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Introduction (1)

B In d-dimensional Minkowski spacetime, SO(2, d) global conformal
transformations consist of the followings:

(translation) M- x™® = x* + gt

(Lorentz transformation) x*— x™=A" x"

(dilatation) Mo xF=2AxH
X"+ bt x?
(conformal boost) xM— xH =
1+2bx + b2x2

B Basic elements of conformal field theory (CFT) are (quasi-)primary
operators O, (x), which transform under the SO(2, d) global conformal
transformations x* — x’* as follows:

A/d

o x’ ,
Oa(x')

ox

O(x)— O} (x) = ‘

where |0 x’ /0 x| stands for the Jacobian of the global conformal
transformation. A is called the conformal weight of O, (x).
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Introduction (2)

m Let |0) be the conformally invariant vacuum. Then the n-point function for
the (quasi-)primary operators satisfies the identity

A,/d

0x’
ox

Ar/d ‘axl

<0|0A1(x1)---0An(xn)'°>:‘ o

<0|0A1(x{)"'OAn(x,;)|O>

X=X o

B It has been long known that the SO(2, d) global conformal symmetry
completely fixes the possible forms of two- and three-point functions in any
spacetime dimension d [polyakev’70]. Indeed, up to overall normalization
factors, they can be determined as follows:

Ca,n,
— x2 |A1+A2

<0|OA1 (xl)OAz(xz)m) — 5A1A2 |x
1

CAl ApAs

(0|0A1(x1)OA2(x2)OA3(x3)|0> =

|x1 — x2|A1+A2—A3 |x2 —_ xg |A2+A3—A1 x3 —_ xl Az+A1—A>
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Introduction (3)

Conformal constraints work well in coordinate space; however, they tell us
little about momentum-space correlators before performing Fourier
transform.

Indeed, in spite of its simplicity in coordinate space, three-point functions
in momentum space are known to be very complicated.
zero-temperature CFT;: [Coriano-Delle Rose-Mottola-Serino’13] [Bzowski-McFadden-Skenderis’13]

finite-temperature CFT2: [Becker-Cabrera-Su’14]

It is desirable to understand how conformal symmetry restricts the possible
forms of momentum-space correlators. Here are the reasons:

¢ Momentum-space correlators are directly related to physical
observables (such as spectral density);

¢ Fourier transform of position-space correlators is very hard.

Today I am going to present a small example that, by using the AdS/CFT
correspondence, finite-temperature CFT; two-point functions in frequency
space can also be determined by conformal symmetry.
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Overview

Scope of the talk: Klein-Gordon equation on charged AdS, black hole
(Oags, —m*)®(T, X)=0
and the asymptotic near-boundary behavior of general solution
(T, X)~ Ap(w)X2e T + By(w)X'™2e'“T as X —0

According to the real-time prescription of AdS/CFT correspondence, the
ratio

Ax(w)

Galw)=(2A—1) Br ()

gives the frequency-space two-point function for a charged scalar operator
of conformal weight A in dual finite-temperature CFT} [igbal-Liu’09].

My small findings: The ratio A,(w)/Bx(w) can be computed without
solving the Klein-Gordon equation: it is determined only through
symmetry of the AdS, black hole.
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AdS, in a Nutshell
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Charged AdS, black hole

B Charged AdS, black hole is a locally AdS, spacetime and described by the
following metric and gauge field:

2

2 )2 2 dar
dsAdSZ:—((E) —1)dt +roppy and A=—E(r—R)d1

2—1

t AN . . m
black hole interior : background electric field E 5

| ? o

' &

| =

| observer feels e,

. o , the radiation of e* 5
, virtual e™ e~ pair creation =

_ | becomes real " o
e | e A
CN\NNNNNINO DNNANNNN e
| ]

| =
r=0 r=R r=00

(black hole horizon) (AdS, boundary)
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Charged AdS, black hole

B Charged AdS, black hole is a locally AdS, spacetime and described by the
following metric and gauge field:

2

ds’ —aéyiq)dﬂ+(ﬁi; and A=—E(r—R)dt

AdS, — 2_1

m Itis known that any black holes have an AdS, factor in the near-horizon
limit [AdS, structure theorem [Kunduri-Lucietti-Reall '07]]. In this sense the AdS,
black hole plays a special role in black hole physics and holography.

