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1.1 Why inflation?
(A. Guth, PRD23 (1981) 347)

It solves the problems of standard big bang cosmology:
flatness, horizon, cosmic relics, etc.
It provides a causal mechanism for generations of
adiabatic, Gaussian, and nearly scale-invariant primordial
fluctuations, which leads to

the formation of large scale structure of the universe;
the Cosmic Microwave Background (CMB) anisotropies.

Inflation is remarkably successful and its predictions are
matched to observations with astonishing precision.1

1Planck Collaboration, arXiv:1502.02114.
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1.2 Quantum Fluctuations During Inflation
(D. Baumann, arXiv:0907.5424)

According to the inflation paradigm, the large-scale
structure of our universe and CMB all originated from
quantum fluctuations produced during Inflation, which can
be decomposed into: scalar, vector and tensor.

But, because of the expansion of the universe and
particular nature of the fluctuations, vector perturbations
did not grow, and observationally can be safely ignored.
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1.2 Quantum Fluctuations During Inflation (Cont.)

Scalar and tensor perturbations are described by mode
functions µk(η),

µ′′k +

(
ω2
k −
z′′

z

)
µk = 0, z ≡

{
aϕ′

H , scalar

a, tensor

ω2
k : energy of the mode, and in general relativity (GR) is

given by,
ω2
k = k

2

k: comoving wavenumber
ϕ: the scalar field — the inflaton; and ϕ′ ≡ dϕ/dη
η: the conform time, dη ≡ dt/a(t)
a(η): the expansion factor of the universe; and H ≡ a′/a
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1.2 Quantum Fluctuations During Inflation (Cont.)

Power spectra, ∆2
i, are defined as,

∆2
i ≡

k3

2π2

∣∣∣µk
z

∣∣∣2
i
, (i = S, T).

Spectral indexes are defined as

ns ≡ 1 +
d ln∆2

s(k)

d ln k
, nT ≡

d ln∆2
T(k)

d ln k
.

The ratio r is defined as,

r ≡
∆2
T

∆2
S

.
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1.3 Precision Cosmological Mearsurments

Since the first measurement of CMB in 1964 by Penzias
and Wilson (PW), there have been a variety of experiments
to measure its radiation anisotropies and polarization, such
as WMAP, PLanck and BICEP2, with ever increasing
precision.

PW, COBE, WMAP Planck BICEP2
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1.3 Precision Cosmological Mearsurments (cont.)

In the coming decade, we anticipate that various new
surveys will make even more accurate CMB
measurements:

Balloon experiments: Balloon-borne Radiometers for Sky
Polarisation Observations (BaR-SPoRT); The E and B
Experiment (EBEX); ...
Ground experiments: Cosmology Large Angular Scale
Surveyor (CLASS); Millimeter-Wave Bolometric
Interferometer (MBI-B); Qubic; ...
Space experiments: Sky Polarization Observatory (SPOrt);
...
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1.3 Precision Cosmological Mearsurments (cont.)

In addition to CMB measurements, Large-scale structure
surveys, measuring the galaxy power spectrum and the
position of the baryon acoustic peak, have provided
independently valuable information on the evolution of the
universe.
The first measurement of the kind
started with the baryon acoustic
oscillation (BAO) in the
SDSS LRG and 2dF Galaxy
surveys 2.

2D.J. Eisenstein, et al., ApJ 633 (2005) 560; S. Cole, et al.,

MNRAS362 (2005) 505.
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1.3 Precision Cosmological Mearsurments (cont.)

Since then, various Iarge-scale structure surveys have
been carried out 3, and provided sharp constraint on the
budgets that made of the universe.

3Tegmark, M., et al. 2006, Phys. Rev. D,74, 123507;
Percival, W. J., Nichol, R. C., Eisenstein, D. J., et al.
2007, ApJ, 657, 51; Kazin, E. A., et al. 2010, ApJ, 710,
1444; Blake, C., Kazin, E., Beutler, F., et al. 2011, MNRAS,
418, 1707.
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1.3 Precision Cosmological Mearsurments (cont.)

Various new surveys will make even more accurate
measurements of the galaxy power spectrum:

Ground-Based: the Prime Focus Spectrograph,
Big BOSS, ....
Space-based: Euclid, WFIRST, ....

Cosmology indeed enters its golden age: Precision
Cosmology!
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1.3 Precision Cosmological Mearsurments (cont.)

In particular, the Stage IV experiments 4 will measure the
physical variables

σ(ns, r) = 10−3

ns: the spectral index of scalar perturbations
r: the ratio between tensor and scalar perturbations

With this level of uncertainty, the Stage IV experiments will
make a clear detection (> 5σ) of tensor modes from any
inflationary model with r ≥ 0.01.

4K.N. Abazajian et al., “Inflation physics from the cosmic
microwave background and large scale structure”, Astropart.
Phys. 63, 55 (2015) [arXiv:1309.5381].
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1.3 Precision Cosmological Measurments (cont.)

Note that current measurements (Stage II) are from Planck
2015 [Planck Collaboration, arXiv:1502.02114],

ns = 0.968± 0.006

r0.002 < 0.11 (95 % CL)



.

Table of Contents

1 Inflation and Precision Era of Cosmology

2 Planckian Physics in Early Universe

3 Uniform Asymptotic Approximations

4 Detecting Quantum Gravitational Effects in the Early
Universe

5 Conclusions and Future Plan



.

2.1 Trans-Planckian Problem
(Brandenberger and Martin, CGQ30 (2013) 113001)

But, inflation is very sensitive to Planck-scale physics, and its
origin has still remained elusive.

