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Hamilton formalism

• A dynamical system is governed by a function of 
canonical coordinates 𝑞 and momenta 𝑝, called 
Hamiltonian 𝐻(𝑞, 𝑝)

• Equations of motion
𝑑𝑞
𝑑𝜏 = 𝜕𝐻

𝜕𝑝
𝑑𝑝
𝑑𝜏 = − 𝜕𝐻

𝜕𝑞

• Many dynamical systems in physics are described 
in this framework.



Hamilton formalism

• Poisson bracket

𝐴, 𝐵  ≔
𝜕𝐴
𝜕𝑞

𝜕𝐵
𝜕𝑝

− 𝜕𝐴
𝜕𝑝

𝜕𝐵
𝜕𝑞

• Conserved quantity (First integral)
𝑑𝐹
𝑑𝜏 =

𝜕𝐹
𝜕𝑞

𝑑𝑞
𝑑𝜏 + 𝜕𝐹

𝜕𝑝
𝑑𝑝
𝑑𝜏

= 𝜕𝐹
𝜕𝑞

𝜕𝐻
𝜕𝑝

− 𝜕𝐹
𝜕𝑝

𝜕𝐻
𝜕𝑞 = 𝐹,𝐻 

𝐹 is a conserved quantity ⇔ 𝐹,𝐻 =0



Hamilton formalism

• Liouville integrability
If there exist D independent Poisson-commuting  constants  αi
(including Hamiltonian) in a D-dim Hamiltonian system, 

then the system is said to be completely integrable.

Namely, one can prove that there exists a canonical transf.
(x, p) →  (φ,  I(α)), and then easily solve  the  Hamilton’s  eq.:



Hamiltonian

𝐻 = 1
2,

𝑔(𝒒)𝑝𝑝 + 𝑉(𝒒)

• 𝑔(𝒒) : metric

• 𝑉(𝒒) : potential

𝑑𝑠ଶ = 𝑔𝑑𝑞𝑑𝑞

(𝑞, 𝑝) : canonical coordinates

𝑉 ≠ 0 Natural Hamiltonian

𝑉 = 0 Geodesic Hamiltonian



The purpose of this talk

To show a systematic approach for 
investigating polynomial conserved quantities 
for any natural Hamiltonian system



Keywords

① Geometrisation

➁ Prolongation

Any natural Hamiltonian system can be translated to 
the geodesic problem in a corresponding spacetime.

Equations describing spacetime symmetry can be 
translated to a first-order linear PDE system.



Geodesic problem and 
spacetime symmetry



Spacetime symmetry

invariant

Killing equation

Isometry

geodesic

Constant along geodesics



Spacetime symmetry Conserved quantities 
along geodesics



For a geodesic Hamiltonian 𝐻 = 𝑔ఓఔ𝑝ఓ𝑝ఔ, when F is 
a n-order homogeneous polynomial in 𝑝ఓ,

⇔

Killing-Stackel Eq.

then we find that



Spacetime symmetry Conserved quantities 
along geodesics

Isometry
(Killing vector) first-order polynomial

higher-order polynomialHidden symmetry
(Killing tensor)



• Killing vector fields:

𝛁𝝁𝝃𝝂 + 𝛁𝝂𝝃𝝁 = 𝟎

𝜉ఓ

𝛁(𝝁𝒇𝝂𝟏)𝝂𝟐…𝝂𝒏 = 𝟎

𝑲(𝝁𝟏𝝁𝟐…𝝁𝒏) = 𝑲𝝁𝟏𝝁𝟐…𝝁𝒏

• Killing-Yano tensors

• Killing-Stackel tensors
𝛁(𝝁𝑲𝝂𝟏𝝂𝟐…𝝂𝒏) = 𝟎

𝒇[𝝁𝟏𝝁𝟐…𝝁𝒏] = 𝒇𝝁𝟏𝝁𝟐…𝝁𝒏

[Stackel 1895]

[Yano 1952]

Spacetime symmetry



Killing Conformal Killing

symmetric

anti-symmetric

Killing-Stackel

Killing-Yano Conformal Killing-Yano

Conformal Killing-Stackel

Tachibana 1969, Kashiwada 1968Yano 1952

Stackel 1895

vector fields



Why spacetime symmetry?