m For the following discussions it is convenient to introduce a new coordinate
system (f, x) via

r = Rcoth(x/R), x€(0,00)
in which the metric and gauge field become

) —dt*+dx*
ds ds, —
AdS2 - sinh?(x/R)

and A=—ER(coth(x/R)—1)dt

B Below]I will work in the units R =1.
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Isometry group of AdS,

B AdS, spacetime is a 2d spacetime with negative constant curvature —1. It is
embedded into the ambient space R*! and defined as the 2d hyperboloid

AdS, ={(X', X, X*)eR>" : (X' —(X*) +(X?)? =—1}

B AdS, metric is then given by the following induced metric

2 _ 142 2y2 332
sy, = (X' =(dX*P+(dX°P|_ p opspope

B The hyperboloid is obviously invariant under the SO(2, 1) transformations

Xt XM =A" XV, AeSO(2,1)2SL(2,R)/Z,

isometry group of AdS, = SO(2,1)(=Z SL(2,R)/Z,)
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Lie algebra so(2,1)=sl(2,R)

B The Lie algebra so(2,1) = sl(2,R) of the Lie group SO(2,1)=SL(2,R)/Z, is
spanned by the following traceless matrices:

.. 1f(fo 1y . _1(1 O 10 1
’]1_5(1 0)’ ”2_5(0 —1)’ ’]3_2(—1 0)

which satisfy the commutation relations

[ij]:ik» [ELB]:—ih) [khh]:_jb

B These generators generate the following one-parameter subgroups:
cosh5 sinhj
sinh5 cosh3

. e6/2 0
exp(ie),) = 0 e €SO(1,1)

exp(ie]l):( )ESO(I,I)

€ . €

COS 5 S1n 5
. € €
—S1n > COS >

exp(iejg):( )ESO(Z)
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1d conformal algebra

The linear combinations

. _ 0 1 , . 1(1 o0 . : 0 0
lH:l(]1+]3):(0 O)’ lD:l]ZZE(O _1), ZK:l(]l_]3):(l 0)

satisfy the (0 + 1)-dimensional conformal algebra
[H,D]=iH, [D,K]=iK, [K,H]=2iD
These generators generate the following one-parameter subgroups:

exp(ieH)= ((1) i) e E(1)

e’2 0
exp(ieD)= 0 e/ €eS0(1,1)

exp(ieK)= (l 1) e E(1)
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$0(2), E(1)and SO(1,1) O

B Itis known that the Lie group SO(2, 1) contains only three distinct
one-parameter subgroups: compact rotation group S O(2), noncompact
Euclidean group E(1) and noncompact Lorentz group SO(1, 1).

m Correspondingly, there exist three distinct classes of coordinates patches on
AdS, where time-translation generators generate the one-parameter
subgroups SO(2), E(1) and SO(1,1).

B [shall show that the time-translation generator of AdS, black hole generates
the one-parameter subgroup SO(1,1) € SO(2, 1), which, after Wick rotation,
becomes the compact rotation group S O(2) and hence leads to quantized
Matsubara frequencies conjugate to the imaginary time.
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$0(2), E(1)and SO(1,1) (2)

Here are the three distinct coordinate patches on the 2d hyperboloid
—(X'P - (X?P+ (X =1

1. Global coordinates: SO(2) diagonal basis!

X\ X% X% (sinf COST cosa) 742 —dt*+do*?
) ) — . ) . ) o S —
sino’ sino’ sino global sin®o

2. Poincaré coordinates: E(1) diagonal basis

L2 vy [ F 1=+ x? 1+1%2—x? , —dt?+dx?

