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■ In d -dimensional Minkowski spacetime, SO (2,d ) global conformal

transformations consist of the followings:

(translation) x µ 7→ x ′µ = x µ +aµ

(Lorentz transformation) x µ 7→ x ′µ =Λµνx ν

(dilatation) x µ 7→ x ′µ =λx µ

(conformal boost) x µ 7→ x ′µ =
x µ + b µx 2

1+2b x + b 2 x 2

■ Basic elements of conformal field theory (CFT) are (quasi-)primary

operators O∆(x ), which transform under the SO (2,d ) global conformal

transformations x µ 7→ x ′µ as follows:

O∆(x ) 7→O
′
∆
(x ) =

�

�

�

�

∂ x ′

∂ x

�

�

�

�

∆/d

O∆(x
′)

where |∂ x ′/∂ x | stands for the Jacobian of the global conformal

transformation. ∆ is called the conformal weight of O∆(x ).
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■ Let |0〉 be the conformally invariant vacuum. Then the n-point function for

the (quasi-)primary operators satisfies the identity

〈0|O∆1
(x1) · · ·O∆n

(xn )|0〉=

�

�

�

�

∂ x ′

∂ x

�

�

�

�

∆1/d

x=x1

· · ·

�

�

�

�

∂ x ′

∂ x

�

�

�

�

∆n /d

x=xn

〈0|O∆1
(x ′

1
) · · ·O∆n

(x ′
n
)|0〉

■ It has been long known that the SO (2,d ) global conformal symmetry

completely fixes the possible forms of two- and three-point functions in any

spacetime dimension d [Polyakov ’70]. Indeed, up to overall normalization

factors, they can be determined as follows:

〈0|O∆1
(x1)O∆2

(x2)|0〉=δ∆1∆2

C∆1∆2

|x1− x2|∆1+∆2

〈0|O∆1
(x1)O∆2

(x2)O∆3
(x3)|0〉=

C∆1∆2∆3

|x1− x2|∆1+∆2−∆3 |x2− x3|∆2+∆3−∆1 |x3− x1|∆3+∆1−∆2

http://www.jetpletters.ac.ru/ps/1737/article_26381.shtml
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■ Conformal constraints work well in coordinate space; however, they tell us

little about momentum-space correlators before performing Fourier

transform.

■ Indeed, in spite of its simplicity in coordinate space, three-point functions

in momentum space are known to be very complicated.

zero-temperature CFTd : [Corianò-Delle Rose-Mottola-Serino ’13] [Bzowski-McFadden-Skenderis ’13]

finite-temperature CFT2 : [Becker-Cabrera-Su ’14]

■ It is desirable to understand how conformal symmetry restricts the possible

forms of momentum-space correlators. Here are the reasons:

◆ Momentum-space correlators are directly related to physical

observables (such as spectral density);

◆ Fourier transform of position-space correlators is very hard.

■ Today I am going to present a small example that, by using the AdS/CFT

correspondence, finite-temperature CFT1 two-point functions in frequency

space can also be determined by conformal symmetry.

http://arxiv.org/abs/1304.6944
http://arxiv.org/abs/1304.7760
http://arxiv.org/abs/1407.3415
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■ Scope of the talk: Klein-Gordon equation on charged AdS2 black hole

(�AdS2
−m 2)Φ(T , X ) = 0

and the asymptotic near-boundary behavior of general solution

Φ(T , X )∼ A∆(ω)X
∆e−iωT +B∆(ω)X

1−∆e−iωT as X → 0

■ According to the real-time prescription of AdS/CFT correspondence, the

ratio

G∆(ω) = (2∆−1)
A∆(ω)

B∆(ω)

gives the frequency-space two-point function for a charged scalar operator

of conformal weight∆ in dual finite-temperature CFT1 [Iqbal-Liu ’09].

