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Abstract

We introduce a class of models with a harmonic oscillator coupled
to an infinite number of harmonic oscillators. Though the model is
free, it requires renormalization. We discuss two models in particular,
one mimicking the renormalization of a three dimensional scalar theory,
and the other that of a four dimensional scalar theory.



Introduction

1. We often think of the necessity of UV renormalization as a consequence
of non-linear interactions in relativistic field theory.

2. We will show that even in the absence of non-linearity UV renormalization
becomes necessary when a degree of freedom is coupled to an infinite
number of degrees of freedom whose energy goes all the way to infinity.

3. The model was originally introduced by Dirac in his textbook. (Chapter

VIII, §52 on resonance scattering) It is here transcribed in the language
of harmonic oscillators.

4. The Lee model (Phys. Rev. 95, 1329(1954)) is a particular example.
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The plan of the talk

. The model of free harmonic oscillators

. Green function

. Dispersion relation

. First example — renormalization of mass

. Second example — renormalization of mass, coupling, wave function

. Conclusions

H. Sonoda



The model

1. The hamiltonian is given by H = Hy + H; where

2. Physical interpretations

Hy = Qa'a + > wna:r%an 0 0
{ Hy = —>. 9n (aLa + aTan) "<o<
physics a Qnp,
atomic transition excited atom radiations
meson decay J /1 ete™ pairs
Cooper’'s model ?

Cooper's pairs
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Green function

1. Define |0) by
al0) =a,|0) =0
2. Retarded Green function

Gr(t) = 0(¢t) (0lae " a'|0)

gives the probability amplitude that the state a' |0) (of energy Q) remains
intact after time ¢.

We define the Fourier transform:

1 [ iw 1
G(w)E;/ dt e tGR(t):<O|aw—H—|—iea”0>
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. Complex valued Green function (resolvent): w + ie — z is analytic in

the upper half plane:

G(z) = (0] a

1
a'|0)
H

Z_

. Computing GG by summing a geometric series

G(z) = (0la———a'0)
00 1 k ;
= Ol a H a'l|0
| Z—Hokz_;< IZ—H0> B
n n n
= 1 + *—© + —0—0—0—
z- Q gn gn gn gn 'gn g
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I , 1 1
- z—le:;(zn:gnz—Qz—wn>

1
z—Q—=> g%z_lw”

5. In the infinite volume limit, g2 gives a continuous function of frequency:

gi = lim 925 (w — wy,) dimension of frequency

V—

6. Green function in the infinite volume limit

1
z—Q— [dwg?2

z—Ww

G(z) =

7. The positive function g2 characterizes the model.
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8. Assume g2 # 0 only for w € [wr,, wr].
1
G(z) =
(2) z—Q — ijH dw g2 =
Two cutoffs: wy, (infrared) & wy (ultraviolet)
2 A
g
W
0 .

Wi

Q

W

Figure 1: A continuum of states within an energy band
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Dispersion relation

1. G(z) is analytic with a cut on the real axis between wy and wpy, and

possible isolated singularities (bound states) on the real axis.

G z) analytic |_z

0V W
L H

2. The imaginary part above the real axis is

where

b

2
. —Tg
SG(w + 1€) = -
“H ! 2 1
w— Q — / dw gw/P
w w— w’

L
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3. dispersion relation

Tr; “H 1
G(z)—zi:z_wi—l—/wj: dwz_wp(w)
where p is a positive spectral function
_ 1. . 9
p(w) = —;\SG((U + i€) = ey > 0
(a) p(w) has a peak near €.
p(w)?
(b) The width of the peak gives the
decay width.
0 Y ®
w, 0 ®, " (c) r; > 0 is the probability that a|Q)

Is the 7-th bound state.
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|z| =00 1
z

4. The sum rule: the asymptotic behavior G(z) — = implies

wH
Zri—l—/ dw p(w) =1

L

Normalization of the state a' |0):

(0] aa’]0) = 1
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First example

1. Constant g2 = ¢° (wp <w < wg) gives

_ “H 1 zZ — Wy,
G(z)lzz—ﬂ—g2/ dw —z2-Q—g¢g'In=—=
wr Z — W Z — WH

A w

Q :
W w
e |0 L Hg/

Figure 2: Plot of w — ¢g*In(w — wr,)/(w — wg) for wy, < Q < wpy
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2. Two isolated states, one below wj (attractive), another above wpy
(repulsive) arise.

