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• Set-up: Classical particle moving near BH horizon
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Universality in Chaos of

Particle Motion near Black Hole Horizon

Gravity External force: electric, scalar, ...

• We find that...

Particle motion becomes chaotic due to BH gravity

For any force, Lyapunov exponent 𝜆 for particle trajectories obeys

𝜅 : surface gravity of BH      T : Hawking temperature



 Background story:

A bound on chaos in QFT at temperature T :
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 We want to study effect of temperature to chaos in classical gravity.

 To probe effect of 𝜅, we look at trajectories very close to BH horizon.

[Maldacena-Shenker-Stanford '15]

Use BH surface gravity                            instead.

 They focused on effect of temperature to chaos in QFT.

Universality in Chaos of

Particle Motion near Black Hole Horizon
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CHAOS

Classic chaos in deterministic dynamical systems

= Non-periodic bounded orbits sensitive to initial conditions

Diagnostics of chaos

Poincaré plot = Section of orbits in phase space

Lyapunov exponent 𝜆 = Separation growth rate of nearby orbits
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QUANTUM CHAOS

Definition of Quantum Chaos?

Chaos arises from nonlinear dynamics, 

but Schrodinger eq. = Linear eq. of wave function.

Quantum effect washes out small scale 𝛥x 𝛥p ≲ ℏ.

Other probes of “quantum chaos”

Chaos in semi-classical regime: Quantum billiard

Energy spectrum of excited atoms

Chaos in QFT and AdS/CFT
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?

 No chaos?



Chaos in QFT and AdS/CFT

Look at Out-of-Time-Ordered Correlator

Conjecture [Maldacena-Shenker-Stanford ‘15]

In a QFT with temperature T , Lyapunov exponent 𝜆 obeys
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QUANTUM CHAOS

: Dependence of q(t) on initial condition q(0)

[Larkin, Ovchinnikov ‘69]

[Kitaev ‘14]

[Maldacena-Shenker-Stanford ‘15]



 Background story:

A bound on chaos in QFT at temperature T :
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 We want to study effect of temperature to chaos in classical gravity.

 To probe effect of 𝜅, we look at trajectories very close to BH horizon.

[Maldacena-Shenker-Stanford '15]

 They focused on effect of temperature to chaos in QFT.

A BOUND ON CHAOS

Use BH surface gravity instead.
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DERIVE THE BOUND
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 Background story:

A bound on chaos in QFT at temperature T :

 We want to study effect of temperature to chaos in classical gravity.

 To probe effect of 𝜅, we look at trajectories very close to BH horizon.

[Maldacena-Shenker-Stanford '15]

 They focused on effect of temperature to chaos in QFT.

Use BH surface gravity                            instead.



DERIVE THE BOUND

 To realize a particle moving very close to BH horizon,

1. put a particle in a trapping harmonic potential
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 Integrable system:

• 2 degrees of freedom

• Conserved quantities: Energy, angular momentum

 No Chaos: Trajectories fully specified by conserved quantities

r

θ



DERIVE THE BOUND

 To realize a particle moving very close to BH horizon,

1. put a particle in a trapping harmonic potential
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( no chaos)

2. take it close to a BH horizon

r

r

θ



DERIVE THE BOUND

 To realize a particle moving very close to BH horizon,

1. put a particle in a trapping harmonic potential
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( no chaos)

2. take it close to a BH horizon & look at the separatrix 

Gravity Potential force

 Effective potential

for particle motion

r

r

r0

θ



DERIVE THE BOUND

 To realize a particle moving very close to BH horizon,

1. put a particle in a trapping harmonic potential
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( no chaos)

