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Motivation: Early Universe

Big-Bang model explains cosmological evolutions largely, but
observations also indicate puzzling issues: Horizon and
Flatness problem

These can be resolved by invoking Inflation: era of exponential
expansion in early universe (Guth, Linde, Starobinsky).

No detailed physical phenomena known to explain inflation

Several models exists in order to explain inflation and get the
required 60 e-folds to resolve issues

One possible way (the easiest) is to have the inflation driven
by vacuum energy density of the space-time (also known as
cosmological constant), which has negative pressure

Einstein’s equation then tells accelerated expansion giving rise
to maximally symmetric space-time

Therefore it is widely believed that the early universe had a
DeSitter phase



Motivation: Late Times

Recent cosmological observations indicate that the present
universe is undergoing accelerated expansion

CMB observation indicate that universe is close to flat, and to
account for this flatness one needs about 70% of dark energy

This is further confirmed independently by observations of
large scale structures

One simplest possible way of explaining this is to have
acceleration driven by vacuum energy having a negative
pressure

To this date this is the best explanation for the dark energy
fitting the variety of observations to a great accuracy

In these times of accelerated expansion it is expected that the
space-time of universe will be of DeSitter type



Motivation: QFT in curved Space-time

Efforts to combine quantum mechanics and General Relativity
led to research area quantum gravity

At present many approaches to quantum gravity exist, but in
all these approaches there are some short comings

While these problems remains unsettled, its good to study
quantum matter fields on curved background, in an effort to
understand how the background curvature might effect the
known physical phenomenas and QFT of flat space-time

Such studies also indicate the energy up to which these
analysis can be trusted and where it breaks down



Scalar Fields on DeSitter

First for simplicity scalar fields were studied

It was found that for massive scalar there is one-parameter
family of DeSitter invariant vacuum states, of which the
“euclidean” vacuum is special, as the Green’s function has
Hadamard form at short distances

For massless scalar there is no DeSitter invariant vacuum
state. DeSitter invariance is broken as there is growing
behaviour in the propagator in the IR regime

Also the massless limit of the massive propagator is not well
defined

A problematic massless limit of massive propagator and a
problematic IR divergent massless propagator, put the
perturbative QFT procedure at stake



Scalar Propagator: Remedies

Treating scalar theory as a kind of gauge theory, removing the
problematic term of the propagator via gauge fixing. The path
integral has BRST symmetry and new propagator is well-defined
(Folacci 92)

Subtracting the problematic term by hand (Bros 2010), however
this propagator exhibits growing behaviour in IR

The problematic term is arising due to zero mode, should be
removed in order to have smooth massless limit

IR problem present at tree-level only: incorporating a small local
interaction generates a dynamical mass due to quantum corrections,
thereby resolving IR problems (Burgess 2010, Serreau 2011). This
can be done perturbatively or non-perturbatively by summing
infinite set of cactus diagrams

A non-vanishing mass was also witnessed in the stochastic approach
(Starobinsky 1994)

In these cases it is safe to take massless limit



Scalar Propagator: Remedies

The problem is important as the massless and IR limit of the
massive propagator doesn’t commute (which is not so in flat
space-time), thereby implying that even a small amount of
curvature, as in the present universe might lead to drastic
puzzling results

While the dust on this has not yet been settled, we choose to
investigate the issues in the case of vector fields



Vector Fields

Vector fields are important in standard model of particle physics

Behaviour of photon field

Vectors needed to study the nature of force carrier

They can be massive (electroweak gauge theories) and massless
(photon, gluon)

At high energies all vectors are massless, but acquire mass via Higgs
mechanism at low energies.

Present standard model is set in flat space-time (renormalizable). In
curved space-time it is non-renormalizable, as path-integral is not
defined.

Small but nonzero curvature still a problem, as one has to deal with
curved space QFT

Most of cosmological data we get is in form of Photons. Therefore
it is important to have a sensible quantum theory describing them in
curved space-time

As they play important role in SM, therefore crucial to investigate
their behaviour in the expanding universe



Vectors Fields: Past Studies

First study on Electromagnetic fields on maximally symmetric
spaces (Katz, Peters)

More extensive study of Green’s function was conducted in
(Allen and Jacobson 1986). But many issues like gauge
dependence, massless limit and infrared divergences have been
left out.

Recently gauge dependences and IR pathologies have been
studied (Youssef 2010). IR divergences are purely gauge
artefacts and disappear in Landau gauge.