• Integrability of EOMs for matter fields
Klein-Gordon and Dirac equations

• Classification of spacetimes
Stationary, axially symmetric, Bianchi type, etc.

• Conserved quantities along geodesics

• Application to Hamiltonian dynamics



Geometrisation



Basic idea

The dynamical trajectories of a Hamiltonian system of the form

can be seen as geodesics of a corresponding configuration space, 
or of enlargement of it, under some constraints.



① Maupertuis’  principle

➁ Canonical transformations

➂ Eisenhart’s lifts

Examples

Ex. ➁－1 3D Kepler problem

Ex. ➁－2 N=3 open Toda

Ex. ➂－1 Eisenhart lift

Ex. ➂－2 Generalised Eisenhart lift

Ex. ➂－3 Light-like Eisenhart lift



Maupertuis 1744, 1746, 1756

Maupertuis’  principle

One obtains an integral equation that determines the path 
followed by a physical system without specifying the time 
parameterization of that path.

𝑥(𝑡) 𝑥ఓ(𝜏)

Newtonian GR

𝑥

𝑦

𝑥

𝑡



Maupertuis 1744, 1746, 1756

𝑆 = ∫ 𝑝𝑑𝑞 − 𝐻 𝑞, 𝑝 𝑑𝑡action

𝑞 = 𝑞(𝑡), 𝑝 = 𝑝(𝑡)

𝑆(𝐸) = ∫ 𝑝𝑑𝑞abbreviated action

Maupertuis’  principle

One obtains an integral equation that determines the path 
followed by a physical system without specifying the time 
parameterization of that path.



Lagrangian

• momentum

abbreviated action

𝐿 = 1
2,

𝑔�̇��̇� − 𝑈(𝑞)

𝑝 ≡
𝜕𝐿
𝜕�̇� = 


𝑔�̇�

𝑆 ≡ න

𝑝𝑑𝑞 = න

,
𝑔

𝑑𝑞
𝑑𝑡 𝑑𝑞 = න 2 𝐸 − 𝑈 

,
𝑔𝑑𝑞𝑑𝑞

𝑆 = න 2
,

𝑔𝑑𝑞𝑑𝑞

𝐸 = 1
2,

𝑔�̇��̇� + 𝑈(𝑞)

∴ 𝑑𝑡 = ∑ ೕௗௗೕ
ଶ(ாି)

𝑔 = 𝐸 − 𝑈 𝑔

Jacobi’s  formulation

• energy



Jacobi’s  formulation



Theorem  Given a dynamical system on a manifold 
(𝑀, 𝑔) i.e., a dynamical system whose Lagrangian
is 

then it is always possible to find a conformal 
transformation of the metric (Jacobi metric)

such that the geodesics of (𝑀, 𝑔) with the energy 
෨𝐸 = 1 are equivalent to the trajectories of the 
original dynamical system.

Jacobi’s  formulation



Natural Hamiltonian

Jacobi’s  Hamiltonian

𝑔 = 𝐸 − 𝑈 𝑔

𝐻 = 1
2𝑔

𝑝𝑝 + 𝑈

෩𝐻 = 1
2 𝑔𝑝𝑝 with

with 𝐻 = 𝐸

෩𝐻 = 1 1 = 𝐻ଶ
𝐸 − 𝑈

𝐸 = 𝐻ଶ + 𝑈

Comparison of Hamiltonians

equivalent！



・ Natural Hamiltonian ・ Jacobi’s  Hamiltonian

For instance, 

Comparison of first integrals



Potential system Geodesic system

Maupertuis’  principle



Qudartic +    potential

Homogeneously quadratic

Natural Hamiltonian

Geodesic Hamiltonian

𝐻 = 1
2𝑔

(𝑞)𝑝𝑝 + 𝑈(𝑞)

෩𝐻 = 1
2 𝑔ఓఔ 𝑞 𝑝ఓ 𝑝ఔ

We need to construct a geodesic Hamiltonian, i.e., a homogeneously 
quadratic Hamiltonian which reduces to the original natural Hamiltonian 
under some transformation or constraints.

