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Universality in Chaos of
Particle Motion near Black Hole Horizon

« Set-up: Classical particle moving near BH horizon

Gravity _ External force: electric, scalar, ...
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« We find that...
v'Particle motion becomes chaotic due to BH gravity
v'For any force, Lyapunov exponent A for particle trajectories obeys

A< k=2rT/h

[;c . surface gravity of BH T : Hawking temperature]



Universality in Chaos of
Particle Motion near Black Hole Horizon

/0 Background story: A

A bound on chaos in QFT at temperature T :

A< 27T /h

[Maldacena-Shenker-Stanford '15]

€ They focused on effect of temperature to chaos in QFT.

N v

e . . )
B We want to study effect of temperature to chaos in classical gravity.

t
Use BH surface gravity k = 27T/} instead.

\l To probe effect of k, we look at trajectories very close to BH horizon./
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CHAQOS

Classic chaos in deterministic dynamical systems
= Non-periodic bounded orbits sensitive to initial conditions

Diagnostics of chaos

Poincaré plot = Section of orbits in phase space

Lyapunov exponent A = Separation growth rate of nearby orbits

d(0) d(t) ~ d(0)e
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QUANTUM CHAOS ?

Definition of Quantum Chaos?

Chaos arises from nonlinear dynamics,
but Schrodinger eq. = Linear eq. of wave function. L > No chaos?

Quantum effect washes out small scale 4x 4p < 7.

Other probes of “quantum chaos”

Chaos in semi-classical regime: Quantum billiard
Energy spectrum of excited atoms

Chaos in QFT and AdS/CFT




QUANTUM CHAOS

Chaos in QFT and AdS/CFT [Kitaev “14]
Look at Out-of-Time-Ordered Correlator [Maldacena-Shenker-Stanford ‘15]

(Q(t)P(0)Q(t)P(0)) ~ fo — fre™

dq(t)
d0q(0)

[ {[q(t),p(0)]?) ~ ( ) . Dependence of g(t) on initial condition q(O)j

[Larkin, Ovchinnikov ‘69]

Conjecture [Maldacena-Shenker-Stanford ‘15]
In a QFT with temperature T, Lyapunov exponent A obeys

A< 27T/h
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A BOUND ON CHAOS

/0 Background story:
A bound on chaos in QFT at temperature T :

A< 27T /h

[Maldacena-Shenker-Stanford '15]

€ They focused on effect of temperature to chaos in QFT.

N v




2. Derive the bound
3. Numerical check
4. Extension to string In AdS

5. Summary
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DERIVE THE BOUND

/0 Background story:
A bound on chaos in QFT at temperature T :

A< 27T /h

[Maldacena-Shenker-Stanford '15]

€ They focused on effect of temperature to chaos in QFT.

N v

e . . )
B We want to study effect of temperature to chaos in classical gravity.

t
Use BH surface gravity k = 27tT"/h instead.

\l To probe effect of k, we look at trajectories very close to BH horizon./




DERIVE THE BOUND

B To realize a particle moving very close to BH horizon,
1. put a particle in a trapping harmonic potential

(g

v

€ Integrable system:
« 2 degrees of freedom

« Conserved quantities: Energy, angular momentum

- No Chaos: Trajectories fully specified by conserved quantities



DERIVE THE BOUND

B To realize a particle moving very close to BH horizon,
1. put a particle in a trapping harmonic potential

(g

(< no chaos)

r;

v

2. take It close to a BH horizon

(
oY .




DERIVE THE BOUND

B To realize a particle moving very close to BH horizon,
1. put a particle in a trapping harmonic potential

e (< no chaos)
I

[
»

v

2. take it close to a BH horizon & look at the separatrix

Gravity | Potential force r

[
»

_.~~ < Effective potential
for particle motion
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DERIVE THE BOUND
r/ Head-on view: ~ et \
e |

k ee

2. take it close to a BH horizon & look at the separatrix

Y

Gravity | Potential force r

,,,,,,,,, < Effective potential
~ P g . -
ro ~~~~~~~~~~ for particle motion



DERIVE THE BOUND

Gravity

Potential V(r) r

~
I < -

73.2

f(r)

L = —m\/—g”VX“XV —V(X) = —m\/f('r) — — V(r)

d 2 or
[dsz = —f(r)dt* + — +r2dQ?  f(r)=1-— }
,

f(r)
3. Focus on slow radial motion near potential maximum
52
L~ — 1 — -V
I 1= g7 ) = VO



DERIVE THE BOUN

Gravity | Potential V(r) r

~
i ro \N-___—”

73.2

f(r)

L = —m\/—g”VX“XV —V(X) = —m\/f('r) —

P
[ds2 = —f(r)dt* + i Fr2d0? f(r)=1— 2
f(r)