Massive vector fields have recently been studied more
accurately (Higuchi 2014)

We use path-integrals methods to find the equation satisfied
by two-point correlation function, and find the solution to it
by applying appropriate boundary conditions



Bitensors

In performing the computation of Green’s function, we use the
language of bi-scalars and bi-tensors.

In curved space-time, we use the geodetic interval between
two points as the bi-scalar. This is σ(x , x ′) and satisfies
σµσ

µ = 2σ, where σµ = ∇µσ(x , x
′).

We use the parallel displacement bi-vector gµν′ . Which
satisfies στ∇τgµν′ = 0.

Moreover we have following simple identities

gµν′σ
ν′ = −σµ , gµν′σ

µ = −σν′

gµρ′gν
ρ′ = gµν , gρµ′gρ

ν′ = gµ′ν′

(det gνρ′) =
1

(det gνρ′)
,

det gµν′ =
√
g
√

g ′ . (1)



Maximally Symmetric Space-time

On a maximally symmetric space-time any bi-tensors can be
written as a linear combination of bi-tensors constructed using
σµ, σµ′ and gµν′ , with coefficient being function of bi-scalar
σ(x , x ′) (Katz, Peters)
Due to this

σµν = A(σ)

[
gµν − 1

2σ
σµσν

]
+

1

2σ
σµσν ,

σµν′ = C (σ)

[
gµν′ +

1

2σ
σµσν′

]
+

1

2σ
σµσν′

gαβ′;µ = −A+ C

2σ
(gµασβ′ + gµβ′σα)

For a Euclidean DeSitter it is found that

A =

√
2σR

d(d − 1)
cot

√
2σR

d(d − 1)

C = −

√
2σR

d(d − 1)
csc

√
2σR

d(d − 1)



Massive Vector

Z [J] =

∫
DAµ exp

[
−
∫

ddx
√
g

(
1

4
FµνF

µν+
1

2
m2AµA

µ ,

)
−
∫

ddx
√
gJµA

µ

]

W [J] =
1

2

∫
ddx

√
gJµ

(
∆−1

F

)µν
Jν +

1

2
Tr ln∆µν

F

∆µν
F =

(
−□+

R

d
+m2

)
gµν +∇µ∇ν

Γ[Āµ] = W [J]−
∫

ddx
√
gJµĀ

µ = −1

2

∫
ddx

√
gĀµ∆

µν
F Āν+

1

2
Tr ln∆µν

F .



Massive Vector

∫
d
d y
√
g(y)

( 1√
g(x)

1√
g(y)

δ2Γ

δĀµ(x)δĀρ(y)

)( 1√
g(y)

1√
g(x′)

δ2W

δJρ(y)δJ
ν′ (x′)

)
= −

δµ
ν′

δ(x − x′)√
g(x)

.

1

√
g

1√
g′

δ2W

δJµ(x)δJ
ν′ (x′)

= ⟨Aµ(x)A
ν′ (x

′)⟩ =
1√
g′

(
∆
−1
F

)µν′
δ(x − x′) = Gµν′

(x, x′) ,

1

√
g

1√
g′

δ2Γ

δĀµ(x)δĀ
ν′ (x′)

= −
1√
g′

∆
µν′
F

δ(x − x′) .

[(
−□+

R

d
+m2

)
δµ

α +∇µ∇α

]
Gαν′ =

gµν′δ(x − x ′)√
g ′ .



Massive Vector

[(
−□+

R

d
+m2

)
gµν +∇µ∇ν

]
⟨AνAν′⟩ = 0 .

∇µ⟨FµνAν′⟩ = m2⟨Aν(x)Aν′(x ′)⟩ .

Gµν′(x , x ′) = GT
µν′ +∇µ∇ν′G ,

∇µGT
µν′ = ∇ν′

GT
µν′ = 0 .

Aµ = AT
µ +∇µa

GT
µν′ = ⟨AT

µA
T
ν′⟩ , G (x , x ′) = ⟨a(x)a(x ′)⟩ .[

−□+
R

d
+m2

][
GT
µν′ +∇µ∇ν′G (x , x ′)

]
= 0 .



Solving For Green’s Function: Transverse Part

GT
µν′ = α(σ)gµν′ + β(σ)σµσν′ .

Then instead of solving for α and β directly, we follow a in-direct
path.

