Effective Higgs Lagrangians

Eduard Massó Univ. Autonoma Barcelona

Gauge symmetry implies massless gauge bosons

 $m_W^2 W_\mu^+ W^{-\mu}$ Not Gauge invariant

Introduce scalar field

$$\mathcal{D}_{\mu}\Phi^{\dagger}\mathcal{D}_{\mu}\Phi = W^{a}_{\mu}W^{a\mu}\Phi^{\dagger}\Phi + \dots$$
 Gauge invariant

Spontaneous symmetry breaking

$$\Phi \to \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ H \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v+h \end{pmatrix} \qquad \qquad \frac{1}{2} g^2 v^2 = m_W^2$$

$$m_W^2 W_\mu^+ W^{-\mu} \left(1 + 2\frac{h}{v} + \frac{h^2}{v^2} \right)$$
$$\frac{1}{2} m_Z^2 Z_\mu Z^\mu \left(1 + 2\frac{h}{v} + \frac{h^2}{v^2} \right)$$

Higgs in SM

$$\Phi$$
 4 New degrees of freedom: 4=3+1

3 W_L^{\pm}, Z_L $M_W = \frac{g}{2}v$ $M_Z = \frac{\sqrt{g^2 + g'^2}}{2}v$ $M_A = 0$ 1 Higgs scalar h

Unitary problem

 $Scheetering and WWW \rightarrow WWW$

 $\mathcal{M}_{gauge} \sim \frac{s}{M_W^2}$ $s \gg M_W^2$

Dominant contribution from

 W_L^{\pm}, Z_L

Unitary problem

<u>Cancellation</u> of linear growing

$$\mathcal{M}_{gauge} + \mathcal{M}_{higgs}$$

(for a light scalar)

Fermion masses

SM is a chiral theory

$$SU(2)_L$$

 $Q_L \equiv \begin{pmatrix} u \\ d \end{pmatrix}_L$ $u_R \quad d_R$

 $m_d \, \bar{d}_L d_R + h.c.$ Not Gauge invariant

Fermion masses

• Yukawa coupling with scalar field

 $y_d \bar{Q}_L \Phi d_R + h.c.$ Gauge invariant

• SSB
$$\Phi \to \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v+h \end{pmatrix}$$

$$(m_d + h) \overline{d}_L d_R + h.c.$$

Higgs and fermion masses

H couples to mass

- Without symmetry breaking
 W, Z massless and massless fermions
- With symmetry breaking

$$\Phi \to \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ H \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v+h \end{pmatrix}$$

$$m_W^2 \left(WW + \frac{1}{2c_W^2} ZZ \right) \left(1 + \frac{2h}{v} + \frac{h^2}{v^2} \right)$$
$$m_f \bar{f} f \left(1 + \frac{h}{v} \right)$$

H couples to photons and gluons

Higgs Particle at LHC

Higgs couples to masses (tree-level) to photon-photon and gluon-gluon (loop-level)

Higgs Particle in PDG

H⁰

$$J = 0$$

Mass $m = 125.7 \pm 0.4$ GeV

H⁰ Signal Strengths in Different Channels

Combined Final States = 1.17 ± 0.17 (S = 1.2) $WW^* = 0.87^{+0.24}_{-0.22}$ $ZZ^* = 1.11^{+0.34}_{-0.28}$ (S = 1.3) $\gamma \gamma = 1.58^{+0.27}_{-0.23}$ $b\overline{b} = 1.1 \pm 0.5$ $\tau^+ \tau^- = 0.4 \pm 0.6$ $Z\gamma < 9.5$, CL = 95%