In particular, during inflation
the wavelengths, related to
present observations, were
exponentially stretched.
To be consistent with observations,
the inflationary period needs to be lasting long enough. If it
is more than 70 e-folds, the wavelengths corresponding to
present observations, should be smaller than the Planck
length at the beginning of the inflation, and quantum
gravitational effects become important
— the trans-Planckian problem.
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2.2 The η- problem:

For a single inflaton field ϕ, its potential V(ϕ) must be very
flat,

ϵV ≡ M2pl
(
V,ϕ
V

)2

≪ 1,

ηV ≡
M2pl
2

(
V,ϕϕ
V

)
≪ 1,

in order for the universe to expand large enough to solve
the problems of big bang model, mentioned above.
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2.2 The η- problem:

In effective field theory (EFT), the cutoff energy scale Λ is
defined by the lightest particle that is not included in the
spectrum of the low-energy theory, and the effects of high
energy scale physics above the energy Λ will change the
coefficients of operators in the form,

Oδ

Λδ−4
,

δ: the mass dimension of the operator
Λ ≃ Mpl
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2.2 The η- problem (Cont.):

Then, in the absence of any specific symmetries to protect
the inflation potential, dimension 4 and 6 operators will
produce contributions to the potential of the forms,

∆V(ϕ) = c0
⟨O6⟩
M2pl

+ c1
⟨O4⟩
M2pl

ϕ2,

c0, c1: dimensionless constants of order O(1). Then, for
⟨O4⟩ ≃ V, we find that

∆ηV ≡
M2pl
2
∆

(
V,ϕϕ
V

)
≃ c1 ≃ O(1),

which prevents a long-time exponential expansion
— the η problem, which can be addressed so far only in
string theory.
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2.2 Planckian Excursion of Inflaton
(Lyth, PRL78 (1997) 1861)

In the slow-roll approximations of a single scalar field, the
change of the inflaton ϕ during inflation is given by,

∆ϕ

Mpl
≃

√
r

8
∆N,

∆N: the number of e-fold, corresponding to when the
observed scales in the CMB leave the inflationary horizon

If r does not change as a function of N, this directly leads to

∆ϕ

Mpl
≃ O(1)

√
r

0.01
.
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2.2 Planckian Excursion of Inflaton (Cont.)

Then, the effective field theory of inflation with a potential
V(ϕ), which consists of power expansion of operators
suppressed by Planck scale,

V(ϕ) = Veff(ϕ) +O
[(

∆ϕ

Mpl

)n]
,

becomes questionable, and we need to take all the
high-order corrections into account, unless additional
symmetry is added, for example, a shift symmetry 5,

ϕ→ ϕ+ ϕ0.

5L. McAllister, E. Silverstein, A. Westphal, T. Wrase,

JHEP09(2014)123 [arXiv:1405.3652] and references therein.
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2.3 Initial Conditions:

Many inflationary scenarios only work if the fields are
initially very homogeneous and/or start with precise initial
positions and velocities. Any physical understanding of this
“fine-tuning” requires a more complete formulation with
ever-higher energies, such as string theory.
...

Therefore: Inflation is very sensitive to Planck-scale
physics, and quantum gravitational effects in the early universe
are important.
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2.4 Experimental Tests for Quantum Gravity:

On the other hand, quantization of gravity has been one of
the main driving forces in physics in the past decades, and
various approaches have been pursued, including
String/M-Theory, loop quantum gravity, Horava-Lifshitz
theory.

However, it is fair to say that our understanding of them is
still highly limited, and none of the aforementioned
approaches is complete.

One of the main reasons is the lack of experimental guides,
due to the extreme weakness of gravitational fields.



.

2.4 Experimental Tests for Quantum Gravity (Cont.):

This situation has been dramatically changed recently, with
the arrival of the era of precision cosmology 6.

One of our goals is to develop an ACCURATE and
EFFECTIVE mathematical tool to study quantum
gravitational effects in the early universe, whereby place
these theories of quantum gravity directly under
observational tests.
Although it is very ambitious, I am going to argue that this
becomes possible, with the great advance, happening
recently in cosmological observations.

6C. Kiefer, and M. Kramer, Phys. Rev. Lett. 108, 021301 (2012);

L.M. Krauss and F. Wilczek, Phys. Rev. D89, 047501 (2014); R.P.

Woodard, arXiv:1407.4748.
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2.4 Quantum Gravitational Effects

String/M-Theory: As the most promising candidate for
a UV-completion of the Standard Model that unifies gauge
and gravitational interaction in a consistent quantum
theory, String/M theory can provide possibilities for an
explicit realization of the inflationary scenario.
String/M theory usually leads to a non-trivial
time-dependent speed of sound for primordial
perturbations 7,

ω2
k = c

2
s(η)k

2, (1)

c2s(η): the speed of sound, and could be very close to zero
in the far UV regime.

7L. McAllister and E. Silverstein, Gen. Rel. Grav. 40, 565

(2007); C. P. Burgess, M. Cicoli, and F. Quevedo, arXiv: 1306.3512.
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2.4 Quantum Gravitational Effects (Cont.)

