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Abstract

We introduce a class of models with a harmonic oscillator coupled
to an infinite number of harmonic oscillators. Though the model is
free, it requires renormalization. We discuss two models in particular,
one mimicking the renormalization of a three dimensional scalar theory,
and the other that of a four dimensional scalar theory.
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Introduction

1. We often think of the necessity of UV renormalization as a consequence
of non-linear interactions in relativistic field theory.

2. We will show that even in the absence of non-linearity UV renormalization
becomes necessary when a degree of freedom is coupled to an infinite
number of degrees of freedom whose energy goes all the way to infinity.

3. The model was originally introduced by Dirac in his textbook. (Chapter
VIII, §52 on resonance scattering) It is here transcribed in the language
of harmonic oscillators.

4. The Lee model (Phys. Rev. 95, 1329(1954)) is a particular example.
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The plan of the talk

1. The model of free harmonic oscillators

2. Green function

3. Dispersion relation

4. First example — renormalization of mass

5. Second example — renormalization of mass, coupling, wave function

6. Conclusions
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The model

1. The hamiltonian is given by H = H0 +HI where

{
H0 = Ω a†a +

∑
n ωna

†
nan

HI = −
∑

n gn
(
a†
na + a†an

) Ωωn ωnΩ

2. Physical interpretations

physics a an
atomic transition excited atom radiations
meson decay J/ψ e+e− pairs

Cooper’s model ? Cooper’s pairs
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Green function

1. Define |0〉 by
a |0〉 = an |0〉 = 0

2. Retarded Green function

GR(t) ≡ θ(t) 〈0| a e
−iHt

a
† |0〉

gives the probability amplitude that the state a† |0〉 (of energy Ω) remains
intact after time t.

We define the Fourier transform:

G(ω) ≡
1

i

∫ ∞

−∞
dt e

iωt
GR(t) = 〈0| a

1

ω − H + iε
a
† |0〉
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3. Complex valued Green function (resolvent): ω + iε −→ z is analytic in
the upper half plane:

G(z) ≡ 〈0| a
1

z − H
a
† |0〉

4. Computing G by summing a geometric series

G(z) = 〈0| a
1

z − H
a
† |0〉

= 〈0| a
1

z − H0

∞∑
k=0

(
HI

1

z − H0

)k

a
† |0〉

= +

z- Ω
1

n

g
n

g
n

n

g
n

+ + .....
n’

g
n’

g
n’

g
n
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=
1

z − Ω

∞∑
l=0

(∑
n

g
2
n

1

z − Ω

1

z − ωn

)l

=
1

z − Ω −
∑

n g2
n

1
z−ωn

5. In the infinite volume limit, g2n gives a continuous function of frequency:

g
2
ω ≡ lim

V→∞
g
2
nδ(ω − ωn) dimension of frequency

6. Green function in the infinite volume limit

G(z) =
1

z − Ω −
∫
dω g2

ω
1

z−ω

7. The positive function g2ω characterizes the model.
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8. Assume g2ω 6= 0 only for ω ∈ [ωL, ωH].

G(z) =
1

z − Ω −
∫ ωH
ωL

dω g2
ω

1
z−ω

Two cutoffs: ωL (infrared) & ωH (ultraviolet)

ω

ωL ωH

g
ω
2

0

Ω

Figure 1: A continuum of states within an energy band
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Dispersion relation

1. G(z) is analytic with a cut on the real axis between ωL and ωH, and
possible isolated singularities (bound states) on the real axis.

ω
H

ω
L

analyticG(z) z

2. The imaginary part above the real axis is

=G(ω + iε) =
−πg2

ω

b2ω + π2g4
ω

where
bω ≡ ω − Ω −

∫ ωH

ωL

dω
′
g
2
ω′P

1

ω − ω′
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3. dispersion relation

G(z) =
∑
i

ri

z − ωi

+

∫ ωH

ωL

dω
1

z − ω
ρ(ω)

where ρ is a positive spectral function

ρ(ω) ≡ −
1

π
=G(ω + iε) =

g2
ω

b2ω + π2g4
ω

> 0

ω

ωL ωH

0

Ω

ρ(ω)

γ

(a) ρ(ω) has a peak near Ω.

(b) The width of the peak gives the
decay width.

(c) ri > 0 is the probability that a† |Ω〉
is the i-th bound state.
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4. The sum rule: the asymptotic behavior G(z)
|z|→∞−→ 1

z implies

∑
i

ri +

∫ ωH

ωL

dω ρ(ω) = 1

Normalization of the state a† |0〉:

〈0| aa† |0〉 = 1
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First example

1. Constant g2ω = g2 (ωL < ω < ωH) gives

G(z)
−1

= z − Ω − g
2
∫ ωH

ωL

dω
1

z − ω
= z − Ω − g

2
ln

z − ωL

z − ωH

ω
L0 ω

H

ω

ω

Ω

Figure 2: Plot of ω − g2 ln(ω − ωL)/(ω − ωH) for ωL < Ω < ωH
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2. Two isolated states, one below ωL (attractive), another above ωH

(repulsive) arise.