■ My small findings: The ratio A∆(ω)/B∆(ω) can be computed without

solving the Klein-Gordon equation: it is determined only through

symmetry of the AdS2 black hole.

http://arxiv.org/abs/0903.2596
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■ Charged AdS2 black hole is a locally AdS2 spacetime and described by the

following metric and gauge field:

d s 2
AdS2
=−

�

� r

R

�2

−1

�

d t 2 +
d r 2

(r /R )2−1
and A =−E (r −R )d t

r = 0 r =∞
(AdS2 boundary)

t

r =R
(black hole horizon)

fi
n

ite
-te

m
p

e
ra

tu
re

C
F

T
1

black hole interior

observer feels
the radiation of e +

e − e +

virtual e +e − pair creation
becomes real

background electric field E

http://arxiv.org/abs/0705.4214
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■ Charged AdS2 black hole is a locally AdS2 spacetime and described by the

following metric and gauge field:

d s 2
AdS2
=−

�

� r

R

�2

−1

�

d t 2 +
d r 2

(r /R )2−1
and A =−E (r −R )d t

■ It is known that any black holes have an AdS2 factor in the near-horizon

limit [AdS2 structure theorem [Kunduri-Lucietti-Reall ’07]]. In this sense the AdS2

black hole plays a special role in black hole physics and holography.

■ For the following discussions it is convenient to introduce a new coordinate

system (t , x ) via

r =R coth(x/R ), x ∈ (0,∞)

in which the metric and gauge field become

d s 2
AdS2
=
−d t 2 +d x 2

sinh2(x/R )
and A =−E R (coth(x/R )−1)d t

■ Below I will work in the units R = 1.

http://arxiv.org/abs/0705.4214
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■ AdS2 spacetime is a 2d spacetime with negative constant curvature −1. It is

embedded into the ambient space R2,1 and defined as the 2d hyperboloid

AdS2 =
�

(X 1, X 2, X 3) ∈R2,1 :−(X 1)2− (X 2)2+(X 3)2 =−1
	

X 1 X 2

X 3

■ AdS2 metric is then given by the following induced metric

d s 2
AdS2
= −(d X 1)2− (d X 2)2+(d X 3)2

�

�

−(X 1 )2−(X 2 )2+(X 3 )2=−1

■ The hyperboloid is obviously invariant under the SO (2,1) transformations

X µ 7→ X ′
µ
=ΛµνX ν, Λ ∈ SO (2,1)∼= S L (2,R)/Z2

isometry group of AdS2 = S O (2,1)(∼= S L (2,R)/Z2)
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■ The Lie algebra so(2,1)∼= sl(2,R) of the Lie group SO (2,1)∼= S L (2,R)/Z2 is

spanned by the following traceless matrices:

i J1 =
1

2

�

0 1

1 0

�

, i J2 =
1

2

�

1 0

0 −1

�

, i J3 =
1

2

�

0 1

−1 0

�

which satisfy the commutation relations

[J1, J2] = i J3, [J2, J3] =−i J1, [J3, J1] =−i J2

■ These generators generate the following one-parameter subgroups:

exp(iεJ1) =

�

cosh ε
2 sinh ε

2

sinh ε
2 cosh ε

2

�

∈ SO (1,1)

exp(iεJ2) =

�

eε/2 0

0 e−ε/2

�

∈ SO (1,1)

exp(iεJ3) =

�

cos ε2 sin ε
2

−sin ε
2 cos ε2

�

∈ SO (2)
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■ The linear combinations

i H = i (J1+ J3) =

�

0 1

0 0

�

, i D = i J2 =
1

2

�

1 0

0 −1

�

, i K = i (J1− J3) =

�

0 0

1 0

�

satisfy the (0+1)-dimensional conformal algebra

[H ,D ] = i H , [D , K ] = i K , [K ,H ] = 2i D

■ These generators generate the following one-parameter subgroups:

exp (iεH ) =

�

1 ε

0 1

�

∈ E (1)

exp (iεD ) =

�

eε/2 0

0 e−ε/2

�

∈ SO (1,1)

exp (iεK ) =

�

1 0

ε 1

�

∈ E (1)
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■ It is known that the Lie group SO (2,1) contains only three distinct

one-parameter subgroups: compact rotation group SO (2), noncompact

Euclidean group E (1) and noncompact Lorentz group SO (1,1).