Search for SUSY and other BSM Signatures

A	ILAS SUST SE	arches	· - 9	J 70 V			AIL	$\sqrt{s} = 7.8 \text{ TeV}$
010	Model	e, μ, τ, γ	Jets	$E_{\rm T}^{\rm miss}$	∫£ dt[fb	¹] Mass limit		Reference
Inclusive Searches	$ \begin{array}{l} \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \overline{q}\bar{q}, \overline{q} \rightarrow q \overline{k}_{1,p}^0 \\ \overline{g}\bar{x}, \overline{k} \rightarrow q \overline{q} \overline{k}_{1,p}^0 \\ \overline{g}\bar{x}, \overline{k} \rightarrow q \overline{k} \rightarrow q \overline{k} \\ \overline{g}\bar{x}, \overline{k} \rightarrow q \overline{k} \rightarrow q \overline{k} \\ \overline{g}\bar{x}, \overline{k} \rightarrow q \overline{k} \rightarrow q \overline{k} \\ \overline{g}\bar{x}, \overline{k} \rightarrow q \overline{k} \\ \overline{g}\bar{x}, \overline{k} \rightarrow q \overline{k} \rightarrow q \overline{k} \\ \overline{g}\bar{x}, \overline{k} \rightarrow q \overline{k} \rightarrow q \overline{k} \\ \overline{g}\bar{x}, \overline{k} \rightarrow q \overline{k} \rightarrow q \overline{k} \\ \overline{g}\bar{x}, \overline{k} \rightarrow q \overline{k} \rightarrow q \overline{k} \\ \overline{g}\bar{x}, \overline{k} \rightarrow q \overline{k} \rightarrow q \overline{k} \\ \overline{g}\bar{x}, \overline{k} \rightarrow q \overline{k} \rightarrow q \overline{k} \\ \overline{g}\bar{x}, \overline{k} \rightarrow q \overline{k} \rightarrow q \overline{k} \\ \overline{g}\bar{x}, \overline{k} \rightarrow q \overline{k} \rightarrow q \overline{k} \rightarrow q \overline{k} $	$\begin{matrix} 0 \\ 1 e, \mu \\ 0 \\ 0 \\ 1 e, \mu \\ 2 e, \mu \\ 2 e, \mu \\ 1 \cdot 2 \tau + 0 \cdot 1 \ell \\ 2 \gamma \\ 1 e, \mu + \gamma \\ \gamma \\ 2 e, \mu (Z) \\ 0 \end{matrix}$	2-6 jets 3-6 jets 2-6 jets 2-6 jets 3-6 jets 3-6 jets 3-6 jets 0-3 jets 0-2 jets 1 b 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	4.8 1.2 8 1.1 9 850 GeV 8 1.1 9 850 GeV 8 1.18 8 1.12 8 1.12 8 1.24 8 619 GeV 8 900 GeV 8 600 GeV 8 600 GeV 8 600 GeV 8 600 GeV	$\begin{array}{ccc} 1.7 \mbox{TeV} & m(i) - m(i) \\ \mbox{fev} & any m(i) \\ \mbox{with} & m(i) + m(i) \\ \mbox{with} & m(i) \\ \mbox{with} & m(i) \\ \mbox{ev} & m(i) \\ \mbox{with} & m(i) \\ \mbox{ev} $	1405.7875 ATLAS-CONF-2013-062 1308.1841 1405.7875 ATLAS-CONF-2013-062 ATLAS-CONF-2013-069 1208.4688 1407.0603 ATLAS-CONF-2012-147 ATLAS-CONF-2012-147 ATLAS-CONF-2012-147
3 rd gen. ĝ med.	$\begin{array}{c} \tilde{g} \rightarrow b \tilde{b} \tilde{k}_{0}^{0} \\ \tilde{g} \rightarrow t \tilde{k}_{0}^{1} \\ \tilde{g} \rightarrow t \tilde{k}_{1}^{0} \\ \tilde{g} \rightarrow b \tilde{k}_{1}^{+} \end{array}$	0 0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 b 7-10 jets 3 b 3 b	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	 ₹ ₹	TeV m(ξ ⁰ ₁)<<400 GeV V m(ξ ⁰ ₁)<<350 GeV 41 TeV m(ξ ⁰ ₁)<<400 GeV 3 TeV m(ξ ⁰ ₁)<<300 GeV	1407.0600 1308.1841 1407.0600 1407.0600
3 rd gen. squarks direct production	$ \begin{array}{l} & \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{k}_1^0 \\ \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{k}_1^0 \\ \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{k}_1^0 \\ \tilde{c}_1 \tilde{c}_1 (light), \tilde{c}_1 \rightarrow b \tilde{k}_1^0 \\ \tilde{c}_1 \tilde{c}_1 (light), \tilde{b}_1 \rightarrow b \tilde{k}_1^0 \\ \tilde{c}_1 \tilde{c}_1 (light), \tilde{c}_1 \rightarrow b \tilde{k}_1^0 \\ \tilde{c}_1 \tilde{c}_1 \tilde{c}_1 - b \tilde{c}_1 \\ \tilde{c}_1 \tilde{c}_1 \tilde{c}_1 \tilde{c}_1 \\ \tilde{c}_1 \tilde{c}_1 \tilde{c}_1 \\ \tilde{c}_1 \tilde{c}_1 \tilde{c}_1 \\ \tilde{c}_1 \\ \tilde{c}_1 \tilde{c}_1 \\ \tilde{c}_$	$\begin{matrix} 0 \\ 2 e, \mu (SS) \\ 1-2 e, \mu \\ 2 e, \mu \\ 2 e, \mu \\ 0 \\ 1 e, \mu \\ 0 \\ 1 e, \mu \\ 0 \\ 3 e, \mu (Z) \end{matrix}$	2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b nono-jet/c-1 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.1 20.3 4.7 20.3 20.3 20.1 20 20.1 20.3 20.3 20.3 20.3	μ 100-620 GeV μ 275-440 GeV ζ 110-167 GeV ζ 110-210 GeV ζ 110-210 GeV ζ 150-580 GeV ζ 150-580 GeV ζ 150-580 GeV ζ 210-490 GeV ζ 280-640 GeV ζ 90-240 GeV ζ 290-600 GeV ζ 290-600 GeV	m(t ² ₁)<50 GeV m(t ² ₁)>z m(t ² ₁) m(t ² ₁)=m(t ² ₁) m(t ² ₁)=m(t)>50 GeV m(t ₁) <cm(t<sup>2₁) m(t²₁)=1 GeV m(t²₁)=20 GeV m(t²₁)-m(t²₁)=5 GeV m(t²₁)=0 GeV m(t²₁)=0 GeV m(t²₁)=55 GeV m(t²₁)=55 GeV m(t²₁)=55 GeV m(t²₁)=55 GeV</cm(t<sup>	1308.2631 1404.2500 1208.4305,1209.2102 1403.4853 1308.2631 1407.0583 1406.1122 1407.0608 1403.5222 1403.5222