3. Second order perturbation theory gives

gn negative (w, < Q)
Aw, = ————— = .
positive (w, > Q)

4. wyg — oo limit

_ wrp — 2
G(z)™" = z—Q—gzlnwz_Z
wr — 2
= z—Q—gzln - —g21n L
wH — 2 0
W —>00 Wi, — 2

— z—QT—g2ln
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where

Q, =

lim
wH—>OO

(o

+ g2 In L)

WH

is the renormalized frequency (mass).

G(z) '=2—-Q,—¢°In L2
7’
5. Renormalization group equation
o ., 0
— G.(2) =0
(“’au +g am) (2)

6. G, has only one pole at w = wp < wy:

U

2 Wwr, Wh
wp — 2 — g In——

:O:>wb:wL—92W0<

ﬂe g

g

2

Qr

2

)

14
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where W, is the Lambert W function defined by Wy(x)e"o(®) = ».

7. The bound state frequency wy is an RG invariant:

(v ) =0
_ WO —
Ma'u gc’?QT b

(1, Q) and (ue?t, Q,. + g?At) give the same physics.

8. Dispersion relation for the continuum limit

™ Ju p(w)

wL

Gr(z) =

Z — Wy Z— W

where

p(w) =
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p(w)

_Qr—wL
Figure 3: The narrow (~ pe  9° ) peak at the threshold wy, is an artifact
due to the discontinuity of g2 at w = wr.

9. The example is similar to the superrenormalizable ¢* theory in D = 3
which requires renormalization of only the squared mass.
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Second example

1. Consider g2 = w g* where §° is a dimensionless constant.

Gz '=2—-Q+7 (wH—wL—zlnﬂ>

Z — WH

Figure 4: Plot of w (1 — g°ln “_‘”L>, where Q = Q — §*(wyg — wr) > 0

OJ—OJH
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2. Relation to the Lee model (Phys. Rev. 95 (1954) 1329; stationary nucleons
of mass difference AM = ) interacting with a neutral meson of mass

m) V= N+¢

H; =g / 4Pz (VN¢_ + NV¢+) — g

2 2

2 g 2 2 w>>?’(b g
w == —2 we —1m 7> W 5
47 47

3. For wyg — 00, we need three types of renormalization:

(a) wave function

(b) mass

(c) coupling

Z =1+g*ln-2
I
Q
Q, = —
Z
7=
g
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4. Renormalized Green function

: 1

G.(z) = lim Z- -G(z)= ——

WH 00 z —Q, — g2z1ln-L
has a ghost pole.
A
o
zz 0 ooL Voo

w —pexp(1l/g =) ;

1
Figure 5: A ghost pole w; is found below wy — pe 9
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The ghost has a negative norm:

w—)wt 2t

Gr(2)

(Zt < 0)

W — Wt

5. G(2) is unphysicall = The limit wy — oo does not exist.

6. Triviality
_2 §2 . 1 WH 0
" 1+g21n°"f g%—l—lanH
(a) Inequality
1 1 < ng
§2 _lnw_H<:>wH_,ue T
T p
1

—~2

(b) Landau pole g = 0o at wy = pedr.

20
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7. We can take wpy large but only finite. The same as in

(a) The Lee model

(b) ¢* theory in D = 4
(c) QED

(d) the Standard Model

8. Comments

(a) We can make the Lee model “equivalent” to our model by

2 2 2
N P

472 P2 w?2—m?

(b) Our model becomes similar to the large N limit of the O(V) linear o
model in D dimensions if we choose

giocwD_S 2<D< A4
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Conclusions

. We have seen that such simple models as non-interacting harmonic
oscillators can provide us with non-trivial examples of UV renormalization.

. Renormalization is necessary when an infinite number of degrees of
freedom with energy going toward infinity is mixed with a finite number
of degrees of freedom.

. Example 2 gives us a nice example of the physics of “triviality.”

. The model reproduces only the mathematical prescription for
renormalization. Scaling picture is missing!

. Possible generalization to mimic 1-loop renormalization of multiple
parameters?
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