■ Correspondingly, there exist three distinct classes of coordinates patches on

AdS2 where time-translation generators generate the one-parameter

subgroups SO (2), E (1) and SO (1,1).

■ I shall show that the time-translation generator of AdS2 black hole generates

the one-parameter subgroup SO (1,1)⊂ SO (2,1), which, after Wick rotation,

becomes the compact rotation group SO (2) and hence leads to quantized

Matsubara frequencies conjugate to the imaginary time.
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Here are the three distinct coordinate patches on the 2d hyperboloid

−(X 1)2− (X 2)2+(X 3)2 =−1:

1. Global coordinates: SO (2) diagonal basis1

(X 1, X 2, X 3) =

�

sinτ

sinσ
,

cosτ

sinσ
,

cosσ

sinσ

�

, d s 2
global

=
−dτ2 +dσ2

sin2σ

2. Poincaré coordinates: E (1) diagonal basis

(X 1, X 2, X 3) =

�

t

x
,

1− t 2 + x 2

2x
,

1+ t 2 − x 2

2x

�

, d s 2
Poincaré

=
−d t 2 +d x 2

x 2

3. Schwarzschild coordinates: SO (1,1) diagonal basis

(X 1, X 2, X 3) =

�

sinh T

sinh X
,

cosh X

sinh X
,

coshT

sinh X

�

, d s 2
Schwarzschild

=
−d T 2 +d X 2

sinh2 X

1τ ranges from −∞ to +∞ for the covering space of AdS2 without identification τ∼τ+2π.
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■ The global coordinate patch covers the whole hyperboloid, whereas the

Poincaré and Schwarzschild coordinate patches cover only 1/2 and 1/8 of

the hyperboloid, respectively:

σ

τ

π

−π

0
π

σ

τ

π

−π

π

x
=
∞

x
=
∞

x
=

0
σ

τ

π

π/2

−π/2

−π

π/2 π

X
=
∞

X
=
∞

X
=

0

(a) Global (b) Poincaré (c) Schwarzschild
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1. Global coordinates. The line element

d s 2
global

=
−dτ2 +dσ2

sin2σ

is invariant under the following S L (2,R)/Z2
∼= SO (2,1) transformation:

�

a b

c d

�

:σ± 7→σ′± = 2arctan

�

a tan σ±

2 + b

c tan σ±

2 +d

�

, σ± := τ±σ

where a , b , c ,d ∈R, a d −b c = 1 and (a , b , c ,d )∼ (−a ,−b ,−c ,−d ). It is easy

to check that the SO (2) transformation

�

a b

c d

�

=

�

cos ε2 sin ε
2

−sin ε
2 cos ε2

�

∈ SO (2)

induces the translationσ′± =σ±+ε, which in the original coordinates reads

τ′ = τ+ε, σ′ =σ

time translation = S O (2) transformation
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2. Poincaré coordinates. The line element

d s 2
Poincaré

=
−d t 2 +d x 2

x 2

is invariant under the following S L (2,R)/Z2
∼= SO (2,1) transformation:

�

a b

c d

�

: x± 7→ x ′± =
a x± + b

c x±+d
, x± := t ± x

It is easy to check that the E (1) transformation

�

a b

c d

�

=

�

1 ε

0 1

�

∈ E (1)

induces the translation x ′± = x±+ε, which in the original coordinates reads

t ′ = t +ε, x ′ = x

time translation = E (1) transformation
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3. Schwarzschild coordinates. The line element

d s 2
Schwarzschild

=
−d T 2 +d X 2

sinh2 X

is invariant under the following S L (2,R)/Z2
∼= SO (2,1) transformation:

�

a b

c d

�

: X ± 7→ X ′± = 2arctanh

�

a tanh X ±

2 + b

c tanh X ±

2 +d

�

, X ± := T ±X

It is easy to check that the SO (1,1) transformation

�

a b

c d

�

=

�

cosh ε
2 sinh ε

2

sinh ε
2 cosh ε

2

�

∈ SO (1,1)

induces the translation X ′± = X ±+ε, which in the original coordinates

reads

T ′ = T +ε, X ′ = X

time translation = S O (1,1) transformation
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■ Let us consider infinitesimal forms of SO (2,1) coordinate transformations

exp(iεJa ) : x µ 7→ x ′µ = x µ +δa x µ +O (ε2)

■ Background gauge field. Let Aµ be a background gauge field that satisfies

d A = E
p

|g |d x 0 ∧d x 1, where E is a constant background electric field.