EW direct	$ \begin{array}{c} \tilde{\ell}_{1,\mathbf{R}}\tilde{\ell}_{1,\mathbf{R}},\tilde{\ell}\rightarrow \ell\tilde{\kappa}_{1}^{0} \\ \tilde{\kappa}_{1}^{*}\tilde{\chi}_{1}^{*},\tilde{\chi}_{1}^{*}\rightarrow \tilde{\ell}\nu(\tilde{r}) \\ \tilde{\kappa}_{1}^{*}\tilde{\chi}_{1}^{*},\tilde{\chi}_{1}^{*}\rightarrow \tilde{\ell}\nu(\tilde{r}) \\ \tilde{\kappa}_{1}^{*}\tilde{\chi}_{2}^{*}\rightarrow \tilde{\ell}\nu_{1}\ell_{1}\ell(\tilde{r})\nu,\ell\tilde{\nu}_{1}\tilde{\ell}_{1}\ell(\tilde{r}) \\ \tilde{\kappa}_{1}^{*}\tilde{\chi}_{2}^{0}\rightarrow W_{1}^{*}\tilde{\chi}_{1}^{0} \\ \tilde{\kappa}_{1}^{*}\tilde{\chi}_{2}^{0}\rightarrow W_{1}^{*}\tilde{\chi}_{1}^{0} \\ \tilde{\kappa}_{1}^{*}\tilde{\chi}_{2}^{0}\rightarrow W_{1}^{*}\tilde{\mu}\tilde{\chi}_{1}^{0} \\ \tilde{\kappa}_{2}^{*}\tilde{\chi}_{2}^{*},\tilde{\chi}_{2}^{*}\rightarrow W_{1}^{*}\tilde{\mu}\tilde{\chi}_{1}^{0} \\ \tilde{\kappa}_{2}^{*}\tilde{\chi}_{2}^{*},\tilde{\chi}_{2}^{*}\rightarrow \tilde{\kappa}_{R}\ell \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ \tau \\ 3 \ e, \mu \\ 2 \ 3 \ e, \mu \\ 2 \ 3 \ e, \mu \\ 1 \ e, \mu \\ 4 \ e, \mu \end{array}$	0 0 - 0 2 b 0	Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	ž 90-325 GeV k1 140-465 GeV k1 100-330 GeV k1,k2 700 GeV k1,k2 420 GeV k1,k2 285 GeV k2,3 620 GeV	$\begin{split} m(\tilde{c}_{1}^{2}) &= O \text{GeV} \\ m(\tilde{c}_{1}^{2}) &= O \text{GeV} \\ m(\tilde{c}_{1}^{2}) &= O \text{GeV} (m(\tilde{c}_{1}^{2}) + m(\tilde{c}_{1}^{2})) \\ m(\tilde{c}_{1}^{2}) &= O \text{GeV} (m(\tilde{c}_{1}^{2}) + o \text{GeV} (m(\tilde{c}_{1}^{2}) + m(\tilde{c}_{1}^{2})) \\ m(\tilde{c}_{1}^{2}) &= m(\tilde{c}_{2}^{2}), \\ m(\tilde{c}_{1}^{2}) &= m(\tilde{c}_{2}^{2}), \\ m(\tilde{c}_{1}^{2}) &= m(\tilde{c}_{2}^{2}), \\ m(\tilde{c}_{1}^{2}) &= 0, \\ m(\tilde{c}_{1}^{$	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294, 1402.7029 ATLAS-CONF-2013-093 1405.5086
Long-lived particles	Direct $\tilde{\chi}_{1}^{\dagger}\tilde{\chi}_{1}^{-}$ prod., long-lived $\tilde{\chi}_{1}^{\pm}$ Stable, stopped \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_{1}^{0} \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e, GMSB, \tilde{\chi}_{1}^{0} \rightarrow \gamma \tilde{G}, \text{ long-lived } \tilde{\chi}_{1}^{0}$ $\tilde{q}\tilde{q}, \tilde{\chi}_{1}^{0} \rightarrow qq\mu$ (RPV)	Disapp. trk 0 ,μ) 1-2 μ 2 γ 1 μ, displ. vb	1 jet 1-5 jets - -	Yes Yes - Yes -	20.3 27.9 15.9 4.7 20.3	x̂1 270 GeV 832 GeV k̂1 475 GeV 832 GeV x̂1 230 GeV 475 GeV q̂ 1.0 TeV 1.0 TeV	$\begin{split} m(\tilde{\xi}_1^*) + m(\tilde{\xi}_1^0) &= 160 \text{ MeV}, \ r(\tilde{k}_1^*) &= 0.2 \text{ ns} \\ m(\tilde{\xi}_1^0) &= 100 \text{ GeV}, \ 10 \ \mu s < r(\tilde{g}) < 1000 \text{ s} \\ 10 < \tan \beta < 50 \\ 0.4 < r(\tilde{k}_1^0) < 2 \text{ ns} \\ 1.5 < < r < 156 \text{ mm}, \ BR(\mu) &= 1, \ m(\tilde{\xi}_1^0) = 108 \text{ GeV} \end{split}$	ATLAS-CONF-2013-069 1310.6584 ATLAS-CONF-2013-058 1304.6310 ATLAS-CONF-2013-092
RPV	$ \begin{array}{l} LFV \ pp \rightarrow \tilde{\mathbf{v}}_\tau + X, \tilde{\mathbf{v}}_\tau \rightarrow e + \mu \\ LFV \ pp \rightarrow \tilde{\mathbf{v}}_\tau + X, \tilde{\mathbf{v}}_\tau \rightarrow e(\mu) + \tau \\ Bilinear \ RPV \ CMSSM \\ \tilde{\mathcal{K}}_1^+ \tilde{\mathcal{K}}_1^-, \tilde{\mathcal{K}}_1^+ \rightarrow W \tilde{\mathcal{K}}_1^0, \tilde{\mathcal{K}}_1^0 \rightarrow ee\tilde{\nu}_\mu, e\mu \tilde{\nu}_e \\ \tilde{\mathcal{K}}_1^+ \tilde{\mathcal{K}}_1^-, \tilde{\mathcal{K}}_1^+ \rightarrow W \tilde{\mathcal{K}}_1^0, \tilde{\mathcal{K}}_1^0 \rightarrow \tau \tau \tilde{\nu}_e, e\tau \tilde{\nu}_\tau \\ \tilde{\mathcal{K}}_\tau^+ \tilde{\mathcal{K}}_1^-, \tilde{\mathcal{K}}_1^+ \rightarrow \tilde{\mathcal{K}}_1^0, \tilde{\mathcal{K}}_1^0 \rightarrow \tau \tau \tilde{\nu}_e, e\tau \tilde{\nu}_\tau \\ \tilde{\mathcal{K}}_\tau^- \tilde{\mathcal{K}}_1^-, \tilde{\mathcal{K}}_1^+ \rightarrow \tilde{\mathcal{K}}_1^0, \tilde{\mathcal{K}}_1^0 \rightarrow \tau \tau \tilde{\nu}_e, e\tau \tilde{\nu}_\tau \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 2 \ e, \mu (SS) \\ 4 \ e, \mu \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu (SS) \end{array}$	0-3 b - - - 6-7 jets 0-3 b	Yes Yes Yes Yes	4.6 4.6 20.3 20.3 20.3 20.3 20.3 20.3	5, 1.1 Tel 4, ž 1.1 Tel 4, ž 750 GeV 4, 1.3 750 GeV 4, 450 GeV 8 916 GeV 8 850 GeV	$\begin{array}{l c c c c c c c c c c c c c c c c c c c$	1212.1272 1212.1272 1404.2500 1405.5086 1405.5086 ATLAS-CONF-2013-091 1404.250
Other	Scalar gluon pair, sgluon $\rightarrow q\bar{q}$ Scalar gluon pair, sgluon $\rightarrow t\bar{t}$ WIMP interaction (D5, Dirac χ)	0 2 <i>e</i> , <i>µ</i> (SS) 0	4 jets 2 b mono-jet	Yes Yes	4.6 14.3 10.5	sgluon 100-287 GeV sgluon 350-800 GeV M* scale 704 GeV	incl. limit from 1110.2693 $m(\chi){<}80~{\rm GeV}, limit of{<}687~{\rm GeV}~{\rm for}~{\rm D8}$	1210.4826 ATLAS-CONF-2013-051 ATLAS-CONF-2012-147
	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8$ TeV	$\sqrt{s} = full$	8 TeV		10 ⁻¹ 1	Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 or theoretical signal cross section uncertainty.