2. take it close to a BH horizon & look at the separatrix 

Gravity Potential force

 Effective potential

for particle motion

r

r

r0

θ

r0

Head-on view:

r



DERIVE THE BOUND
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Gravity Potential V(r) r

r0

3. Focus on slow radial motion near potential maximum



DERIVE THE BOUND
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Gravity Potential V(r) r

r0

4. Taylor expand V(r) near the potential maximum



DERIVE THE BOUND
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Gravity Potential V(r) r

r0

4. Taylor expand V(r) near the potential maximum



DERIVE THE BOUND
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Gravity Potential V(r) r

r0

5. Move the potential maximum r = r0 toward BH horizon



DERIVE THE BOUND
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Gravity Potential V(r) r

r0

6. Expanding      around r = r0 for small distance, we get



DERIVE THE BOUND
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Gravity Potential V(r) r

r0

⇒ Lyapunov exponent 𝜆 =  𝜅

⇒

r0

Head-on view:

r



DERIVE THE BOUND
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Gravity Potential V(r) r

r0

⇒ Lyapunov exponent 𝜆 =  𝜅

⇒

 This 𝜆 is independent of particle mass, strength & species of potential force, 

metric form, cosmological constant and dimensions

 𝜆 averaged over trajectory ⇒ generic trajectory will obey 

with



SUMMARY: DERIVE THE BOUND
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• Slow motion near unstable maximum r = r0

• Near-horizon limit r0 → rhorizon

• Linear approximation for V(r) ~ (slope) ⨉ (r − rhorizon)

Gravity Potential V(r) r

r0

⇒ A generic trajectory would obey 
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with



Electric force:

Scalar force:



REALIZATIONS

These two examples gives 𝜆 =  𝜅 for any m and c.
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NUMERICAL CHECK

• Setup: Particle in harmonic potential near BH
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NUMERICAL CHECK
• Low energy:

• Near-critical energy:
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NUMERICAL CHECK
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• Low energy: • Near-critical energy:



NUMERICAL CHECK
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• Low energy: • Near-critical energy:



NUMERICAL CHECK
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• Low energy: • Near-critical energy:



Poincaré plot at
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• Low energy: • Near-critical energy:



Poincaré plot at
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• Low energy: • Near-critical energy:

• Lyapunov exponent  𝜆 ~  0.2 𝜅 ,

satisfying the bound 𝜆 ≤ 𝜅 .

• Regular KAM tori, no chaos



SUMMARY: NUMERICAL CHECK
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Gravity Harmonic potential

 Effective potential

for particle motion

x

x0

low energy

 Poincaré plot at y = 0 : Chaotic when particle approach BH horizon

 Lyapunov exponent 𝜆 ~  0.2 𝜅 , which satisfies the bound 𝜆 ≤ 𝜅 .

high energy



SUMMARY

We got a bound on chaos from classical BH-particle system

which coincides with the bound by Maldacena-Shenker-Stanford.

Independent of particle mass, external force & metric form.

If the force is generated by field with higher spin s, 

Extensions to string & branes in AdS to get insights from AdS/CFT

Chaotic motion of string & membrane in AdS BH spacetime

 Bound on chaos in holographic QCD-like setup?
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CFT result:  [Roberts & Stanford ‘14, Perlmutter ‘16]
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STRING IN ADS

String hanging from AdS boundary = “quark-anti quark pair”
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Gravity r

r0

r0

Potential V(r)

Gravity String tension



STRING IN ADS

Three shapes of static Nambu-Goto string in AdS
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eff. potential

r

L

straight strings

stableunstable

r



STRING IN ADS

Square-shape approximation for string in AdS
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L
r



STRING IN ADS

Square-shape approximation for string in AdS
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eff. potential r

In the near horizon limit ( r* → rH ), 



STRING IN ADS

Numerical check of square-shape approx. & 
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 String shape

( rH = 1.0, r* = 1.1 )

 Instability growth rate:

unstable string

unstable mode

∝ exp(iωt) 

Consistent with



SUMMARY

We got a bound on chaos from classical BH-particle system

which coincides with the bound by Maldacena-Shenker-Stanford.

Independent of particle mass, external force & metric form.

Extension to string in AdS

 Unstable mode similar to the BH-particle system

 Instability growth rate: 

?: Does this govern chaotic motion of string in AdS?
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