Point!



① Maupertuis’  principle

➁ Canonical transformations

➂ Eisenhart’s lifts

Examples

Ex. ➁－1 3D Kepler problem

Ex. ➁－2 N=3 open Toda

Ex. ➂－1 Eisenhart lift

Ex. ➂－2 Generalised Eisenhart lift

Ex. ➂－3 Light-like Eisenhart lift



Ex. ②-1

𝐻 = 1
2 𝑝ଵଶ + 𝑝ଶଶ + 𝑝ଷଶ − 𝛼

𝑟

𝑞 = 𝑝 , 𝑝 = 𝑞Transf.

෩𝐻 = 𝐸 − 1
2 �̃�

ଶ
ଶ
( 𝑝ଵଶ + 𝑝ଶଶ + 𝑝ଷଶ)

𝑟 = 𝑞ଵ ଶ + 𝑞ଶ ଶ + 𝑞ଷ ଶ

𝑑𝑠ଶ = 𝐸 − 1
2 �̃�

ଶ
ିଶ

𝑑 𝑞ଵ ଶ + 𝑑 𝑞ଶ ଶ + 𝑑 𝑞ଷ ଶ

3D Kepler problem
Keane-Barrett-Simmons 2000

�̃� = 𝑞ଵ ଶ + 𝑞ଶ ଶ + 𝑞ଷ ଶ

with 𝐻 = 𝐸

with ෩𝐻 = 𝛼ଶ

(constant 
curvature −4𝐸 )



Ex.②-2

𝐻 = 1
2 𝑝ଵଶ + 𝑝ଶଶ + 𝑝ଷଶ + 𝑎ଵଶ + 𝑎ଶଶ

𝑞ଵ = 𝑞ଵ + ln 𝑝ଵ ,   𝑞ଶ = 𝑞ଶ ,   𝑞ଷ = 𝑞ଷ − ln 𝑝ଷ
𝑝ଵ = 𝑝ଵ ,   𝑝ଶ = 𝑝ଶ ,   𝑝ଷ = 𝑝ଷ

Transf.

෩𝐻 = 1
2 1 + 2𝑎ଵଶ 𝑝ଵଶ + 𝑝ଶଶ + 1 + 2𝑎ଶଶ 𝑝ଷଶ

𝑎ଵ = 𝑒భିమ ,   𝑎ଶ = 𝑒మିయ

𝑎ଵ = 𝑒 భି మ ,   𝑎ଶ = 𝑒 మି య

𝑑𝑠ଶ = 𝑑 𝑞ଵ ଶ

1 + 2𝑎ଵଶ
+ 𝑑 𝑞ଶ ଶ + 𝑑 𝑞ଷ ଶ

1 + 2𝑎ଶଶ

Baleanu-Karasu-Makhaldiani 1999
N=3 open Toda



① Maupertuis’  principle

➁ Canonical transformations

➂ Eisenhart’s lifts

Examples

Ex. ➁－1 3D Kepler problem

Ex. ➁－2 N=3 open Toda

Ex. ➂－1 Eisenhart lift

Ex. ➂－2 Generalised Eisenhart lift

Ex. ➂－3 Light-like Eisenhart lift



• Natural Hamiltonian on n-dim space (M, g)

• Geodesic Hamiltonian on (n+1)-dim space (M x R, gE)

Ex. ③-1

𝐻 = 1
2𝑔

(𝑞)𝑝𝑝 + 𝑈(𝑞)

𝐻ா =
1
2𝑔

𝑝𝑝 + 𝑈 𝑞 𝑝௦ଶ

= 1
2𝑔ா

ఓఔ𝑝ఓ𝑝ఔ

𝑑𝑠ாଶ = 2𝑈 𝑞 ିଵ𝑑𝑠ଶ + 𝑔𝑑𝑞𝑑𝑞
Eisenhart metric

(Standard) Eisenhart lift



Ex. ③-2

𝐻 = ଵ
ଶ 𝑔

(𝑞)𝑝𝑝 + 𝑈(𝑞) , 𝑈 𝑞 = ∑ℓ𝓁ୀଵ
 𝑎ℓ𝓁𝑈ℓ𝓁(𝑞)