Loop quantum cosmology (LQC): Offers a
natural framework to address the trans-Planckian issue
and initial singularity.
In particular, because effects of its underlying quantum
geometry dominates at the Planck scale, leading to
singularity resolution in a variety of cosmological models,
where the initial singularity is replaced by the big bounce.
There are mainly two kinds of quantum corrections to the
cosmological background and perturbations8:
(a) holonomy, and (b) inverse-volume

8M. Bojowald and G.M. Hossain, PRD78 (2008) 063547; M. Bojowald,

G.M. Hossain, M. Kagan, and S. Shankaranarayanan, PRD79 (2009)

043505; 82, 109903 (E) (2010).
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2.4 Quantum Gravitational Effects (Cont.)

Due to the holonomy corrections, the dispersion relation in
the mode functions is modified to

ω2
k =

(
1− 2

ρ(η)

ρc

)
k2 (2)

ρc: the energy density at which the big bounce happens.

Due to the inverse-volume corrections, the dispersion
relation in the mode functions is modified to

ω2
k = k

2 ×

{
1 +

[
σν0
3

(
σ
6 + 1

)
+ α0

2

(
5− σ

3

)]
δPL(η), scalar

1 + 2α0δPL, tensor
(3)

α0, ν0, σ: encode the specific features of the model
δPL(η): time-dependent, given by δPL = (aPL/a)

σ < 1, with
σ > 0.
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2.4 Quantum Gravitational Effects (Cont.)

To quantize gravity using quantum field theory, in 2009
Horava proposed a theory - Horava-Lifshitz (HL) gravity 9,
which is power-counting renormalizable, and has attracted
lot of attention since then.
In this theory, the dispersion relation is modified to [AW and
R. Maartens, PRD81 (2010) 024009; AW, PRD82 (2010)
124063],

ω2
k(η) = k2 − b1

k4

a2M2∗
+ b2

k6

a4M4∗
(4)

M∗: the energy scale of the HL gravity
b1, b2: depend on the coupling constants of the HL theory
and the type of perturbations, scalar or tensor.

9P. Horava, PRD79 (2009) 084008.
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3.1 Modified Equation of Mode Function

Taking the quantum effects into account, either from string/
M-Theory, or loop Quantum Cosmology, or HL gravity, or
any of other theories, the equation of motion for the mode
function µk can be cast in the general form,

d2µk(y)

dy2
=

[
g(y) + q(y)

]
µk(y), (5)

g(y), q(y): functions of y[≡ −kη], to be determined by
minimizing the errors.
For example, in the HL gravity, we have

g(y) + q(y) =
ν2 − 1/4

y2
− 1 + b1ϵ

2
∗y

2 − b2ϵ4∗y4,

with ϵ∗ ≡ H/M∗, z′′/z ≡ (ν2(η)− 1/4)/η2.
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3.1 Modified Equation of µk (Cont.)

It is should be noted that the evolution of the mode function
with the non-linear dispersion relation given by Eq.(6) had
been already studied since 2001 10, as toy models to mimic
quantum gravitational effects.
This is well before 2009 when Horava first proposed his
theory, in which this non-linear dispersion relation is
naturally produced as the result of power-counting
renormalizability of the theory.

10J. Martin and R.H. Brandenberger, PRD63 (2001) 123501; D65 (2002)

103514; D68 (2003) 063513; J.C. Niemeyer and R. Parentani, D64

(2001) 101301 (R); L. Bergstorm and U.H. Danielsson, JHEP12 (2002)

038; J. Martin and C. Ringeval, PRD69 (2004) 083515; R. Easther, W.

H. Kinney, and H. Peiris, JCAP 05 (2005) 009; M.G. Jackson and K.

Schalm, PRL 108 (2012) 111301.
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3.1 Modified Equation of µk (Cont.)

However, in all these studies, the Brandenberger-Martin
(BM) approximation [PRD65 (2002) 103514] was used,

µk(η) =



1√
2ωk(η)

e
−i

∫ η
ηi

ωk(η
′)dη′

, when η < η1,

C+a(η) + C−a(η)
∫ η
η1

dη′

a2(η′) , when η1 < η < η2,
αke

−i
∫ η
η2

ωk(η
′)dη′

+βke
i
∫ η
η2

ωk(η
′)dη′

√
2ωk(η)

, when η2 < η < η3,

D+a(η) + D−a(η)
∫ η
η3

dη′

a2(η′) , when η > η3.

A, ph (a)

(b)

0

(c)

kph

t

k kc *

d

d

d3

2

1

N
d i
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3.1 Modified Equation of µk (Cont.)

Its validity in various physics situations has been
questioned [S.E. Joras and G. Marozzi, PRD79 (2009)
023514]:

The approximations break down at the matching points
(η1, η2, and η3), and thus the errors becomes large.

Numerical calculations showed it is only valid when the
comoving wavenumer k≫ aH.

The error bounds for the solutions are not known, so they
are not under any control.
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3.1 Modified Equation of µk (Cont.)

In the following, I am going to present the uniform
asymptotic approximation method, developed recently by
us, which has the following advantages:

The error bounds are given explicitly. By properly choosing
the functions g(y) and q(y), we can minimize the errors, so
that analytical solutions with high accuracy can be
constructed to high orders.

Up to the third-order approximations in terms of the
parameter λ, introduced in the method, the errors are

δ ≲ 0.15%
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3.2 Liouville Transformations

The strategy is to use the well-established Liouville
transformations to introduce

a new variable ξ, instead of y,
a new function U, instead of µk,

y→ ξ,

µk(y) → U(ξ),

so that the resulted equation can be solved:
analytically order by order in terms of ϵ ≡ 1/λ≪ 1

the corresponding error bounds are well under control at
each step, so the errors can be minimized
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3.2 Liouville Transformations (Cont.)