Still believe in BSM physics at high energies

 $\Lambda \gg M_W$

BSM Signatures

Still believe BSM is there, at high energies
 Expect effects on Higgs couplings

Analysis

- in specific BSM models
- using effective Lagrangians
 - Model independent,
 - but have their own assumptions

Effective Lagrangian Approach

Integrate heavy BSM dof obtain d=6 operators formed with SM fields

quasi-SM Higgs

i.e. SM field with (slightly) modified couplings

This talk

Concentrate on the issues

different basis can be used

correlations among physical predictions

connection with experiments

Based on work EM 1406.6376 see also Gupta Pomarol Riva 1405.0181 Elias-Miro Espinosa EM Pomarol 1308.1879 Elias-Miro Grojean Gupta 1312.2928 .. others ...

related

Operator Basis

How many independent d=6 operators in \mathcal{L}_6 ??

(after using EOM, partial int., identities to eliminate redundancies)

59 (one family)

Buchmuller & Wyler 86 Grzadkowski, Iskrzynski, Misiak, Rosiek I 0

<u>59 ways to modify the SM</u> !! (many more for 3 families)

Operator Basis

Grzadkowski, Iskrzynski, Misiak, Rosiek 10

	X^3		φ^6 and $\varphi^4 D^2$	$\psi^2 arphi^3$					
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{φ}	$(arphi^\dagger arphi)^3$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$				
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi\Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$				
Q_W	$\varepsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$				
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$								
$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$					
$Q_{\varphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$				
$Q_{\varphi \widetilde{G}}$	$\varphi^{\dagger}\varphi\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$				
$Q_{\varphi W}$	$\varphi^{\dagger}\varphiW^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$				
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger}\varphi\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q_{\varphi q}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$				
$Q_{\varphi B}$	$\varphi^{\dagger}\varphiB_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q_{\varphi q}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$				
$Q_{\varphi \widetilde{B}}$	$\varphi^{\dagger}\varphi\widetilde{B}_{\mu u}B^{\mu u}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$				
$Q_{\varphi WB}$	$\varphi^{\dagger}\tau^{I}\varphiW^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$				
$Q_{\varphi \widetilde{W}B}$	$\varphi^{\dagger}\tau^{I}\varphi\widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$				

Table 2: Dimension-six operators other than the four-fermion ones.