Under the SO (2,1) coordinate transformations, Aµ transforms as a vector:

exp(iεJa ) : Aµ(x ) 7→ A′
µ
(x ′) =

∂ x ν

∂ x ′µ
Aν(x )

Interestingly, the infinitesimal field variations δa Aµ turn out to be of the

forms of gauge transformations:

δa Aµ(x ) = A′
µ
(x )−Aµ(x )

=−δa x ν∂νAµ(x )−Aν(x )∂µδa x ν +O (ε2)

= ∂µΛa (x ) +O (ε2)

where Λa are some scalar functions.
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■ Scalar field. Let Φ be a charged scalar field that couples to the background

gauge field via the covariant derivative Dµ = ∂µ − i q Aµ. Since the SO (2,1)

coordinate transformations act on Aµ as gauge transformations,

transformation law of Φmust be accompanied with the U (1) gauge

transformation. Hence

exp(iεJa ) :Φ(x ) 7→Φ
′(x ′) = ei qΛa (x )Φ(x )

from which we find

δaΦ(x ) =Φ
′(x )−Φ(x )

=−δa x µ∂µΦ(x ) + i qΛa (x )Φ(x ) +O (ε2)

= iεJaΦ(x ) +O (ε2)

where Ja are the coordinate representations of SO (2,1) generators given by

i εJa =−δa x µ∂µ+ i qΛa (x )
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1. Global coordinates. The SO (2,1) generators are turned out to be of the

forms

J3 = i∂τ

J± =−J1 ± i J2 = e∓iτ sinσ [∓∂σ − cotσ(i∂τ)−α]

where α := q E = q E R 2. The quadratic Casimir C =−J 2
1
− J 2

2
+ J 2

3
is given by

C = sin2σ
�

−∂ 2
τ
+ ∂ 2

σ
−α2−2αcotσ(i∂τ)

�

We are interested in the basis in which the time-translation generator

becomes diagonal. Let |∆,ω〉 be a simultaneous eigenstate of J3 and C that

satisfies the eigenvalue equations

J3|∆,ω〉=ω|∆,ω〉 and C |∆,ω〉=∆(∆−1)|∆,ω〉

which in the coordinate space become the following differential equations:

i∂τΦ∆,ω(τ,σ) =ωΦ∆,ω(τ,σ)
�

−∂ 2
σ
+
∆(∆−1)

sin2σ
+2ωαcotσ

�

Φ∆,ω(τ,σ) = (ω2−α2)Φ∆,ω(τ,σ)
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2. Poincaré coordinates. The SO (2,1) generators are given by

H = J1 + J3 = i∂t

D = J2 = i (t ∂t + x∂x )

K = J1 − J3 =−i (t 2+ x 2)∂t −2i t x∂x +2αx

The quadratic Casimir C =− 1
2 (H K +K H )−D 2 is

C = x 2(−∂ 2
t
+ ∂ 2

x
)−2iαx∂t

Let |∆,ω〉 be a simultaneous eigenstate of H and C that satisfies the

eigenvalue equations

H |∆,ω〉=ω|∆,ω〉 and C |∆,ω〉=∆(∆−1)|∆,ω〉

which in the coordinate space become the following differential equations:

i∂tΦ∆,ω(t , x ) =ωΦ∆,ω(t , x )
�

−∂ 2
x
+
∆(∆−1)

x 2
+

2ωα

x

�

Φ∆,ω(t , x ) =ω2
Φ∆,ω(t , x )
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3. Schwarzschild coordinates. The SO (2,1) generators are turned out to be of

the forms

L1 = J1 = i∂T +α

L± = J2 ± J3 =±e±T sinh X [±i∂X + coth X (i∂T +α)−α]