(X ,X rX ): ;r 2% ’ 2y 0 dSPoincaré: x2
3. Schwarzschild coordinates: SO(1,1) diagonal basis
X\ X% X% (sinhT cosh X coshT) 42 —dT*+dX*
) ) — . ) . ) . ) S 1 —
sinh X’ sinh X ' sinh X Schwarzschild sinh? X

17 ranges from —oo to +oc0 for the covering space of AdS, without identification 7 ~ T + 2.
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$0(2), E(1)and SO(1,1) (3)

The global coordinate patch covers the whole hyperboloid, whereas the
Poincaré and Schwarzschild coordinate patches cover only 1/2 and 1/8 of
the hyperboloid, respectively:

T T T
Tp————— — — — — - Tg——— —— — — — — Tp——— —— — — — — -
+\\00
/2
%\\
OO
0 (o c”> o ﬁ g
T < T b /2 T
&cP
4
—1/2
ydD
4
M= == == = = = = —Mf—— — = — — — — — ] M- — — = = — — — —
(a) Global (b) Poincaré (c) Schwarzschild
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S O(2) diagonal basis

1. Global coordinates. The line element

72 —dt*+do?
Sglobal o

sin® o
is invariant under the following SL(2,R)/Z, = SO(2, 1) transformation:

+
a b atanZ-+ b
( ):ai—»a’i:2arctan 0-2:|: . oT=1x0
c d ctan < +d

where a,b,c,d€R,ad—bc=1and (a,b,c,d)~(—a,—b,—c,—d). Itis easy
to check that the S O(2) transformation

€ in €
(a b):(co.sze Sm%)eSO(Z)
c d —sins coss

induces the translation o’* = 0* + ¢, which in the original coordinates reads

T'=74+€¢, o'=0

time translation = §$ O(2) transformation
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E(1) diagonal basis

Poincaré coordinates. The line element

72 _ —dt*+dx?

Poincaré ~— X2

is invariant under the following SL(2,R)/Z, = SO(2, 1) transformation:
ax*+b
@ b Xt xt=———, xT=txx
c d cxt+d

It is easy to check that the E(1) transformation

(¢ &) 1)erw

induces the translation x* = x* + ¢, which in the original coordinates reads

t'=t+e, x'=x

time translation = E(1) transformation
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S O(1,1) diagonal basis

Schwarzschild coordinates. The line element

) _ —dT*+dX?
dSSchwarzschild - sinh2 X

is invariant under the following SL(2,R)/Z, = SO(2, 1) transformation:

atanh £= + b
(a b):XiHX’i:2arctanh = , XT=TxX
c d ctanh 5- +d

It is easy to check that the SO(1, 1) transformation

a b)) (coshs sinh3
(c d)_(sinhg cosh § €501, 1)
induces the translation X’* = X* + €, which in the original coordinates

reads

T"'=T+e, X'=X

time translation = SO(1, 1) transformation
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S$0(2,1) generators @

B Let us consider infinitesimal forms of SO(2, 1) coordinate transformations
exp(ie],): x* — x™=x"+6,x*+ O(e)

B Background gauge field. Let A, be a background gauge field that satisfies
dA=E+/|gldx° Adx', where E is a constant background electric field.

Under the SO(2,1) coordinate transformations, A, transforms as a vector:
_odx
O xm

exp(ie],): Ay(x)— Al (x) A,(x)

Interestingly, the infinitesimal field variations 6, A, turn out to be of the
forms of gauge transformations:

6,A4,(x)=A (x)—Ay(x)
=—6,x"0,A,(x)—A,(x)3,6,x” + O(€”)

=J,A,(x)+ O(€?)

where A, are some scalar functions.
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S$0(2,1) generators @

B Scalar field. Let ® be a charged scalar field that couples to the background
gauge field via the covariant derivative D, =, —igA,. Since the SO(2, 1)
coordinate transformations act on A, as gauge transformations,
transformation law of ® must be accompanied with the U(1) gauge
transformation. Hence

exp(ie],): ®(x)— &' (x")=e'1aW@(x)
from which we find

6,P(x)="(x)—d(x)
=—6,x3,0(x)+ iqA,(x)®(x)+ O(e?)
=ie],®(x)+ 0(e?)

where J, are the coordinate representations of SO(2, 1) generators given by

i€],=—0,x"0,+iqA,(x)

20/ 35



S O(2) diagonal basis

Global coordinates. The SO(2, 1) generators are turned out to be of the
forms

J.=—J i, =e¥"sino[F¥0, —coto(id,)—a]
where a := g E = q ER®. The quadratic Casimir C =—J?— J? + J is given by
C =sin’o |—0” + 8% —a* —2acoto(id,)]