	$(\bar{L}L)(\bar{L}L)$	$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$			
Q_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r) (\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$		
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$		
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$		
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r) (\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$		
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{u}_s \gamma^\mu u_t)$		
		$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$		
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$		
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$		
$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$	<i>B</i> -violating					
Q_{ledq}	$(ar{l}_p^j e_r)(ar{d}_s q_t^j)$	Q_{duq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(d_p^{\alpha})^T C u_r^{\beta}\right]\left[(q_s^{\gamma j})^T C l_t^k\right]$				
$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	Q_{qqu}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(u_s^{\gamma})^T C e_t\right]$				
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	$Q_{qqq}^{(1)}$	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\varepsilon_{mn}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(q_s^{\gamma m})^T C l_t^n\right]$				
$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$	$Q_{qqq}^{(3)}$	$\varepsilon^{\alpha\beta\gamma}(\tau^{I}\varepsilon)_{jk}(\tau^{I}\varepsilon)_{mn}\left[(q_{p}^{\alpha j})^{T}Cq_{r}^{\beta k}\right]\left[(q_{s}^{\gamma m})^{T}Cl_{t}^{n}\right]$				
$Q_{lequ}^{(3)} (\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$		Q_{duu}	$arepsilon^{lphaeta\gamma}\left[(d_p^lpha)^T C u_r^eta ight]\left[(u_s^\gamma)^T C e_t ight]$				

Table 3: Four-fermion operators.