𝐻ா =
1
2𝑔

𝑝𝑝 +
ℓ𝓁ୀଵ


𝑈ℓ𝓁 𝑞 𝑝௦ℓ𝓁ଶ

= 1
2𝑔ா

ఓఔ𝑝ఓ𝑝ఔ

𝑑𝑠ாଶ = 2𝑈ℓ𝓁 𝑞 ିଵ(𝑑𝑠ℓ𝓁)ଶ + 𝑔𝑑𝑞𝑑𝑞
Eisenhart metric

Generalised Eisenhart lift
• Natural Hamiltonian on n-dim space (M, g)

• Geodesic Hamiltonian on (n+m)-dim space (M x Rm, gE)



Ex. ③-3

Light-like Eisenhart lift

𝐻 = 1
2𝑔

(𝑞)𝑝𝑝 + 𝑈(𝑞)

Eisenhart metric

𝐻ா =
1
2𝑔

𝑝𝑝 + 𝑈 𝑞 𝑝௦ଶ + 𝑝ௌ𝑝௧

= 1
2𝑔ா

ఓఔ𝑝ఓ𝑝ఔ

𝑑𝑠ாଶ = −2𝑈 𝑞 𝑑𝑡ଶ + 2𝑑𝑡 𝑑𝑠 + 𝑔𝑑𝑞𝑑𝑞

• Natural Hamiltonian on n-dim space (M, g)

• Geodesic Hamiltonian on (n+m)-dim spacetime (M x Rm, gE)



・ Natural Hamiltonian ・ Eisenhart’s Hamiltonian

For instance, 

Comparison
Natural Htn v.s. LL Eisenhart’s Htn

𝐻 = 𝐻ଶ + 𝑈 𝐻ா = 𝐻ଶ + 𝑈𝑝௦ଶ + 𝑝௦𝑝௧



Prolongation



Review I:
Integrability conditions for 
systems of first order PDEs



A system of first order PDEs
𝜕𝑢ఈ
𝜕𝑥 = 𝜓ఉ

ఈ 𝑥 𝑢ఉ

𝑥 = (𝑥ଵ, 𝑥ଶ,⋯ , 𝑥) ; variables
𝑢 = (𝑢ଵ, 𝑢ଶ,⋯ , 𝑢ே) ; unknown functions

Does the solution exist?

Questions : 

If exist, is the solution space finite or infinite? How many 
dimensions?

Explicit expressions?

at most 𝑵 dimensions



Consistency conditions

𝜕
𝜕𝑥

𝜕𝑢ఈ
𝜕𝑥 =

𝜕𝜓ఉ
ఈ

𝜕𝑥 𝑢
ఉ + 𝜓ఉ

ఈ 𝜕𝑢ఉ
𝜕𝑥 =

𝜕𝜓ఉ
ఈ

𝜕𝑥 𝑢
ఉ + 𝜓ఉ

ఈ 𝜓ఊ
ఉ 𝑢ఊ

𝜕𝜓ఊ
ఈ

𝜕𝑥 −
𝜕𝜓ఊఈ
𝜕𝑥 + 𝜓ఉ

ఈ 𝜓ఊ
ఉ − 𝜓ఉఈ 𝜓ఊ

ఉ 𝑢ఊ = 0

𝜕
𝜕𝑥

𝜕𝑢ఈ
𝜕𝑥 −

𝜕
𝜕𝑥

𝜕𝑢ఈ
𝜕𝑥 = 0

𝜕
𝜕𝑥

𝜕𝑢ఈ
𝜕𝑥 =

𝜕𝜓ఉఈ
𝜕𝑥 𝑢

ఉ + 𝜓ఉఈ
𝜕𝑢ఉ
𝜕𝑥 =

𝜕𝜓ఉఈ
𝜕𝑥 𝑢

ఉ + 𝜓ఉఈ 𝜓ఊ
ఉ 𝑢ఊ



Frobenius’  theorem
The necessary and sufficient conditions for the unique 
solution 𝑢ఈ = 𝑢ఈ(𝑥) to the system