We are interested in the basis in which the time-translation generator
becomes diagonal. Let |A, w) be a simultaneous eigenstate of J; and C that
satisfies the eigenvalue equations

LA, w)=w|A,w) and ClA, w)=A(A-1)|A, w)
which in the coordinate space become the following differential equations:

iaT(I)A,o)(T’ 0) = wq)A,w(T) 0)
A(A—1)

2

: +2wacoto |®, ,(7,0) = (w*—a*)®, ,(T,0)
sin o

2
—9 +
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E(1) diagonal basis

Poincaré coordinates. The SO(2, 1) generators are given by
H - ]1 +]3 — lat
K=J,—L=—i(t*+x%)0,—2itx0, +2ax

The quadratic Casimir C =—3(HK + KH)—D? is

C=x*(-0/+097)—2iax?d,

Let |A, w) be a simultaneous eigenstate of H and C that satisfies the
eigenvalue equations

H|IA w)=w|A,w) and C|A, w)=AA—1)|A, w)
which in the coordinate space become the following differential equations:

10,Pp ,(F,x)=wPp (L, x)

AA—1) 2wa
—07 + (x2 )+ ; ®p (1, %)= WPy (1, X)
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S O(1,1) diagonal basis

Schwarzschild coordinates. The SO(2, 1) generators are turned out to be of

the forms

Ll = ]1 = laT +a
Lo=J+ J,=%xe"! sinh X [+idy + cothX(id; + a)—«]

The quadratic Casimir C =—L;(L, £i)— L. L. is given by
C =sinh® X [(id; + @)* + 87 + a* —2a coth X (i; + )]

Let |A, w) be a simultaneous eigenstate of L, and C that satisfies the
eigenvalue equations

LA w)=w|A,w) and C|A, w)=AA—1)|A, w)

which in the coordinate space become the following differential equations:

107Pp (T, X)=(w—a)®s (T, X)

A(A—1)
_32 B[
X" ginh®X

+2wacothX |®, (T, X) = (w* + a*)®x (T, X)
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Summary (1)

(0+ 1)-dimensional conformal group SO(2,1) = SL(2,R)/Z, contains three
distinct one-parameter subgroups:

¢ compact rotation group SO(2)
¢ noncompact Euclidean group E(1)
4 noncompact Lorentz group SO(1,1)

Correspondingly, there exist three distinct classes of static AdS, coordinate
patches in which time-translation generators generate the one-parameter
subgroups SO(2), E(1) and SO(1,1).

In Lorentzian signature, these coordinate patches are given by the so-called
global, Poincaré and Schwarzschild coordinates, respectively.

coordinate patch

time-translation group spectrum
Lorentzian Euclidean | Lorentzian  Euclidean

global SO(2) S0(1,1) discrete continous

Poincaré E(1) E(1) continuous continous

Schwarzschild S0O(1,1) SO(2) continuous discrete
(Matsubara frequency)
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Summary (2)

m The Klein-Gordon equation (Oygs, — m°)® = 0 on charged AdS, black hole
reduces to the following Schrodinger equations:

1. Global coordinates: Rosen-Morse potential

A(A—1)

2

—07 + —
SIn- O

+2wa cota] Dp = (co2 — az)‘I)A,w

2. Poincaré coordinates: Coulomb potential

A(A—1) N 2wd
x2 X

_8)? + ](I)A,a) = COZ(I)A,O)

3. Schwarzschild coordinates: Eckart potential

A(A—1)

—07 +
[ X" ginh? X

+2wa cothX](I)A,w = (" +a*)Pp
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Correlator Recurrence Relations
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S O(2) diagonal basis

The Lie algebra so(2, 1) = sl(2,R) is spanned by the three generators
{J1, J>, 5} that satisfy the commutation relations

[L)b]:ik, [bx@]:—ihj [kxﬁ]:—ib

In the Cartan-Weyl basis { J;, J. :=—J, £1iJ,} the commutation relations
become

s Jel=%xTs, [ J-]=—2)5
The quadratic Casimir of the Lie algebra sl(2,R) is
C=—J'—L+J=khtl)—JJ
Let |A, w) be a simultaneous eigenstate of C and J; that satisfies
ClA,w)=A(A—1)|A,w) and LA, w)=w|A, w)