Operator Basis

	$\mathcal{O}_{y_u} = y_u H ^2 \bar{Q}_L \widetilde{H} u_R$	$\mathcal{O}_{y_d} = y_d H ^2 ar{Q}_L H d_R$	$\mathcal{O}_{y_e} = y_e H ^2 ar{L}_L H e_R$
Giudice Groiean Pomarol Rattazzi 07	$\mathcal{O}_R^u = (iH^{\dagger} \overrightarrow{D}_{\mu} H)(\overline{u}_R \gamma^{\mu} u_R)$	$\mathcal{O}_R^d = (i H^\dagger \overleftrightarrow{D}_\mu H) (\overline{d}_R \gamma^\mu d_R)$	$\mathcal{O}_R^e = (iH^{\dagger} \overleftrightarrow{D}_{\mu} H)(\overline{e}_R \gamma^{\mu} e_R)$
	$\mathcal{O}_L^q = (iH^{\dagger} \overset{\leftrightarrow}{D_{\mu}} H)(\bar{Q}_L \gamma^{\mu} Q_L)$		$O_L^l = (iH^{\dagger} D_{\mu} H)(\overline{L}_L \gamma^{\mu} L_L)$
	$\mathcal{O}_L^{(3)q} = (iH^{\dagger}\sigma^a \overset{\leftrightarrow}{D}_{\mu}H)(\bar{Q}_L\gamma^{\mu}\sigma^a Q_L)$		$\mathcal{O}_L^{(3)l} = (iH^{\dagger}\sigma^a \overleftrightarrow{D_{\mu}}H)(\overline{L}_L \gamma^{\mu}\sigma^a L_L)$
$\mathcal{O}_{\mu} = \frac{1}{2} (\partial^{\mu} H ^2)^2$	$\mathcal{O}^u_{LR} = (ar{Q}_L \gamma^\mu Q_L) (ar{u}_R \gamma^\mu u_R)$	$\mathcal{O}_{LR}^d = (\bar{Q}_L \gamma^\mu Q_L) (\bar{d}_R \gamma^\mu d_R)$	$O_{LR}^e = (\bar{L}_L \gamma^\mu L_L)(\bar{e}_R \gamma^\mu e_R)$
$C_{H} = \frac{2}{2} (C_{H} + C_{H})^{2}$	$\mathcal{O}_{LR}^{(8)u} = (\bar{Q}_L \gamma^{\mu} T^A Q_L)(\bar{u}_R \gamma^{\mu} T^A u_R)$	$\mathcal{O}_{LR}^{(8)d} = (\bar{Q}_L \gamma^\mu T^A Q_L) (\bar{d}_R \gamma^\mu T^A d_R)$	
$\mathcal{O}_T = \frac{1}{2} \left(H^{\dagger} D_{\mu} H \right)$	${\cal O}^u_{RR}=(ar u_R\gamma^\mu u_R)(ar u_R\gamma^\mu u_R)$	$\mathcal{O}^d_{RR} = (ar{d}_R \gamma^\mu d_R) (ar{d}_R \gamma^\mu d_R)$	${\cal O}^e_{RR}=(ar e_R\gamma^\mu e_R)(ar e_R\gamma^\mu e_R)$
$\mathcal{O}_e = \lambda H ^6$	$\mathcal{O}^q_{LL} = (\bar{Q}_L \gamma^\mu Q_L) (\bar{Q}_L \gamma^\mu Q_L)$		$\mathcal{O}^l_{LL} = (\bar{L}_L \gamma^\mu L_L) (\bar{L}_L \gamma^\mu L_L)$
	$\mathcal{O}_{LL}^{(8)q} = (\bar{Q}_L \gamma^\mu T^A Q_L) (\bar{Q}_L \gamma^\mu T^A Q_L)$		
$\mathcal{O}_W = rac{ig}{2} \left(H^\dagger \sigma^a D^\mu H ight) D^ u W^a_{\mu u}$	$\mathcal{O}_{LL}^{ql} = (\bar{Q}_L \gamma^{\mu} Q_L) (\bar{L}_L \gamma^{\mu} L_L)$		
$\mathcal{O}_{-} = \frac{ig'}{ig'} \left(\mu^{\dagger} \overrightarrow{\mathcal{O}}_{\mu} \mu \right) \partial^{\mu} P$	$\mathcal{O}_{LL}^{(3)qi} = (Q_L \gamma^\mu \sigma^a Q_L) (L_L \gamma^\mu \sigma^a L_L)$		
$O_B = \frac{1}{2} \left(H D H \right) O B_{\mu\nu}$	${\cal O}_{LR}^{qee} = (Q_L \gamma^\mu Q_L) (ar e_R \gamma^\mu e_R)$		
$\mathcal{O}_{2W} = -rac{1}{2} (D^{\mu} W^a_{\mu u})^2$	$\mathcal{O}_{LR}^{lu} = (L_L \gamma^{\mu} L_L) (\bar{u}_R \gamma^{\mu} u_R)$	${\cal O}^{ld}_{LR}=(L_L\gamma^\mu L_L)(d_R\gamma^\mu d_R)$	
$\mathcal{O}_{2B}=-rac{1}{2}(\partial^{\mu}B_{\mu u})^{2}$	$\mathcal{O}_{RR}^{ua} = (\bar{u}_R \gamma^{\mu} u_R) (d_R \gamma^{\mu} d_R)$		
$\mathcal{O}_{2G} = -\frac{1}{2} (D^{\mu} G^{A}_{\mu\nu})^{2}$	$\mathcal{O}_{RR}^{(n)} = (\bar{u}_R \gamma^{\mu} T^{\Lambda} u_R) (d_R \gamma^{\mu} T^{\Lambda} d_R)$		
$\int \frac{d^2}{dt} = \frac{d^2}{dt} \frac{ \mathbf{H} ^2 \mathbf{P}}{ \mathbf{P} ^2} \frac{\mathbf{P} \mathbf{P}}{ \mathbf{P} ^2}$	$O_{RR}^{uc} = (u_R \gamma^{\mu} u_R)(e_R \gamma^{\mu} e_R)$	$\mathcal{O}_{RR}^{ac} = (d_R \gamma^{\mu} d_R) (e_R \gamma^{\mu} e_R)$	
$O_{BB} = g^{-} H ^{-}B_{\mu\nu}B^{\mu\nu}$	$\mathcal{O}_R^{ud} = y_u^\dagger y_d (i H^\dagger D_\mu H) (ar u_R \gamma^\mu d_R)$		
$\mathcal{O}_{GG}=g_s^z H ^z G^A_{\mu u}G^{A\mu u}$	$\mathcal{O}_{y_u y_d} = y_u y_d (\bar{Q}_L^\tau u_R) \epsilon_{rs} (\bar{Q}_L^s d_R)$		
$\mathcal{O}_{HW} = ig(D^{\mu}H)^{\dagger}\sigma^{a}(D^{\nu}H)W^{a}_{\mu\nu}$	$\mathcal{O}_{y_u y_d}^{(s)} = y_u y_d (Q_L^r T^A u_R) \epsilon_{rs} (Q_L^s T^A d_R)$		
$\mathcal{O}_{HB} = ig'(D^{\mu}H)^{\dagger}(D^{ u}H)B_{\mu u}$	$\mathcal{O}_{y_u y_e} = y_u y_e (Q_L^r u_R) \epsilon_{rs} (L_L^s e_R)$		
$\mathcal{O}_{3W} = \frac{1}{\alpha} q \epsilon_{abc} W^{a\nu} W^{b} W^{c\rho\mu}$	$\mathcal{O}'_{y_u y_e} = y_u y_e (Q_L^r \alpha e_R) \epsilon_{rs} (L_L^s u_R^\alpha)$		
$\mathcal{O}_{\alpha\alpha} = \frac{1}{2} \alpha f_{\mu} \sigma C^{A\nu} C^B C^C \rho \mu$	$\mathcal{O}_{y_e y_d} = y_e y_d' (L_L e_R) (d_R Q_L)$		-
$O_{3G} = \frac{1}{3!} g_{sJ} ABCO_{\mu} O_{\nu\rho}O$	$O_{DB}^{u} = y_u Q_L \sigma^{\mu\nu} u_R H g' B_{\mu\nu}$	$\mathcal{O}^d_{DB} = y_d Q_L \sigma^{\mu\nu} d_R H g' B_{\mu\nu}$	$\mathcal{O}^e_{DB} = y_e L_L \sigma^{\mu\nu} e_R H g' B_{\mu\nu}$
	$\mathcal{O}_{DW}^{u} = y_{u}Q_{L}\sigma^{\mu\nu}u_{R}\sigma^{a}HgW_{\mu\nu}^{a}$	$\mathcal{O}_{DW}^{d} = y_d Q_L \sigma^{\mu\nu} d_R \sigma^a H g W^a_{\mu\nu}$	$\mathcal{O}^e_{DW} = y_e L_L \sigma^{\mu u} e_R \sigma^a H g W^a_{\mu u}$
	$O_{DG}^{u} = y_u Q_L \sigma^{\mu\nu} T^A u_R H g_s G^A_{\mu\nu}$	$O_{DG}^a = y_d Q_L \sigma^{\mu\nu} T^A d_R H g_s G^A_{\mu\nu}$	

Other basis:

Hagiwara Ishihara Szalapski Zeppenfeld 93 Corbett Eboli Gonzalez-Fraile Gonzalez-Garcia