𝜕𝜓ఊ
ఈ

𝜕𝑥 −
𝜕𝜓ఊఈ
𝜕𝑥 + 𝜓ఉ

ఈ 𝜓ఊ
ఉ − 𝜓ఉఈ 𝜓ఊ

ఉ = 0

such that 𝑢 𝑥 = 𝑢 to exist for any initial data (𝑥, 𝑢) is 
that the relation

hold.

𝜕𝑢ఈ
𝜕𝑥 = 𝜓ఉ

ఈ 𝑢ఉ



Parallel equation
𝜕𝑢ఈ
𝜕𝑥 = 𝜓ఉ

ఈ 𝑥 𝑢ఉ

𝜕𝑢ఈ
𝜕𝑥 − 𝜓ఉ

ఈ 𝑥 𝑢ఉ = 0

𝐷𝑢ఈ = 0
𝐷𝑢ఈ:=

𝜕𝑢ఈ
𝜕𝑥 − 𝜓ఉ

ఈ 𝑥 𝑢ఉ

The system can be viewed as a parallel equation for sections 
𝑢ఈ of a vector bundle 𝜋: 𝐸 → 𝑀 of rank 𝑁.

where

𝑀

𝐸

𝜋

𝜋ିଵ(𝑝)

𝑝

𝑢ఈ



Curvature conditions

𝐷𝑢ఈ = 0

𝐷𝑢ఈ: =
𝜕𝑢ఈ
𝜕𝑥 − 𝜓ఉ

ఈ 𝑥 𝑢ఉ

the curvature of 𝐷 is defined by (𝐷𝐷 − 𝐷𝐷)𝑢ఈ = −𝑅ఉఈ𝑢ఉ.

𝑅ఉఈ𝑢ఉ = 0

This is equivalent to the Frobenius integrability condition

For a connection 𝐷



Frobenius’  theorem  (II)
The necessary and sufficient conditions for the unique 
solution 𝑢ఈ = 𝑢ఈ(𝑥) to the system

such that 𝑢 𝑥 = 𝑢 to exist for any initial data (𝑥, 𝑢) is 
that the relation

hold.

𝑖 = 1,⋯ , 𝑛 𝛼 = 1,⋯ ,𝑁

𝑅ఉఈ𝑢ఉ = 0

𝐷𝑢ఈ = 0
where

𝐷𝑢ఈ:=
𝜕𝑢ఈ
𝜕𝑥 − 𝜓ఉ

ఈ 𝑥 𝑢ఉ



• If not, they give a set of algebraic equations

• If the curvature conditions hold, the general solution 
depends on 𝑁 arbitrary constants.

• Differentiating these equations and eliminating the 
derivatives of 𝑢ఈ leads to a new set of equations

Discussion

𝑅ఉఈ𝑢ఉ = 0

(𝐷𝑅ఉఈ)𝑢ఉ = 0
𝐷𝐹ఉఈ ≔ 𝜕𝐹ఉఈ − 𝜓ఊ

ఈ 𝐹ఉఊ + 𝐹ఊఈ𝜓ఉఊ

𝑢ఈ 𝑥; 𝑎 = 𝑎ଵ𝑢ଵఈ(𝑥) + 𝑎ଶ𝑢ଶఈ(𝑥) + ⋯+ 𝑎ே𝑢ேఈ(𝑥)



Discussion

• If 𝑝 is the number of independent equations in the first 
𝐾 sets, then the general solution depends on 𝑁 − 𝑝
arbitrary constants.

