four-fermion operator. Besides,
the mW precision has reached an accuracy that allows to use its measurement as input.
When we use ↵ and particles masses as input, we do not have indirect corrections, and
thus calculations using the form of our e↵ective Lagrangian are simplified.

We should also mention the problem of blind directions [14]. It may happen that in a
certain basis there is a linear combination of operators that experiments cannot bound,
i.e., a blind direction. By definition, in our approach there are no blind directions.

Even if is not the purpose of this paper to look for concrete applications of our ap-
proach, it may be useful to sketch ideas about some possible applications. As we said,
in the case of measuring a deviation from the SM prediction in a certain coupling a, one
can immediately see in �Da which vertices should show a positive signal, and with what
strength. Of course we knew there are correlations, but the expressions we get in our
framework for the directions show them in a transparent way.

Another aspect, complementary of what we have just explained, is that our results
show when there is no correlation. Let us explain it with an example. The LHC is
expected to improve the LEP-2 measurements on TGC. Suppose that there is no sign of
new physics, and thus LHC improves the constraints on TGC. We may ask the question:
Is this going to tell us something about h ! �� or h ! �Z decays ? We cite this example
because in a general basis, for example the one in [9], one has operators contributing
both to TGC and these Higgs decays, so that it is di�cult to see whether there are
correlations or not. Thanks to our formalism, we can easily see that the TGC directions
are completely independent of the h�� and the h�Z directions, so that the answer to the
preceding question is a clear no.

Let us briefly mention other possible applications. One of the uses of e↵ective La-
grangians is the power to anticipate a constraint on a process using current limits on
couplings. Which are the relevant couplings and which one (or ones) is the dominant
one can be readily seen in the expressions for our directions. A simple example will help
to clarify this point. In the e↵ective Lagrangian there is a contact term hVµf̄�

µf , with
V = Z,W which contributes to the decays h ! V ff measured at LHC. Our results show
that such a term appears in the directions a = ZfR,ZfL, g1Z,�. Then the anticipated
constraint on hV ff comes from these terms. In addition, since the limits on ⌘g1Z , ⌘�
are order percent while on ZfR,ZfL are order permille, it is the former that sets the
magnitude of the constraint to be expected for hV ff . This was already pointed out in [6].
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facilitate the analyses looking for BSM signals. There are more advantages of our approach
that we now comment.

In general, e↵ective Lagrangians induce corrections to the fine structure constant ↵,
and to masses of particles in the SM. When we use, for example ↵ and mZ in the set
of input parameters, those corrections propagate to the predictions of the e↵ective La-
grangian. (These e↵ects were called indirect corrections in [14].) They appear because
the predictions of the SM have to be expressed as functions of ↵, mZ , etc. In this regard,
a positive aspect of our approach is that all the terms in our L6 are vertices containing
three or more particles. This means that there are no corrections to tree-level masses.
Also, there is no correction to ↵. The form of our e↵ective Lagrangian makes the use
of ↵, mZ , mW , mh and mf as input parameters very convenient. To use mW instead of
GF is simpler, because the use of the latter involves a four-fermion operator. Besides,
the mW precision has reached an accuracy that allows to use its measurement as input.
When we use ↵ and particles masses as input, we do not have indirect corrections, and
thus calculations using the form of our e↵ective Lagrangian are simplified.

We should also mention the problem of blind directions [14]. It may happen that in a
certain basis there is a linear combination of operators that experiments cannot bound,
i.e., a blind direction. By definition, in our approach there are no blind directions.

Even if is not the purpose of this paper to look for concrete applications of our ap-
proach, it may be useful to sketch ideas about some possible applications. As we said,
in the case of measuring a deviation from the SM prediction in a certain coupling a, one
can immediately see in �Da which vertices should show a positive signal, and with what
strength. Of course we knew there are correlations, but the expressions we get in our
framework for the directions show them in a transparent way.

Another aspect, complementary of what we have just explained, is that our results
show when there is no correlation. Let us explain it with an example. The LHC is
expected to improve the LEP-2 measurements on TGC. Suppose that there is no sign of
new physics, and thus LHC improves the constraints on TGC. We may ask the question:
Is this going to tell us something about h ! �� or h ! �Z decays ? We cite this example
because in a general basis, for example the one in [9], one has operators contributing
both to TGC and these Higgs decays, so that it is di�cult to see whether there are
correlations or not. Thanks to our formalism, we can easily see that the TGC directions
are completely independent of the h�� and the h�Z directions, so that the answer to the
preceding question is a clear no.

Let us briefly mention other possible applications. One of the uses of e↵ective La-
grangians is the power to anticipate a constraint on a process using current limits on
couplings. Which are the relevant couplings and which one (or ones) is the dominant
one can be readily seen in the expressions for our directions. A simple example will help
to clarify this point. In the e↵ective Lagrangian there is a contact term hVµf̄�

µf , with
V = Z,W which contributes to the decays h ! V ff measured at LHC. Our results show
that such a term appears in the directions a = ZfR,ZfL, g1Z,�. Then the anticipated
constraint on hV ff comes from these terms. In addition, since the limits on ⌘g1Z , ⌘�
are order percent while on ZfR,ZfL are order permille, it is the former that sets the
magnitude of the constraint to be expected for hV ff . This was already pointed out in [6].
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CONCLUSIONS

Effective Lagrangian approach is a 
model independent tool to analyse 
BSM physics

Coupling basis to clearly see presence 
(or absence) of correlations

Assumptions: all new physics integrated 
at high energies, d=6 dominance, etc 
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Example of NO Correlations
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Example Correlations !
(not involving Higgs)
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