The Liouville Transformations are

U(ξ) = χ1/4µk(y), χ ≡ ξ′2 =
|g(y)|
f(1)(ξ)2

,

f(ξ) =

∫ y√
|g(y)|dy, f(1)(ξ) =

df(ξ)

dξ
, (6)

χ must be regular and not vanish in the intervals of interest
g(y) & q(y) are properly chosen to minimize the errors
f(1)(ξ) must be chosen so that it has zeros and
singularities of the same type as that of g(y)
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3.2 Liouville Transformations (Cont.)

The equation of motion for the mode function reduces to,

d2U(ξ)

dξ2
=

[
±f(1)(ξ)2 + ψ(ξ)

]
U(ξ), (7)

with

ψ(ξ) =
q(y)

χ
− χ−3/4 d

2(χ−1/4)

dy2
, (8)

in the above “+” for g(y) > 0, and “−” for g(y) < 0.
Neglecting ψ(ξ) we obtain solutions to the first-order
approximation
Choosing properly f(1)(ξ) in order for the equation to be:
(a) solved analytically, and
(b) minimizing the error bounds.
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3.2 Liouville Transformations (Cont.)

To solve the differential equation for the new function U(ξ)
analytically, we divide the task into three steps:

Solve it near some singular points,

g(y) + q(y) = ±∞,

often called poles.
Solve it near the turning points,

g(y) = 0.

Then, matching all the solutions together with the initial
conditions, which are normally taken as the Bunch-Davies
(adiabatic) vacuum.
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3.3 Solutions near poles

To illustrate our method, in the following we shall restrict
ourselves to the case,

g(y) + q(y) ≡
(
z′′

z
− ω2

k

)
k−2

=
ν2 − 1/4

y2
− 1 + b1ϵ

2
∗y

2 − b2ϵ4∗y4

although our method can be used for any given dispersion
relation ω2

k and background z′′/z.
Eq.(9) has two poles (singularities), y = 0,∞, and three
turning points (roots of g(y)= 0).



.

3.3 Solutions near poles (Cont.)

The functions g(y) and q(y) are well-defined near the two
possible poles, y = 0+, +∞. Thus, we choose

f(1)(ξ)2 = 1, ξ =

∫ y√
|g(y)|dy,

so that

d2U(ξ)

dξ2
=

[
± 1 + ψ(ξ)

]
U(ξ),

here “+” for 0+, and “−” for +∞.
By neglecting ψ(ξ) as the first-order approximations, the
solutions of the above equation can be determined
analytically.
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3.3 Solutions near poles (Cont.)

Near the pole y = 0+, the solutions are given by

µ+k (y) =
c+
g(y)1/4

e
∫ y√g(y)dy(1 + ϵ+1 )

+
d+
g(y)1/4

e−
∫ y√g(y)dy(1 + ϵ+2 ),

ϵ+1 , ϵ
+
2 : represent the errors of the approximations,

ϵ+1 =
1

2

∫ ξ

0

(
1− e2(v−ξ)

)
ψ(v)

(
1 + ϵ+1

)
dv,

ξ ∈ (0, a1), v ∈ (0, ξ], y ∈ (0+, â1);
a1, â1: the upper bounds of the variables ξ, y
ξ(0+) = 0, ξ(â1) = a1.
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3.3 Solutions near poles (Cont.)

Similar expression is for ϵ+2 . Then, the error bounds are

|ϵ+1 |,
|dϵ+1 /dy|
2|g|1/2

≤ exp
(
1

2
V0,y(F)

)
− 1,

|ϵ+2 |,
∣∣dϵ+2 /dy∣∣
2|g|1/2

≤ exp
(
1

2
Vy,â1(F)

)
− 1,

where the error control function F(y) and Va,b(F) are defined as

F(y) =

∫ [
1

|g|1/4
d2

dy2

(
1

|g|1/4

)
− q

|g|1/2

]
dy,

Va,b(F) ≡
∫ b
a

∣∣∣∣dF(y)dy
∣∣∣∣ dy
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3.3 Solutions near poles (Cont.)

Near the pole y = +∞, the solutions are given by

µ−k (y) =
c−

|g(y)|1/4
e
∫ y√|g(y)|dy(1 + ϵ−1 )

+
d−

|g(y)|1/4
e−

∫ y√|g(y)|dy(1 + ϵ−2 ),

ϵ−1 , ϵ
−
2 : represent the errors of the approximations, and have

similar expressions as those for ϵ+1 , ϵ
+
2 .
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3.4 Solutions near turning points

Error Control Function and Choice of g(y) and q(y):
The convergence of the error control function F(y) requires
that one must choose [PRD89 (2014) 043507],

g(y) =
ν2

y2
− 1 + b1ϵ

2
∗y

2 − b2ϵ4∗y4,

q(y) = − 1

4y2
.

Then, g(y), usually has three roots, ( y0, y1, y2), where
we assume 0 < y0 < Re(y1) ≤ Re(y2)
y0 is always real and positive
when y1, y2 real, we assume y1 ≤ y2
When y1, y2 are complex, we have y1 = y∗2.
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3.4 Solutions near turning points (Cont.)

The turning points are defined as the roots of

g(y) =
ν2

y2
− 1 + b1ϵ

2
∗y

2 − b2ϵ4∗y4 = 0.

0

(a)

(b)

(c)

y

g(y)
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3.4 Solutions near turning points (Cont.)