3. Second order perturbation theory gives

∆ωn =
g2
n

ωn − Ω
=

{
negative (ωn < Ω)

positive (ωn > Ω)

4. ωH →∞ limit

G(z)
−1

= z − Ω − g
2
ln

ωL − z

ωH − z

= z − Ω − g
2
ln

µ

ωH − z
− g

2
ln

ωL − z

µ

ωH→∞
−→ z − Ωr − g

2
ln

ωL − z

µ
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where

Ωr ≡ lim
ωH→∞

(
Ω + g

2
ln

µ

ωH

)
is the renormalized frequency (mass).

Gr(z)
−1

= z − Ωr − g
2
ln

ωL − z

µ

5. Renormalization group equation(
µ

∂

∂µ
+ g

2 ∂

∂Ωr

)
Gr(z) = 0

6. Gr has only one pole at ω = ωb < ωL:

ωb − Ωr − g
2
ln

ωL − ωb

µ
= 0 =⇒ ωb = ωL − g

2
W0

(
µ

g2
e
−Ωr

g2

)
H. Sonoda
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where W0 is the Lambert W function defined by W0(x)e
W0(x) = x.

7. The bound state frequency ωb is an RG invariant:(
µ

∂

∂µ
+ g

2 ∂

∂Ωr

)
ωb = 0

(µ,Ωr) and (µe∆t,Ωr + g2∆t) give the same physics.

8. Dispersion relation for the continuum limit

Gr(z) =
rb

z − ωb

+

∫ ∞

ωL

dω
ρ(ω)

z − ω

where

ρ(ω) =
g2(

ω − Ωr − g2 ln
ω−ωL

µ

)2

+ π2g4
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ω
ω
L

π g2

ω
b

ρ(ω)

Ωr

Figure 3: The narrow (∼ µe−
Ωr−ωL

g2 ) peak at the threshold ωL is an artifact
due to the discontinuity of g2ω at ω = ωL.

9. The example is similar to the superrenormalizable φ4 theory in D = 3
which requires renormalization of only the squared mass.
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Second example

1. Consider g2ω = ω ḡ2 where ḡ2 is a dimensionless constant.

G(z)
−1

= z − Ω + ḡ
2

(
ωH − ωL − z ln

z − ωL

z − ωH

)

ω
L

ω
H

ω

ω
0

Ω

Figure 4: Plot of ω
(
1 − ḡ2 ln

ω−ωL
ω−ωH

)
, where Ω̄ ≡ Ω − ḡ2(ωH − ωL) > 0
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2. Relation to the Lee model (Phys. Rev. 95 (1954) 1329; stationary nucleons
of mass difference ∆M = Ω interacting with a neutral meson of mass
m) V ←→ N + φ

HI = g

∫
d
3
x
(
V̄ Nφ

−
+ N̄V φ

+
)

=⇒ g
2
ω =

g2

4π2

√
ω2 − m2 ω�m−→ ω

g2

4π2

3. For ωH →∞, we need three types of renormalization:

(a) wave function

Z = 1 + ḡ
2
ln

ωH

µ

(b) mass

Ωr =
Ω̄

Z
(c) coupling

ḡ
2
r =

ḡ2

Z

H. Sonoda
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4. Renormalized Green function

Gr(z) ≡ lim
ωH→∞

Z · G(z) =
1

z − Ωr − ḡ2
rz ln

ωL−z

µ

has a ghost pole.

0 ωω
Lexp(1/g  )2

r
ω  − µ
L

Ωr

Figure 5: A ghost pole ωt is found below ωL − µ e
1
ḡ2r
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The ghost has a negative norm:

Gr(z)
ω→ωt−→

zt

ω − ωt

(zt < 0)

5. Gr(z) is unphysical! =⇒ The limit ωH →∞ does not exist.

6. Triviality

ḡ
2
r =

ḡ2

1 + ḡ2 ln
ωH
µ

=
1

1
ḡ2

+ ln
ωH
µ

ωH→∞
−→ 0

(a) Inequality
1

ḡ2
r

≤
1

ln
ωH
µ

⇐⇒ ωH ≤ µ e
1
ḡ2r

(b) Landau pole ḡ2 =∞ at ωH = µ e
1
ḡ2r .
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7. We can take ωH large but only finite. The same as in

(a) The Lee model
(b) φ4 theory in D = 4
(c) QED
(d) the Standard Model

8. Comments

(a) We can make the Lee model “equivalent” to our model by

g2

4π2
→

g2
ω

~p 2
=

g2
ω

ω2 − m2

(b) Our model becomes similar to the large N limit of the O(N) linear σ
model in D dimensions if we choose

g
2
ω ∝ ω

D−3
2 < D ≤ 4

H. Sonoda
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Conclusions

1. We have seen that such simple models as non-interacting harmonic
oscillators can provide us with non-trivial examples of UV renormalization.

2. Renormalization is necessary when an infinite number of degrees of
freedom with energy going toward infinity is mixed with a finite number
of degrees of freedom.

3. Example 2 gives us a nice example of the physics of “triviality.”

4. The model reproduces only the mathematical prescription for
renormalization. Scaling picture is missing!

5. Possible generalization to mimic 1-loop renormalization of multiple
parameters?
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