⟨FµνF
µ′ν′

⟩ = 4∇[µ∇[µ′
⟨Aν]A

ν′]⟩ = θ(σ)g[µ
[µ′

gν]
ν′] + τ(σ)σ[µσ

[µ′
gν]

ν′] .

θ = 4C

[
α′ +

A+ C

2σ
α− βC

]
, τ = C−1

[
θ′ +

A+ C

σ
θ

]
.

∇µ⟨FµνF
µ′ν′

⟩ = 2m2∇[µ′
⟨AT

ν A
Tν′]⟩ .

2σθ′′ + [(d + 1)A+ 1]θ′ − 2R

d
θ −m2θ = 0 .



Transverse Part: Massive Fields

z(x , x ′) = cos2

√
σR

2d(d − 1)
.

z(1− z)
d2θ

dz2
+

[
d

2
+ 1− (d + 2)z

]
dθ

dz
− d(d − 1)

R

(
m2 +

2R

d

)
= 0

This is Hyper-Geometric differential equation. It has two
independent solutions

2F1(a1, b1; c1; z) and 2F1(a1, b1; c1; 1− z) .

a1 =
1

2

[
d + 1 +

√
(d − 3)2 − 4d(d − 1)m2

R

]
,

b1 =
1

2

[
d + 1−

√
(d − 3)2 − 4d(d − 1)m2

R

]
,

c1 =
d

2
+ 1 .



Choice of Vacuum

Generically any solution of the equation will be a linear combination
of the two solution. However the choice of vacuum (choice of
boundary condition) helps in finding the correct solution.

The range of z is 0 ≤ |z | < 1.

There is one parameter family of deSitter invariant fock vacuum
state

one special vacuum called the “Bunch-Davies” vacuum

only one singular point at z = 1 and is regular at z = 0
the strength of singularity for σ → 0 is the same as in flat case

Green’s function for all other vacuum state can be derived from this
one

θ(z) =
2

(4π)d/2
Γ(a1)Γ(b1)

Γ(d/2 + 1)

(
R

d(d − 1)

)d/2

× 2F1(a1, b1; c1; z)

Once θ(z) is know, τ(z) can be worked out. one can obtain equation

for determining α(z) and β(z), using the transversality constraint.



Determining Transverse Part of Green’s Function

One can obtain equation for determining α(z) and β(z), using the
transversality constraint.

α′ − 2σβ′ − 2β +
(d − 1)(A+ C )

2σ
α− (d − 1)Aβ = 0 .

2σα′′ + [(d + 1)A+ 1]α′ − R

d − 1
α =

σθ′

2C
+

(d + 1)Aθ

4C
.

The function α(z) is determined from,

z(1 − z)
d2α

dz2
+

[
d

2
+ 1 − (d + 2)z

]
dα

dz
− dα =

d(d − 1)

R

[
z(1 − z)

2

dθ

dz
+

d + 1

4
(1 − 2z)θ

]
.

This has both homogenous and particular solution. The particular
solution is

αp(z) =
r2d

[z(z − 1)]d/2

∫ z

0
dz′

[
z′(1 − z′)

]d/2−1
∫ z′

0
dz′′

[
z′′(1 − z′′)

dθ

dz′′
+

d + 1

2
(1 − 2z′′)θ

]
.



Transverse Part: Massive Fields

The homogenous solution is determined by requiring that the short
distance singularity structure of the full solution should match the
flat space-time solution.

GT
µν′ (x, x

′)
∣∣∣
z→0

∼
R

1536π2γ

[
12πγ(1 + 6γ) × sec(

π

2

√
1 − 48γ) − 1

][
gµν′ +

R

6π2
σµσν′

]
.

where γ = m2/R. This will give an impression that the massless limit is
not well defined (γ → 0), but this is not the case. Expanding the above
in powers of γ it is seen that this limit is given by,

GT
µν′(x , x ′)

∣∣
z→0,γ→0

∼ − R

256π2

[
gµν′ +

R

6π2
σµσν′

]
.

Matches with the z → 0 limit of the massless transverse propagator

This correlation is negative: signalling that there might be some
edge states on the boundary.

In the flat space-time limit R → 0 this correlation goes to zero.



Longitudinal part of Green’s Function
The longitudinal part is determined using,

∇µ∇ν′G = CG ′gµν′ +

(
G ′′gµν′ +

1 + C

2σ
G ′

)
σµσν′ = αLgµν′ +βLσµσν′ .