Approximate solution around y = y0: Since y0 is a single
zero of g(y) = 0, we can choose f(1)(ξ)2 = ±ξ, so that

d2U(ξ)

dξ2
=

(
ξ + ψ(ξ)

)
U(ξ),

which has the approximate solution,

µk(y) = α0

(
ξ

g(y)

)1/4 (
Ai(ξ) + ϵ3

)
+β0

(
ξ

g(y)

)1/4 (
Bi(ξ) + ϵ4

)
,

Ai(ξ), Bi(ξ): the Airy functions
ϵ3, ϵ4: the errors of the approximations
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3.4 Solutions near turning points (Cont.)

The error ϵ3 is given by

ϵ3(ξ) =

∫ a3
ξ

K(ξ, v)|v|−1/2ψ(v)
(
Ai(v) + ϵ3

)
,

a3: the upper bound of ξ; â3: the upper bound of y, with
ξ(â3) = a3.
A similar expression for ϵ4. Then, the up bounds are

|ϵ3|
M(ξ)

,
|∂ϵ3/∂ξ|
N(ξ)

≤ E
−1(ξ)

λ

{
exp

(
λVξ,a3(H)

)
− 1

}
,

|ϵ4|
M(ξ)

,
|∂ϵ4/∂ξ|
N(ξ)

≤ E(ξ)
λ

{
exp

(
λVa4,ξ(H)

)
− 1

}
,

but now with the error control function H(y) defined as
H(ξ) =

∫ a3
ξ |v|−1/2ψ(v)dv.
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3.4 Solutions near turning points (Cont.)

Approximate solutions around y = (y1, y2): Near these
turning points, we choose

f(1)(ξ)2 = |ξ2 − ξ20 |, ξ20 = ± 2

π

∣∣∣∣∫ y2
y1

√
|g(y)|dy

∣∣∣∣ ,
‘‘±” correspond y1,2 are real and complex,
respectively
when y1,2 are both real, ξ0 is positive
when y1,2 are both complex, ξ0 is purely imaginary
when y1 = y2, they degenerate to a double turning point,
and ξ0 = 0
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3.4 Solutions near turning points (Cont.)

Then, the solutions around y1 and y2 are given by

µk(y) = α1

(
ξ2 − ξ20
−g(y)

)1/4 [
W

(
1

2
ξ20 ,

√
2ξ

)
+ ϵ5

]
+β1

(
ξ2 − ξ20
−g(y)

)1/4 [
W

(
1

2
ξ20 ,−

√
2ξ

)
+ ϵ6

]
,

ϵ5, ϵ6: the errors of the approximations
W
(
1
2ξ

2
0 ,±

√
2ξ
)
: the cylindrical functions
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3.4 Solutions near turning points (Cont.)

The error ϵ5 is given by

ϵ5(ξ) =

∫ a5
ξ

K(ξ, v)
ψ(v)

v

{
W

(
1

2
ξ20 ,

√
2v

)
+ ϵ5

}
dv,

K(ξ, v) = v
{
W

(
1

2
ξ20 ,

√
2ξ

)
W

(
1

2
ξ20 ,−

√
2v

)
−W

(
1

2
ξ20 ,

√
2v

)
W

(
1

2
ξ20 ,−

√
2ξ

)}
.

a5: is the upper bound of ξ.

A similar expression is for ϵ6.
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3.4 Solutions near turning points (Cont.)

The up error bounds are

|ϵ5|
M
(
1
2ξ

2
0 ,
√
2ξ
) , |∂ϵ5/∂ξ|√

2N
(
1
2ξ

2
0 ,
√
2ξ
)

≤ κ

λE
(
1
2ξ

2
0 ,
√
2ξ
){ exp(λVξ,a5(H)

)
− 1

}
,

|ϵ6|
M
(
1
2ξ

2
0 ,
√
2ξ
) , |∂ϵ6/∂ξ|√

2N
(
1
2ξ

2
0 ,
√
2ξ
)

≤
κE

(
1
2ξ

2
0 ,
√
2ξ
)

λ

{
exp

(
λV0,ξ(I)

)
− 1

}
.
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3.5 Matching to the Initial solution

We assume the universe was initially at the adiabatic
(Bunch-Davies) vacuum,

lim
y→+∞

µk(y) =
1√
2ω
e−i

∫
ωdη

≃
√
k

2

1

(−g)1/4
exp

(
−i

∫ y
yi

√
−gdy

)
.

Since the equation of the mode function is second-order,
we need one more condition to completely fix the free
parameters in the solutions. We choose the second one as
the Wronskian condition

µk(y)µ
∗
k(y)

′ − µ∗k(y)µk(y)
′ = i.



.

3.5 Matching to the Initial solution (Cont.)

We found four sets of solutions:
LG solution near the pole y = ∞ with (c−, d−)
Cylindrical function solution near the two turning points y1,2
with (α1, β1)
Airy function solution near the turning point y0 with (α0, β0)
LG solution near the pole y = 0 with (c+, d+)

+

y y

g(y)

y
0

0 y1 2

LG Initial
W(a, x)

(Ai, Bi
(LG

ï(c ,d )ï
1 1_ , ` )

_ , ` )00
+(c ,d )
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3.5 Matching to the Initial solution (Cont.)

Using the initial conditions to the LG solution near the pole
y = ∞, we find that

C− = 0, d− =

√
1

2k
.

Matching the LG solution with the cylindrical function
solutions at y≫ y2 we find that

α1 = 2−3/4k−1/2j−1/2(ξ0),

β1 = −i2−3/4k−1/2j1/2(ξ0),

with j(ξ0) ≡
√
1 + eπξ

2
0 − eπξ20/2.
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3.5 Matching to the Initial solution (Cont.)