The quadratic Casimir C =−L1(L1± i )− L∓L± is given by

C = sinh2 X
�

(i∂T +α)
2+ ∂ 2

X
+α2−2αcoth X (i∂T +α)

�

Let |∆,ω〉 be a simultaneous eigenstate of L1 and C that satisfies the

eigenvalue equations

L1|∆,ω〉=ω|∆,ω〉 and C |∆,ω〉=∆(∆−1)|∆,ω〉

which in the coordinate space become the following differential equations:

i∂TΦ∆,ω(T , X ) = (ω−α)Φ∆,ω(T , X )
�

−∂ 2
X
+
∆(∆−1)

sinh2 X
+2ωαcoth X

�

Φ∆,ω(T , X ) = (ω2+α2)Φ∆,ω(T , X )
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■ (0+1)-dimensional conformal group SO (2,1)∼= S L (2,R)/Z2 contains three

distinct one-parameter subgroups:

◆ compact rotation group SO (2)

◆ noncompact Euclidean group E (1)

◆ noncompact Lorentz group SO (1,1)

■ Correspondingly, there exist three distinct classes of static AdS2 coordinate

patches in which time-translation generators generate the one-parameter

subgroups SO (2), E (1) and SO (1,1).

■ In Lorentzian signature, these coordinate patches are given by the so-called

global, Poincaré and Schwarzschild coordinates, respectively.

coordinate patch
time-translation group spectrum

Lorentzian Euclidean Lorentzian Euclidean

global SO (2) SO (1,1) discrete continous

Poincaré E (1) E (1) continuous continous

Schwarzschild SO (1,1) SO (2) continuous discrete
(Matsubara frequency)
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■ The Klein-Gordon equation (�AdS2
−m 2)Φ= 0 on charged AdS2 black hole

reduces to the following Schrödinger equations:

1. Global coordinates: Rosen-Morse potential

�

−∂ 2
σ
+
∆(∆−1)

sin2σ
+2ωαcotσ

�

Φ∆,ω = (ω
2−α2)Φ∆,ω

2. Poincaré coordinates: Coulomb potential

�

−∂ 2
x
+
∆(∆−1)

x 2
+

2ωα

x

�

Φ∆,ω =ω
2
Φ∆,ω

3. Schwarzschild coordinates: Eckart potential

�

−∂ 2
X
+
∆(∆−1)

sinh2 X
+2ωαcoth X

�

Φ∆,ω = (ω
2+α2)Φ∆,ω
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■ The Lie algebra so(2,1)∼= sl(2,R) is spanned by the three generators

{J1, J2, J3} that satisfy the commutation relations

[J1, J2] = i J3, [J2, J3] =−i J1, [J3, J1] =−i J2

■ In the Cartan-Weyl basis {J3, J± :=−J1 ± i J2} the commutation relations

become

[J3, J±] =±J±, [J+, J−] =−2J3

■ The quadratic Casimir of the Lie algebra sl(2,R) is

C =−J 2
1
− J 2

2
+ J 2

3
= J3(J3±1)− J∓ J±

■ Let |∆,ω〉 be a simultaneous eigenstate of C and J3 that satisfies

C |∆,ω〉=∆(∆−1)|∆,ω〉 and J3|∆,ω〉=ω|∆,ω〉

Then the state J±|∆,ω〉 satisfies J3 J±|∆,ω〉= (ω±1)J±|∆,ω〉, which implies

the ladder equations

J±|∆,ω〉∝ |∆,ω±1〉
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■ Let us next consider the following linear combinations

L1 = J1, L± = J2± J3

which satisfy the commutation relations

[L1, L±] =±i L±, [L+, L−] = 2i L1

■ The quadratic Casimir of the Lie algebra sl(2,R) is

C =−J 2
1
− J 2

2
+ J 2

3
=−L1(L1± i )− L∓L±

■ Let |∆,ω〉 be a simultaneous eigenstate of C and L1 that satisfies

C |∆,ω〉=∆(∆−1)|∆,ω〉 and L1|∆,ω〉=ω|∆,ω〉

Then the state L±|∆,ω〉 satisfies L1L±|∆,ω〉= (ω± i )L±|∆,ω〉, which implies

the ladder equations

L±|∆,ω〉∝ |∆,ω± i 〉
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■ In the AdS2 black hole problem, the generators {L1, L±} are given by the

following first-order differential operators:

L1 = i∂T +α

L± =±e±T sinh x [±i∂X + coth x (i∂T +α)−α]

■ The quadratic Casimir gives the d’Alembertian on AdS2 black hole:

C := L1(L1± i )− L∓L± = sinh2 x
�

(i∂ 2
T
+α) + ∂ 2

X
+α2−2αcoth X (i∂T +α)

�

■ The eigenvalue equations reduce to the Schrödinger equation

i∂TΦ∆,ω(T , X ) = (ω−α)Φ∆,ω(T , X )
�

−∂ 2
X
+
∆(∆−1)

sinh2 X
+2αωcoth X

�

Φ∆,ω(T , X ) = (ω2+α2)Φ∆,ω(T , X )

■ The ladder equations are

L±Φ∆,ω∝Φ∆,ω±i
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■ In the asymptotic near-boundary limit X → 0 the generators behave as

L 0
1

:= lim
X→0

L1 = i∂T +α

L 0
±

:= lim
X→0

L± = e±T [i X ∂X ± (i∂T +α)]

■ The quadratic Casimir is

C 0 := L 0
1
(L 0

1
± i )− L 0

∓
L 0
±
= X 2∂ 2

X

■ The eigenvalue equations are

i∂TΦ
0
∆,ω
(T , X ) = (ω−α)Φ0

∆,ω
(T , X )

�

−∂ 2
X
+
∆(∆−1)

X 2

�

Φ
0
∆,ω
(T , X ) = 0

which are easily solved with the result

Φ
0
∆,ω
(T , X ) = A∆(ω)X

∆e−i (ω−α)T +B∆(ω)X
1−∆e−i (ω−α)T

where A∆(ω) and B∆(ω) are integration constants that depend on∆ andω.
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■ The ladder equations L 0
±
Φ

0
∆,ω
∝Φ0

∆,ω±i
become

(i∆±ω)A∆(ω)X
∆e−i (ω±i−α)T +(i (1−∆)±ω)B∆(ω)X

1−∆e−i (ω±i−α)T

∝ A∆(ω± i )X ∆e−i (ω±i−α)T + B∆(ω± i )X 1−∆e−i (ω±i−α)T

from which we get

(i∆±ω)A∆(ω)∝ A∆(ω± i )

(i (1−∆)±ω)B∆(ω)∝ B∆(ω± i )

■ Hence the Green function

G∆(ω) = (2∆−1)
A∆(ω)

B∆(ω)

satisfies the recurrence relations

G∆(ω) =
−1+∆± iω

−∆± iω
G∆(ω± i )
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■ The recurrence relations

G∆(ω) =
−1+∆± iω

−∆± iω
G∆(ω± i )

are easily solved by iteration:

G
A/R
∆
(ω) =

Γ (∆± iω)

Γ (1−∆± iω)
g A/R (∆)

where g A/R (∆) areω-independent normalization factors.

■ Shifting the frequencyω→ω+α and restoring R viaω→ωR , we get the

advanced/retarded Green functions

G
A/R
∆
(ω) =

Γ (∆± iω
2πT ± iα)

Γ (1−∆± iω
2πT ± iα)

g A/R (∆)

where T is the Hawking temperature given by

T =
1

2πR
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Summary

■ SO (2,1) symmetry of AdS2 black hole induces the recurrence relations for

two-point functions:

G∆(ω) =
−1+∆± iω

−∆± iω
G∆(ω± i )

■ The recurrence relations are exactly solvable and completely determine the

frequency dependence of advanced/retarded two-point functions.

Perspective

■ Generalizations to AdSd+1/CFTd for d > 2.

(The case d = 2 has been done in my previous work arXiv:1312.7348.)

http://arxiv.org/abs/1312.7348
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Thank you for your attention!

/(ˆoˆ)/
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