Then the state /. |A, w) satisfies J; /. |A, w) =(w£1)J,|A, w), which implies
the ladder equations
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S 0O(1,1) diagonal basis @

Let us next consider the following linear combinations
Li=h, Li=L=*]

which satisfy the commutation relations

[L,,L.]=+iL,, [L,,L_]1=2ilL,
The quadratic Casimir of the Lie algebra sl(2,R) is

C=—J —J;+J;=—L(L £i)—L.L,
Let |A, w) be a simultaneous eigenstate of C and L, that satisfies
ClA,w)=A(A—1)|A,w) and LA w)=w|A, w)

Then the state L, |A, w) satisfies L, L, |A, w) =(wxi)L.|A, w), which implies
the ladder equations

Li|A,w) < |A, w+i)
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S 0O(1,1) diagonal basis @

In the AdS, black hole problem, the generators {L,, L.} are given by the
following first-order differential operators:

L,=i0;+a
L. ==+e*" sinh x[£idy + coth x(id; + a)— ]
The quadratic Casimir gives the d’Alembertian on AdS, black hole:
C:=L(L,+i)—L;L.=sinh®x (i} + )+ J; + a* —2acoth X (id; + a)]
The eigenvalue equations reduce to the Schrodinger equation

10r®p (T, X)=(w—a)Pp (T, X)
AA—1

| )
— 024+ ——— +2awcothX |®, (T, X)=(w*+a*)®x (T, X
o+ = w0l T, X) = (0 + @), (T, X)

The ladder equations are

LitbA,w o< @A,wii
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S 0O(1,1) diagonal basis @

In the asymptotic near-boundary limit X — 0 the generators behave as

L:=limL,=id-+a
1 X0 1 T+

Li :Z}}E})Li =e* T [iX0y £(i0; + )]

The quadratic Casimir is
0._ 70,70 . 070 _ v27x2
C :=L|(Ly+i)—L_ L, =X"0;
The eigenvalue equations are

i0r®, (T, X)=(w—a)®, (T, X)
A(A—1)
(—8)3 + T)@Z@(T, X)=0
which are easily solved with the result

) (T, X)=Ax(@)X2e ™ + By (w) X' 207!

where Ax(w) and Ba(w) are integration constants that depend on A and w.

30/35



Correlator recurrence relations (1)

The ladder equations L)®), oc®) . become

(IA£w)Ax(w)X2e @A L (j(1—A)+ w)Bp(w) X Ae i @*-aT
oC AA(CO + i)XAe—i(a):l:i—Ol)T + BA(C() £+ i)Xl—Ae—i(a):l:i—a)T
from which we get

(iIA+xw)Ar(w) o< Ap(w x1i)
(i(1—A)x w)Bx(w) o< By(w £1)

Hence the Green function

Anlw
Galw)=(2a—1)2al®)
By (w)
satisfies the recurrence relations
—1+Ax
Gy(w)= T leA(w:I:l)
— i
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Correlator recurrence relations (2)

B The recurrence relations

()_—I-I—Aiia) ( )
N
are easily solved by iteration:
[MA+iw)
GA/R _ A/R A
2 @)= A g8 W

where g#/®(A) are w-independent normalization factors.

m Shifting the frequency w — w + a and restoring R via w — wR, we get the
advanced/retarded Green functions

T(A+% +ia)
G/ (w)= 2l gV(A)
[(1-A+5==+ia)

where T is the Hawking temperature given by
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Summary and Perspective
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Summary and perspective

Summary

B SO(2,1) symmetry of AdS, black hole induces the recurrence relations for
two-point functions:

—14+A+iw
Enl@)= —A+iw

B The recurrence relations are exactly solvable and completely determine the
frequency dependence of advanced/retarded two-point functions.

Perspective

B Generalizations to AdS,,,/CFT, for d > 2.
(The case d =2 has been done in my previous work arXiv:1312.7348.)

34/35


http://arxiv.org/abs/1312.7348

Thank you for your attention!

\("0™)/
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