Matching the cylindrical function solution with the Airy
function one in their common region y ∈ (y0, y1), we find

α0 =

√
π

2k

[
j−1(ξ0) sinB− ij(ξ0) cosB

]
,

β0 =

√
π

2k

[
j−1(ξ0) cosB+ ij(ξ0) sinB

]
,

where

B ≡
∫ y1
y0

√
−gdy+ ϕ(ξ20/2),

ϕ(x) ≡ x
2
− x

4
ln x2 +

1

2
phΓ

(
1

2
+ ix

)
.
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3.5 Matching to the Initial solution (Cont.)

Finally, matching the LG solution near the pole y = 0 with
the Airy function one in their common region y ∈ (0, y0), we
find

d+ =
α0

2
√
π
exp

(
−
∫ y0
0+

√
gdy

)
,

c+ =
β0√
π
exp

(∫ y0
0+

√
gdy

)
.
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3.6 Comparing with numerical (exact) solutions

When y1,2 are real and y1 ̸= y2:

Analytical

Numerical
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Figure : The numerical (exact) (red dotted curves) and
analytical (blue solid curves) solutions with b1 = 3, b2 = 2,
ν = 3/2, and ϵ∗ = 0.01.
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3.6 Comparing with numerical (exact) solutions (Cont.)

When y1,2 are real and y1 = y2:
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Figure : The numerical (exact) (red dotted curves) and
analytical (blue solid curves) solutions with b1 = 2, b2 = 1.00023,
ν = 3/2, and ϵ∗ = 0.01.
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3.6 Comparing with numerical (exact) solutions (Cont.)

When y1,2 are complex:

Analytical

Numerical
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Figure : The numerical (exact) (red dotted curves) and
analytical (blue solid curves) solutions with b1 = 3.5, b2 = 3.2,
ν = 3/2, and ϵ∗ = 0.01.
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3.7 High-order Corrections

To generalize the above to high-order approximation is
challenging, mainly because of the matching. So, in the
following we consider the case where g(y) = 0 has only
one real root, y0.
Then, we can choose

f(1)(ξ) = ±ξ,

ξ = ξ(y): a monotone decreasing function
“+”: corresponds to g(y) ≥ 0

“-”: corresponds to g(y) ≤ 0.
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3.7 High-order Corrections (Cont.)

Then, the mode function U(ξ) is given by

U(ξ) = α0

[
Ai(λ2/3ξ)

n∑
s=0

As(ξ)

λ2s

+
Ai′(λ2/3ξ)
λ4/3

n−1∑
s=0

Bs(ξ)

λ2s
+ ϵ

(2n+1)
3

]

+β0

[
Bi(λ2/3ξ)

n∑
s=0

As(ξ)

λ2s

+
Bi′(λ2/3ξ)
λ4/3

n−1∑
s=0

Bs(ξ)

λ2s
+ ϵ

(2n+1)
4

]
, (9)

where α0 and β0 are two integration constants.
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3.7 High-order Corrections (Cont.)

The coefficients As and Bs are given by

A0(ξ) = 1,

Bs =
±1

2(±ξ)1/2

∫ ξ

0
{ψ(v)As(v)− A′′s(v)}

dv

(±v)1/2
,

As+1(ξ) = −1

2
B′s(ξ) +

1

2

∫
ψ(v)Bs(v)dv, (s = 0, 1, 2, ...)(10)

where “+” corresponds to ξ ≥ 0, and “-” to ξ ≤ 0.
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3.7 High-order Corrections (Cont.)

The error bounds of ϵ(2n+1)
3 and ϵ(2n+1)

4 are given by,

ϵ
(2n+1)
3

M(λ2/3ξ)
,

∂ϵ
(2n+1)
3 /∂ξ

λ2/3N(λ2/3ξ)

≤ 2E−1(λ2/3ξ) exp

[
2κ0Vα,ξ(|ξ1/2|B0)

λ

]

×
Vα,ξ(|ξ1/2|Bn)

λ2n+1
,

ϵ
(2n+1)
4

M(λ2/3ξ)
,

∂ϵ
(2n+1)
4 /∂ξ

λ2/3N(λ2/3ξ)

≤ 2E(λ2/3ξ) exp

[
2κ0Vξ,β(|ξ1/2|B0)

λ

]

×
Vξ,β(|ξ1/2|Bn)

λ2n+1
.
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3.7 High-order Corrections (Cont.)

To determine α0 and β0, we assume the same initial
conditions as in the firs-order approximations, that is, the
universe initially was in the Bunch-Davies vacuum, and µk
satisfies the Wronskian condition,

lim
y→+∞

µk(y) =
1√
2ωk
e−i

∫
ωkdη,

µk(y)µ
∗
k(y)

′ − µ∗k(y)µk(y)
′ = i.

After tedious calculations, we surprisingly find a very
simple result,

α0 =

√
π

2k
, β0 = i

√
π

2k
.
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3.8 Power spectra and spectral indexes with
High-order Corrections

To the third-order approximations, the power spectrum is
given by

∆2(k) ≡ k3

2π2

∣∣∣∣µk(y)z
∣∣∣∣2
y→0+

=
k2

4π2
−kη

z2(η)ν2(η)
exp

(
2

∫ ν0

y

√
ĝ(ŷ)dŷ

)
×
[
1 +
H(+∞)

λ
+
H2(+∞)

2λ2
+O(1/λ3)

]
.