• Proceeding in this way we get a sequence of sets of 
equations

𝑅ఉఈ𝑢ఉ = 0, (𝐷𝑅ఉఈ)𝑢ఉ = 0 , (𝐷ℓ𝓁𝐷𝑅ఉఈ)𝑢ఉ = 0, ⋯



Review II:
Prolongation of PDEs



Prolongation

𝑖 = 1,⋯ , 𝑛 𝛼 = 1,⋯ ,𝑁

𝐹 𝑥, 𝑓, 𝜕𝑓, 𝜕𝜕𝑓,⋯ = 0

𝜕𝑢ఈ
𝜕𝑥 = 𝜓ఉ

ఈ 𝑢ఉ



Example 1

𝑢௫ = 𝑎𝑢 + 𝑏𝑣
𝑢௬ + 𝑣௫ = 𝑐𝑢 + 𝑑𝑣
𝑣௬ = 𝑒𝑢 + 𝑓𝑣

Introduce 𝑤 = 𝑢௬ − 𝑣௫
𝑢௫ = 𝑎𝑢 + 𝑏𝑣

𝑢௬ =
1
2 (𝑐𝑢 + 𝑑𝑣 + 𝑤)

𝑣௬ = 𝑒𝑢 + 𝑓𝑣
𝑣௫ =

1
2 (𝑐𝑢 + 𝑑𝑣 − 𝑤)

𝑤௫ = 𝑤௫(𝑢, 𝑣, 𝑤)
𝑤௬ = 𝑤௬(𝑢, 𝑣,𝑤)



Example 2: 
Cauchy-Riemann equation

𝑢௫ = 𝑣௬
𝑢௬ = −𝑣௫

Impossible to make a prolongation!

In fact, solution of this system depends on one 
holomorphic function.



Prolongation

𝜕𝑢ఈ
𝜕𝑥 = 𝜓

ఈ(𝑥, 𝑢)

𝑖 = 1,⋯ , 𝑛 𝛼 = 1,⋯ ,𝑁

𝐹 𝑥, 𝑓, 𝜕𝑓, 𝜕𝜕𝑓,⋯ = 0
Not always possible
When can we make a prolongation 
successfully?



Prolongation of 
Killing equations



Spacetime symmetry

• Killing vector fields:

𝛁𝝁𝝃𝝂 + 𝛁𝝂𝝃𝝁 = 𝟎

𝜉ఓ

𝛁(𝝁𝒇𝝂𝟏)𝝂𝟐…𝝂𝒏 = 𝟎

𝑲(𝝁𝟏𝝁𝟐…𝝁𝒏) = 𝑲𝝁𝟏𝝁𝟐…𝝁𝒏

• Killing-Yano tensors

• Killing-Stackel tensors
𝛁(𝝁𝑲𝝂𝟏𝝂𝟐…𝝂𝒏) = 𝟎

𝒇[𝝁𝟏𝝁𝟐…𝝁𝒏] = 𝒇𝝁𝟏𝝁𝟐…𝝁𝒏

[Stackel 1895]

[Yano 1952]