Rosetta Stone

Lathet-	Signer Dimotiques	Signs Biergyphiquel
	ບ.ບ.	22322212100
8	4.1.	6 + LJ.R.
Г	x -	00
4	e. 4.	00
E	1.	10
z	20.5	
н	HI JH. ch. ,m.	10. M. 20. 00. 01. 02. 02. 02. 00. 00. 00.
0		
1	~ m.	1) 11 10 mm 41.
K.		0000 ELMBODRAJ.C.A
Λ	1.1.1.	5.0 02. 0. 4. 5.0 02
M	3.3.	=. =. Ĩ. =. A
Ν.	2.2	8 5 5 5 mm anno . Ann
z	*	T.S.
0	11111	80.01 26
π	1.2	B. 6. C
P	1.1.1.	O O A D I D D I D A D MIN.
£		11
Т	4.6.4.4	0.0A
T.	1	
Φ	2	
*		
X	9	
s	-	
TO.		20+06 · 0 ···· 0 ·

2 5 130

01

Allowed the understanding of Egiptian hieroglyphs

Rosetta Stone

	X^3		ϕ^6 and $\phi^4 D^2$	$\psi^2 \varphi^3$	
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{φ}	$(\varphi^{\dagger}\varphi)^{3}$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$
$Q_{\tilde{G}}$	$f^{ABC} {\widetilde G}^{A\nu}_\mu G^{B\rho}_\nu G^{C\mu}_\rho$	$Q_{\varphi \square}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\tilde{\varphi})$
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$(\varphi^{\dagger}D^{\mu}\varphi)^{\star}(\varphi^{\dagger}D_{\mu}\varphi)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$
$Q_{\widetilde{W}}$	$\varepsilon^{IJK} \widetilde{W}^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$				
$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$	
$Q_{\varphi G}$	$\varphi^{\dagger}\varphi G^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger} i \overset{\leftrightarrow}{D}_{\mu} \varphi)(\overline{l}_{p} \gamma^{\mu} l_{r})$
$Q_{\varphi \widetilde{G}}$	$\varphi^{\dagger}\varphi \widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}i \overleftrightarrow{D}_{\mu}^{I} \varphi)(\overline{l}_{p} \tau^{I} \gamma^{\mu} l_{r})$
$Q_{\varphi W}$	$\varphi^{\dagger}\varphi W^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \tilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger} i \overset{\leftrightarrow}{D}_{\mu} \varphi)(\bar{e}_{p} \gamma^{\mu} e_{r})$
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger}\varphi \widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \tilde{\varphi} W^I_{\mu\nu}$	$Q_{\varphi q}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\overline{q}_{p}\gamma^{\mu}q_{r})$
$Q_{\varphi B}$	$\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tilde{\varphi} B_{\mu\nu}$	$Q_{\varphi q}^{(3)}$	$(\varphi^{\dagger}i \overset{\leftrightarrow}{D}{}_{\mu}^{I} \varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$
$Q_{\varphi \widetilde{B}}$	$\varphi^{\dagger}\varphi \widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \varphi)(\overline{u}_{p} \gamma^{\mu} u_{r})$
	$\phi^{\dagger} \tau^{I} \phi W^{I}_{\mu\nu} B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \varphi)(\overline{d}_{p}\gamma^{\mu}d_{r})$
$Q_{\varphi WB}$		-			

d=6 operators

Looking for a clear relation

Experimental measurements

Coupling basis

Approaching the Rosetta Stone

- Connection with experiment
- Correlations are clear

Correlations

Correlations among observables are expected

- gauge invariance restricts operator form
- not all possible operators are independent

Simple example:

In SM:
$$\mathcal{L}_4$$
 $m_W^2 \left(W^{+\mu} W_{\mu}^- + \frac{1}{2 c_w^2} Z^{\mu} Z_{\mu} \right) \left(1 + \frac{2h}{v} + \frac{h^2}{v^2} \right)$
In BSM: $\mathcal{L}_4 + \mathcal{L}_6$ **??**

Relations preserved ?

Connection with Experiment Coupling Basis

$$\mathcal{L}_6 = \sum_a rac{c_a}{\Lambda^2} \mathcal{O}_a$$

couplings {a}

$$\frac{c_a}{\Lambda^2} \mathcal{O}_a^{unit} = \eta_a \left(\widehat{\mathcal{D}}_a + \delta \mathcal{D}_a \right)$$

$$\bigvee_{V^3 Zff h\gamma\gamma \dots} \text{ independent } \{a\}$$

{a} define "directions" in operator space

Start with monomial operators
 Combine them to get Coupling basis

Splitting

In this talk I will discuss these 17 operators

Higgs-only Sector

 \bigstar operators have form: $|\Phi|^2 \mathcal{O}_4 \rightarrow (v+h)^2 \mathcal{O}_4$ It can only be tested in Higgs physics: $v^2 \mathcal{O}_4 \rightarrow \mathcal{O}_{SM}$

Example:

8 operators/couplings in Higgs-only Sector

3 hff
$$f = t, b, \tau$$
 $\mathcal{O}_{y_u} = y_u |\Phi|^2 \bar{Q}_L \widetilde{\Phi} u_R$, $\mathcal{O}_{y_d} = y_d |\Phi|^2 \bar{Q}_L \Phi d_R$,
 $\mathcal{O}_{y_e} = y_e |\Phi|^2 \bar{L}_L \Phi e_R$,

h

$$\mathcal{O}_{GG} = g_s^2 |\Phi|^2 \mathcal{G}^A_{\mu\nu} \mathcal{G}^{A\mu\nu}$$

$$\begin{split} h\gamma\gamma\\ h\gamma Z\\ D_{BB} &= g'^2 |\Phi|^2 B_{\mu\nu} B^{\mu\nu} \quad \mathcal{O}_{WW} &= g^2 |\Phi|^2 \mathcal{W}^a_{\mu\nu} \mathcal{W}^{a\,\mu\nu}\\ h^3 \qquad \mathcal{O}_6 &= \lambda |\Phi|^6\\ \mathcal{O}_6 &= h(WW + \frac{1}{2c_W^2} ZZ) \qquad \mathcal{O}_r &= |\Phi|^2 |D_\mu \Phi|^2 \end{split}$$

 \mathcal{O}_6

Higgs-only Sector

$$h(VV)c = h(WW + \frac{1}{2c_W^2} ZZ) \qquad \mathcal{O}_r = |\Phi|^2 |D_\mu \Phi|^2 \qquad \mathcal{O}_6$$

$$\mathcal{D}_{h(VV)_c} = v(hP_3) \left[W^{+\mu}W^{-}_{\mu} + \frac{1}{2c_w^2} Z^{\mu}Z_{\mu} \right] + \frac{m_f}{4m_W^2} (h^2Q_1)\bar{f}f + \frac{m_h^2}{12m_W^2} (h^4Q_2)$$

$$P_{3} = 1 + \frac{2h}{v} + \frac{4h^{2}}{3v^{2}} + \frac{h^{3}}{3v^{3}} ,$$

$$Q_{1} = 1 + \frac{h}{3v} ,$$

$$Q_{2} = 1 + \frac{3h}{4v} + \frac{h^{2}}{8v^{2}} .$$

Higgs-only Sector

$$h(VV)c = h(WW + \frac{1}{2c_W^2}ZZ) \qquad \mathcal{O}_r = |\Phi|^2 |D_\mu \Phi|^2 \qquad \mathcal{O}_6$$
$$\mathcal{D}_{h(VV)c} = v(hP_3) \left[W^{+\mu}W^-_\mu + \frac{1}{2c_w^2}Z^\mu Z_\mu \right] + \frac{m_f}{4m_W^2}(h^2Q_1)\bar{f}f + \frac{m_h^2}{12m_W^2}(h^4Q_2)$$

$$P_{3} = 1 + \frac{2h}{v} + \frac{4h^{2}}{3v^{2}} + \frac{h^{3}}{3v^{3}} ,$$

$$Q_{1} = 1 + \frac{h}{3v} ,$$

$$Q_{2} = 1 + \frac{3h}{4v} + \frac{h^{2}}{8v^{2}} .$$

8 Higgs-only Couplings

7 operators/couplings

Z	$f_R f_R$	
	t,b, au	

 $Z \mathop{f_L f_L}\limits_{t,\,b,\, au,\,
u}$

Example:

$$\mathcal{D}_{ZeL} = \left(1 + \frac{2h}{v} + \frac{h^2}{v^2}\right) \left[Z_{\mu} \ \bar{e}_L \gamma^{\mu} e_L - \frac{c_w}{\sqrt{2}} \ W^+_{\mu} \ \bar{\nu}_L \gamma^{\mu} e_L + \text{h.c.}\right]$$

7 operators/couplings

 $Z f_R f_R t, b, au$

(Remember discussion on S-parameter)

Example:

$$\mathcal{D}_{ZeL} = \left(\mathbf{1} + \frac{2h}{v} + \frac{h^2}{v^2}\right) \left[\mathbf{Z}_{\mu} \ \bar{e}_L \gamma^{\mu} e_L - \frac{c_w}{\sqrt{2}} \ \mathbf{W}_{\mu}^{+} \ \bar{\nu}_L \gamma^{\mu} e_L + \text{h.c.}\right]$$

Higgs-TGC Operators

2 operators/couplings

Summary

Measuring h-physics one probes v

Higg-only (8) Higgs - Z pole Higgs - TGC

> Only in the 8 only-Higgs sth new is measured

Directions

$$\frac{c_a}{\Lambda^2} \mathcal{O}_a^{unit} = \eta_a \left(\widehat{\mathcal{D}}_a + \delta \mathcal{D}_a \right) \bigoplus$$

Exact expressions given in EM 1406.6376

Higgs-only

 $Z \qquad J_R \oplus Z \qquad J_R$

 $Z_{L} \oplus Z_{L} \longrightarrow J_{L}$

Higgs-TGC

Example of Correlations

contact term $hV_{\mu}\bar{f}\gamma^{\mu}f$ $h \to Vff$

Example of Correlations

contact term $hV_{\mu}\bar{f}\gamma^{\mu}f$ $h \to Vff$

CONCLUSIONS

Effective Lagrangian approach is a model independent tool to analyse BSM physics

Assumptions: all new physics integrated at high energies, d=6 dominance, etc

Coupling basis to clearly see presence (or absence) of correlations

back up

More Example of Correlations

Example of <u>NO</u> Correlations

 $J_R \oplus$

 $J_L \oplus$

 ∂W

 $W \bigoplus_{W} \bigoplus$

Example Correlations (not involving Higgs)

from cubic to quartic