(11)
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3.8 Power spectra and spectral indexes with
High-order Corrections (Cont.)

To the third-order approximations, the spectral index is
given by

n− 1 ≡ d ln∆2(k)

d ln k
= 3

+2

∫ ν0

y

dŷ√
ĝ(ŷ)

+
1

λ

dH(+∞)

d ln k
+O

(
1

λ3

)
.(12)

Note that the order of the approximations is referred to 1/λ,
and we have not impose the slow-roll conditions, normally
denoted by ϵn, adopted in inflation.
ϵn and λ−1 are two set of independent parameters. So, our
method can be equally applied to non-slow-roll cases.
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3.9 Applications to Special Cases

High-order power spectra and spectral indices have been
calculated so far up to the second-order of the slow-roll
parameters only in two cases:

(a) GR (ω2
k = k

2), first by using the Green function method
and later confirmed by the improved WKB method11,

(b) k-inflation (ω2
k = c

2
s(η)k

2), by using the uniform
approximation method but to the firs-order of (1/λ)12.

11J.-O. Gong and E.D. Stewart, PLB510 (2001) 1; S.M. Leach, A,

Liddle, J. Martin and D. Schwarz, PRD66 (2002) 023515; J.-O. Gong,

CQG21 (2004) 5555; R. Casadio, et al, PRD71 (2005) 043517; PLB625

(2005) 1.

12J. Martin, C. Ringeval and V. Vennin, JCAP06 (2013) 021.
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3.9 Applications to Special Cases (Cont.)

Applying our method to GR up to the second-order in
terms of the slow-roll parameters ϵn and the third-order in
terms of λ, we find that the exact (numerical) solutions are
extremely well approximated by our analytical solutions
[PRD90 (2014) 063503, arXiv:1405.5301].

Numerical solution
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3.9 Applications to Special Cases (Cont.)

The resulted power spectra and spectral indexes of both
scalar and tensor perturbations are consistent with the
ones obtained by the Green function and improved WKB
methods13, within the allowed errors [PRD90 (2014) 063503,
arXiv:1405.5301].
Applying our method to k-inflation, we obtained the power
spectra, spectral indexes and runnings of both scalar and
tensor perturbations with the highest accuracy existing in
the literature so far [PRD90 (2014) 103517, arXiv:1407.8011].

13J.-O. Gong and E.D. Stewart, PLB510 (2001) 1; S.M. Leach, A,

Liddle, J. Martin and D. Schwarz, PRD66 (2002) 023515; J.-O. Gong,

CQG21 (2004) 5555; R. Casadio, et al, PRD71 (2005) 043517; PLB625

(2005) 1.
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4. Detecting Quantum Gravitational Effects in the
Early Universe

With the arrival of the era of the precision cosmology, it
would be extremely important and interesting to see if any
of these quantum gravitational effects in the early universe
are within the range of the current and forthcoming
experiments.
In the following, we shall show that this is indeed possible.
To be more specific, we concentrate ourselves on the
inverse-volume corrections from LQC 14, for which the
dispersion relations are,

14M. Bojowald and G. Calcagni, JCAP 03 (2011) 032; M. Bojowald, G.

Calcagni, and S. Tsujikawa, Phys. Rev. Lett. 107, 211302 (2011);

JCAP 11 (2011) 046.
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4. Detecting Quantum Gravitational Effects in the
Early Universe (Cont.)

ω2
k = k

2 ×

{
1 +

[
σν0
3

(
σ
6 + 1

)
+ α0

2

(
5− σ

3

)]
δPL(η), scalar

1 + 2α0δPL, tensor

α0, ν0, σ: encode the specific features of the model, with

0 < σ ≤ 6,

δPL(η): time-dependent,

δPL =
(aPL
a

)σ
< 1,

aPL: a constant.
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4. Detecting Quantum Gravitational Effects in the
Early Universe (Cont.)

Then, we find that,

ns ≃ 1− 2ϵ⋆1 − ϵ⋆2 − 2ϵ2⋆1 − (3 + 2Dn) ϵ⋆1ϵ⋆2 − Dnϵ⋆2ϵ⋆3
+ϵpl

(
3
2H⋆

)σ (K⋆(s)
−1 ϵ

−1
⋆1 +K⋆(s)

0 +K⋆(s)
1 ϵ⋆2ϵ

−1
⋆1

)
,

r ≃ 16ϵ⋆1
[
1 + Dpϵ⋆2 − ϵpl(

3
2H⋆)

σQ⋆(s)
−1 ϵ

−1
⋆1

]
, (13)

ϵ1 ≡ −Ḣ/H2, ϵn+1 ≡ ϵ̇n/(Hϵn), ϵpl ≡ (apl/k)
σ,

Dp ≡ 67/181− ln 3, Dn ≡ 10/27− ln 3,
f⋆: denoting its evaluation at horizon crossing,
a(η⋆)H(η⋆) = s(η⋆)k,
K⋆(s)

−1 , Q
⋆(s)
−1 : the leading terms, given in the following Table
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4. Detecting Quantum Gravitational Effects in the
Early Universe (Cont.)

When σ = 3, Q⋆(s)
−1 and K⋆(s)

−1 vanish, one has to consider
contributions from Q⋆(s)

0 and K⋆(s)
0 ,

Q⋆(s)
0 =

513π

11584
ν0, K⋆(s)

0 = −9π

64
ν0.
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4. Detecting Quantum Gravitational Effects in the
Early Universe (Cont.)