Killing vectors
𝛁𝝁𝝃𝝂 + 𝛁𝝂𝝃𝝁 = 𝟎



𝛁𝝁𝝃𝝂 + 𝛁𝝂𝝃𝝁 = 𝟎

𝛁𝝁𝝃𝝂 = 𝑳𝝁𝝂 ,     𝑳𝝁𝝂 = 𝜵[𝝁𝝃𝝂]
𝛁𝝁𝑳𝝂𝝆 = −𝑹𝝂𝝆𝝁𝝈𝝃𝝈

Killing vector equation



𝛁𝝁𝝃𝝂 = 𝑳𝝁𝝂 ,     𝑳𝝁𝝂 = 𝑳 𝝁𝝂
𝛁𝝁𝑳𝝂𝝆 = −𝑹𝝂𝝆𝝁𝝈𝝃𝝈

• 𝑫𝝁 : connection on 𝜦𝟏 𝑴 ⊕𝜦𝟐 𝑴
𝑫𝝁𝝃𝑨 ≡ 𝜵𝝁

𝝃𝝂
𝑳𝝂𝝆 − 𝟎 𝟏

−𝑹𝝂𝝆𝝁𝝈 𝟎
𝝃𝝈
𝑳𝝁𝝂

• 𝝃𝑨 = (𝝃𝝁, 𝑳𝝁𝝂) : a section of 𝜦𝟏 𝑴 ⊕𝜦𝟐 𝑴

𝑫𝝁𝝃𝑨 = 𝟎

𝜵𝝁
𝝃𝝂
𝑳𝝂𝝆 − 𝟎 𝟏

−𝑹𝝂𝝆𝝁𝝈 𝟎
𝝃𝝈
𝑳𝝁𝝂 = 𝟎



Killing vectors ⟺ parallel sections of 𝜦𝟏 𝑴 ⊕𝜦𝟐 𝑴

The number of linearly independent sections of 𝛬ଵ 𝑀 ⊕ 𝛬ଶ 𝑀 is bound by 
the rank of the vector bundle. 

𝑁 = 𝑛
1 + 𝑛

2 = 𝑛 𝑛 + 1
2

Point ① Prolongation

𝝃𝑨 =
𝝃𝝁

𝛁[𝝁𝝃𝝂] s.t.𝝃𝝁

Parallel equation

𝑫𝝁𝝃𝑨 = 𝟎



Maximally symmetric spaces

Spaces that have the maximum number of KVs

⇔ constant curvature spaces

２ ３
３ ６
４ １０
５ １５
・・・ ・・・

𝑁 = 𝑛 𝑛 + 1
2𝑛



Point ➁ Curvature conditions

[𝑫𝝁,𝑫𝝂]𝝃𝑨 = 𝟎
𝑫𝝁, 𝑫𝝂,𝑫𝝆 𝝃𝑨 = 𝟎𝑫𝝁𝝃𝑨 = 𝟎
𝑫𝝁, 𝑫𝝂, 𝑫𝝆, 𝑫𝝈 𝝃𝑨 = 𝟎

⋯

# of parallel sections ＝ rank of Ep － # of curv. cond.



Killing-Yano tensors
𝛁(𝝁𝒇𝝂𝟏)𝝂𝟐…𝝂𝒏 = 𝟎

𝒇[𝝁𝟏𝝁𝟐…𝝁𝒏] = 𝒇𝝁𝟏𝝁𝟐…𝝁𝒏



𝛁(𝝁𝒇𝝂)𝝆 = 𝟎 𝒇𝝁𝝂 = −𝒇𝝂𝝁

𝛁𝝁𝒇𝝂𝝆 = 𝜵[𝝁𝒇𝝂𝝆]

𝛁𝝁(𝜵[𝝂𝒇𝝆𝝈]) = −𝑹[𝝂𝝆|𝝁𝜶𝒇𝜶|𝝈]

KY tensor equation



Rank-2 

Rank-p 

𝛁𝝁𝒇𝝂𝝆 = 𝜵[𝝁𝒇𝝂𝝆]
𝛁𝝁(𝜵[𝝂𝒇𝝆𝝈]) = −𝑹[𝝂𝝆|𝝁𝜶𝒇𝜶|𝝈]

𝛁𝝁𝒇𝝂𝟏⋯𝝂𝒑 = 𝜵[𝝁𝒇𝝂𝟏⋯𝝂𝒑]
𝛁𝝁(𝜵[𝝂𝒇𝝆𝟏⋯𝝆𝒑]) = −𝑹[𝝂𝝆𝟏|𝝁𝜶𝒇𝜶|𝝆𝟐⋯𝝆𝒑]



Prolongation of KY tensors

rank-p ＫＹ tensors ⟺ parallel sections of 𝑬𝒑

⊕

𝐸 = Λ 𝑀 ⊕ Λାଵ(𝑀)