βL = C−1

(
α′
L +

A+ C

2σ
αL

)
.

∇µ∇µ∇ν′G (σ) = 0 .

α′
L − 2σβ′

L +
(d − 1)(A+ C )

2σ
αL − ((d − 1)A+ 2)βL = 0 .

2σα′′
L + [(d + 1)A+ 1]α′ − R

d − 1
αL = 0 . (2)

This is homogenous equation, solved as before by comparing the
solution with the strength of singularity in flat space-time

αL(z) =
R

4608π2

1

γ

2z − 3

(1− z)2
,

βL(z) =
R2

110592π2

1

γ

z − 3

(1− z)2(cos-1
√
z)2

.



Massless Limit

Gµν′(z)
∣∣
z→0

∼ − R

256π2

[
1 +

1

6γ

][
gµν′ +

R

6π2
σµσν′

]
.

Term proportional to the 1/γ coming from the longitudinal
part.

The massless limit and z → 0 limit commute in case of
transverse part, while the same is not true for longitudinal
part.

This will also imply that massless limit of the full propagator
cannot be taken

The source of the problem is arising from the longitudinal part
of the massive green’s function.



Massless Vector Fields

S =

∫
ddx

√
g

[
1

4
FµνF

µν +
1

2λ
(∇µA

µ)2
]
.

W µν⟨AνAν′⟩ =

[(
−□+

R

d

)
gµν +

(
1− 1

λ

)
∇µ∇ν

]
⟨AνAν′⟩

=
gµ

ν′δ(x − x ′)√
g ′

∇µ⟨FµνAν′⟩ = − 1

λ
∇µ∇ν⟨AνAν′⟩ .(

−□+
R

d

)[
∇µ∇ν′G + λGT

µν′

]
= 0 .

∇µ⟨FµνF
µ′ν′

⟩ = − 1

λ
∇ν□⟨aFµ′ν′

⟩ .

∇µ⟨FµνF
µ′ν′

⟩ = 0 .

z(1− z)
d2θ

dz2
+

[
d

2
+ 1− (d + 2)z

]
dθ

dz
− 2(d − 1)θ = 0 .

This is a Hyper-Geometric differential equation. It has two solutions.

Only one of them has short distance singularity at z = 1.



Transverse and Longitudinal Part
We then solve for the transverse part of the propagator. This is achieved
by

z(1 − z)
d2α

dz2
+

[
d

2
+ 1 − (d + 2)z

]
dα

dz
− dα =

d(d − 1)

R

[
z(1 − z)

2

dθ

dz
+

d + 1

4
(1 − 2z)θ

]
.

Its non-homogenous. Its has both particular solution and homogenous
solution. The particular solution is determined as before, and the full
solution is obtained by comparison with flat space-time limit. It should
be noticed that equation has same form as for massive case except this
time θ(z) is for massless fields.

α(z) =
R

384π2

[
1

z(1 − z)
+

(2z + 1) ln(1 − z)

z2

]
,

β(z) = −
R2

9216π2(cos-1
√

z)2

[
1

z(1 − z)
+

(1 − z) ln(1 − z)

z2

]
.

The longitudinal part can be worked out as before and in four
dimensions is given by,

αL(z) =
Rλ

1152π2

[
4z − 1

z(1 − z)
−

(2z + 1) ln(1 − z)

z2

]

βL(z) =
R2λ

27648π2(cos-1
√

z)2

[
2z2 − 4z − 1

z(z − 1)
+

(1 − z) ln(1 − z)

z2

]



Summary and Conclusions

DeSitter metric is an important space-time manifold having
great relevance in early and late time universe

Important to formulate methods of QFT on this background

Known perturbative methods of flat space-time QFT needs
modification

The first important step in this direction is the construction of
the propagator over this background



Summary and Conclusions

Scalar propagator have been studied: IR problems for the
massless propagator. In order to have smooth massless limit
of the massive propagator, zero mode contribution should be
taken into account.

Off-shell Vector propagator have been studied using rigorous
path-integrals methods

Two cases have explicitly investigated: massive and massless
vectors

The transverse part of the massive propagator matches with
the transverse propagator of the massless propagator in the
massless limit

The longitudinal part doesn’t have this well defined limit

The antipodal point separation limit is well defined, regular
but negative. Correlation goes to zero when R → 0.