The precision measurement of (ns, r) provides a promising
detection of the quantum gravitational effects. In particular,
future experiments, such as EUCLID, PRISM, and LiteBIRD 15,
should be able to measure (ns, r) with errors down to 10−3,

σ (ns) ≃ σ (r) ≃ 10−3.

15L. Amendola et al. (Euclid Theory Working Group Collaboration),

Living Rev. Relativity 16, 6 (2013); P. Andre et al. (PRISM

Collaboration), arXiv:1306.2259; T. Matsumura et al., arXiv:

1311.2847.
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4. Detecting Quantum Gravitational Effects in the
Early Universe (Cont.)

Then, for V(ϕ) = λpϕ
p, we find that

Γ ≡ (ns − 1) +
p+ 2

8p
r+ γ1(ns − 1)2

= F(σ)
δ(k⋆)

ϵV
, (14)

where δ(k) ≡ α0δPL(k),

F(σ) ∼ O(1), ϵV ≡ M2plV2ϕ/(2V2),
γ1 = [3p2 + (18− 12Dp + 12Dn)p+ 24Dp

−24Dn − 4]/[6(p+ 1)2].

F(σ) δ(k⋆)ϵV
: the quantum gravitational effects from LQC.



.

4. Detecting Quantum Gravitational Effects in the
Early Universe (Cont.)

Since σ (ns) ≃ σ (r) ≃ 10−3, we have

σ (Γ) ≃ 10−3.

Therefore, if
F(σ)

δ(k⋆)

ϵV
≳ O

(
10−3

)
,

the quantum gravitational effects from LQC is within the range
of detection!
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4. Detecting Quantum Gravitational Effects in the
Early Universe (Cont.)

Using our Cosmological Monte Carlo (CosmoMC) code16

with the Planck, BAO, and Supernova Legacy Survey
data17, we first carry out our CMB likelihood analysis.
In particular, we assume the flat cold dark matter model
with effective number of neutrinos Neff = 3.046 and fix the
total neutrino mass Σmν = 0.06eV.

16Y.-G. Gong, Q. Wu, and A. Wang, Astrophys. J. 681, 27-39 (2008);

http://cosmologist.info/cosmomc

17P. A. R. Ade (Planck Collaboration), Astron. Astrophys. 571

(2014) A16; L. Anderson et al., Mon. Not. R. Astron. Soc. 427, 3435

(2013); A. Conley, J. Guy, M. Sullivan, N. Regnault, P. Astier, C.

Balland, S. Basa and R. G. Carlberg et al., Astrophys. J. Suppl.

192, 1 (2011).
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4. Detecting Quantum Gravitational Effects in the
Early Universe (Cont.)

We vary the seven parameters:
(i) baryon density parameter, Ωbh2

(ii) dark matter density parameter, Ωch2

(iii) the ratio of the sound horiozn to the angular diameter, θ
(iv) the reionization optical depth, τ
(v) δ(k0)/ϵV
(vi) ϵV
(vii) ∆2

s(k0)

We take the pivot wave number k0 = 0.05 Mpc−1, used in
Planck, to constrain δ(k0) and ϵV.
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4. Detecting Quantum Gravitational Effects in the
Early Universe (Cont.)

The following figures show the constraints:

δ(k0) ≲ 6.8× 10−5, σ = 1,

δ(k0) ≲ 1.9× 10−8, σ = 2,

at 1σ (68% CL) level.
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4. Detecting Quantum Gravitational Effects in the
Early Universe (Cont.)

The upper bound for δ(k0) decreases dramatically as σ
increases.
However, despite the tight constraints on δ(k0), because of
the ϵ−1

V enhancement in Eq.(14), such effects can be well
within the range of the detection of the current and
forthcoming cosmological experiments18 for

σ ≲ 1,

which is favorable even theoretically19.
18K.N. Abazajian et al., “Inflation physics from the cosmic

microwave background and large scale structure”, Astropart.

Phys. 63, 55 (2015) [arXiv:1309.5381].

19M. Bojowald and G. Calcagni, JCAP 03 (2011) 032.



.

4. Detecting Quantum Gravitational Effects in the
Early Universe (Cont.)

It is remarkable to note that, for any given σ, the best fitting
value of ϵV is about 10−2, which is rather robust in
comparing with the case without the gravitational quantum
effects.
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Conclusions and future plan

Quantum gravitational effects in the early universe are
important and need to be taken into account with the
arrival of the era of precision cosmology.

The uniform approximation method is designed to study
analytically the evolution of the mode functions of
perturbations generated in the early universe with such
effects.

The analytical results of power spectra and spectral indices
are explicitly obtained in general case to the first-order
approximations with the error bounds ≲ 15%.
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Conclusions and future plan (Cont.)

To the third-order, the analytical results of power spectra
and spectral indices are explicitly obtained in the case with
only one-turning point with the error bounds ≲ 0.15%.

Applying them to the k-inflation, we obtained the most
accurate results for power spectra, spectral indices and
runnings, existing so far in the literature.

Applying them to LQC, we found that the quantum
gravitational effects from inverse-volume corrections are
within the detection of the next (Stage IV) experiments 20.

20K.N. Abazajian et al., arXiv:1309.5381.
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Conclusions and future plan (Cont.)

It would be very important to generalize our above studies
to the cases with more than one turning point.

Applying our method to study quantum gravitational effects
for other models, including the ones from supergravity,
strong/M-Theory and Horava-Lifshitz theory of quantum
gravity.
It is certainly desirable to find observational signals for
future experiments/observations.
…….
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