𝑝
𝑝 + 1

=

𝑟𝑎𝑛𝑘(𝐸) = 𝑛 + 1
𝑝 + 1



The number of KY tensors
in maximally symmetric spaces

p=1 p=2 p=3 p=4

2D 3

3D 6 4

4D 10 10 5

5D 15 20 15 6

𝑵 = 𝒏 + 𝟏
𝒑 + 𝟏 Semmelmann 2002



Maximally symmetric

Plebanski-Demianski
Kerr
Schwazschild

𝒑 = 𝟏 𝒑 = 𝟐 𝒑 = 𝟑

Examples in four dimensions

4D metrics

10 10 5

2 0 0
2 1 0
4 1 0

Eguchi-Hanson 4 3 0
Self-dual Taub-NUT 4 4 0

FLRW 6 4 1

TH-Yasui 2014



Maximally symmetric

Myers-Perry
Emparan-Reall
Kerr string

𝒑 = 𝟏 𝒑 = 𝟐 𝒑 = 𝟑

Examples in five dimensions

5D metrics

15 20 15

3 0 1
3 0 0
3 1 0

𝒑 = 𝟒
6

0
0
1

TH-Yasui 2014



Killing-Stackel tensors

𝑲(𝝁𝟏𝝁𝟐…𝝁𝒏) = 𝑲𝝁𝟏𝝁𝟐…𝝁𝒏

𝛁(𝝁𝑲𝝂𝟏𝝂𝟐…𝝂𝒏) = 𝟎



𝛁(𝝁𝑲𝝂𝝆) = 𝟎 𝑲𝝁𝝂 = 𝑲𝝂𝝁

𝛁𝝁𝑲𝝂𝝆 =
𝟐
𝟑 𝛁[𝝁𝑲𝝂]𝝆 + 𝛁[𝝁𝑲𝝆]𝝂

𝛁𝝁 𝛁[𝝂𝑲𝝆]𝝈 = −𝑹𝝂𝝆(𝝁𝜶𝑲𝜶|𝝈) − 𝑹(𝝁|[𝝂𝝆]𝜶𝑲𝜶|𝝈)

−𝟏
𝟒𝑹𝝂𝝆[𝝁

𝜶𝑲𝜶 𝝈 − 𝟏
𝟐𝑹(𝝁|[𝝂𝝆]

𝜶𝑲𝜶 𝝈 + 𝝓[𝝁 𝝂𝝆 𝝈]

where 𝝓𝝁𝝂𝝆𝝈 ≡ 𝜵(𝝁𝜵𝝂)𝑲𝝆𝝈

𝜵𝝁 𝝓[𝝂 𝝆𝝈 𝜿] = 𝑹𝟏 ⋅ 𝑲∗∗ 𝝁𝝂𝝆𝝈𝜿 + 𝑹𝟐 ⋅ 𝜵[∗𝑲∗]∗ 𝝁𝝂𝝆𝝈𝜿



Prolongation of KS tensors

⋯ ⋯

⋯ ⋯⊕

⊕

⊕ ⊕⋯

𝐸 =

𝑟𝑎𝑛𝑘(𝐸) = 1
𝑛

𝑛 + 𝑝
𝑝 + 1

𝑛 + 𝑝 − 1
𝑝

𝑝
rank-p KS tensors ⟺ parallel sections of 𝑬𝒑

⋯



The number of KS tensors
in maximally symmetric spaces

p=1 p=2 p=3 p=4

2D 3 6 10 15

3D 6 20 50 105

4D 10 50 175 490

5D 15 105 490 1764

𝑵 = 𝟏
𝒏

𝒏 + 𝒑
𝒑 + 𝟏

𝒏 + 𝒑 − 𝟏
𝒑

Barbance 1973, Michel et al 2012

⋯

⋯
⋯

⋯



On-going tasks

• Analysis of curvature conditions

- Compute the curvature conditions

- Construct the package of Mathematica which compute 
and solve the curvature conditions

- Investigate the curvature conditions for various metrics

Conjecture No non-trivial quadratic constant for geodesic 
motion in the Kerr spacetime exists, with the exception of 
Carter constant.



Foresight into the future

• CKY and CKS
Cotton tensor, Bach tensor, Q-curvature, conformal geometry

Prolongation

Generalised gradients, Weitzenbock formula, twisted Dirac

Integrable systems, Chaos, Lax pairs, Painleve systems

• PDE theory

• Differential geometry

• Hamiltonian dynamics

Exact solutions, strings, branes
• GR, SUGRA, …