4. Taylor expand V(r) near the potential maximum

L~ -m f('r'){l— : }—cx('r—ro)

2f2(r)

S

— V(r)




DERIVE THE BOUND

Gravity

Potential V(r) r

4 r N\ ”
0

73.2

f(r)

P
[ds2 = —f(r)dt* + i Fr2d0? f(r)=1— 2 }
f(r) r

4. Taylor expand V(r) near the potential maximum

ﬁN{W1 7] (X(r_@

Ver(T) <

L = —m\/—g”VX“XV —V(X) = —m\/f('r) — — V(r)

= 3770y



DERIVE THE BOUND

Gravity

Potential V(r) r

~
i ro \N-___—”

73.2

f(r)

P
[ds2 = —f(r)dt* + i Fr2d0? f(r)=1— 2 }
f(r) r

5. Move the potential maximum r = r, toward BH horizon

L~—m { —cx(r—ro)
- ‘eﬁ(xf(r) ~ 26 X (1 = Thor)

L = —m\/—g”VX“XV —V(X) = —m\/f('r) — — V(r)




DERIVE THE BOUND

/ rO Seae
L~ —mn/f(r) {1 B Zfz('r)} —c X (r—7o)
= 2f3/2(r)7"2 ~ Verlr) F(r) 2= 26 % (r = o))

Gravity

Potential V(r) r

6. Expanding £ around r = r, for small distance, we get

mc3

L~ —
2K3

[1"2 -+ K2

e n K
o = Thor o
0 0 h 202
(T i TO) } K K1/2 (T . T0)2
Vig=—— —
\_ 2c 4\/§(T0 - 'rhor)3/2

+ .-
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DERIVE THE BOUND

Potential V(r) r

Gravity

ro \‘~-___—’
t

[7‘2 + K,Z('r — 7‘0)2} =4 T‘(t) — o X e”
= Lyapunov exponent A = «k
I
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DERIVE THE BOUND

Potential V(r) r

Gravity

t

[7’“2 + k2 (r — 'ro)z} = 'r'(t) — rg x e”
= Lyapunov exponent A = k

v This A is independent of particle mass, strength & species of potential force,
metric form, cosmological constant and dimensions

dr? F(r) = az(r — o)™

2 2 2 2 ) f hor

— — Q) h
L[ ds f(r)dt i g(’f‘) Frid " . {g(r) = ag(r — Thor)ﬁg

v A averaged over trajectory = generic trajectory will obey A < k = 27T /h
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72
f(r)
« Slow motion near unstable maximum r =r,

L= —m\/—gqu“XV —V(X) ~ —m\/f(r) — — V(r)

* Near-horizon limit ry — 1, ,/is0n

e Linear approximation for V(r) ~ (slope) X (r — 11 ,/izon) )

L ~ C(m,k,slope of V) X [’f‘z + K% (r — "’0)2}

= A generic trajectory would obey \ < k = 271-T/h



REALIZATIONS

Electric force:

- | dX"
L=-m\/—gu(X)XrXY -V(X) with V(X)=ce g7 Ap(X)

Oy \/ —det g errg('}(')arA{)) =0 > V~exr

Scalar force:
L=—\/—guw(X)XrX" (m+ (X))

Oy (-—detgg"”"'araﬁ) =0 > O~ cXlogr

These two examples gives 4 = k for any m and c.
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3. Numerical check
4. Extension to string In AdS

5. Summary
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NUMERICAL CHECK

« Setup: Particle in harmonic potential near BH

{f(a:) = 214:3:}

e

m =1
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NUMERICAL CHECK
* Low energy:

£0
'. I . )

* Near-critical energy:

o9




NUMERICAL CHECK

* Low energy: * Near-critical energy:
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NUI\/\ERICAL CHECK

 Low energy: Near-critical energy:
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NUMERICAL CHECK

* Low energy: * Near-critical energy:

Y t = 149.7 Y t = 149.7
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Poincaré plotaty =0 & 4 > 0

* Low energy: * Near-critical energy:

{ = 149.7




Poincaré plotaty =0 & 4 > 0

* Low energy: * Near-critical energy:

* Regular KAM tori, no chaos « Lyapunov exponent A ~ 0.2 k,
satisfying the bound 1 < k.



SUMMARY: NUMERICAL CHECK

' Gravity | Harmonic potential
»* & Effective potential

\
________ for particle motion

~

Ez—\/f—?—'g2—?[(:c—mc)2—|—y2} (f = 2kx)

v Poincaré plot at y = 0 : Chaotic when particle approach BH horizon

low energy high energy

v Lyapunov exponent A ~ 0.2 k , which satisfies the bound 1 < k.



SUMMARY

B \We got a bound on chaos from classical BH-particle system
A< k=27T/h
which coincides with the bound by Maldacena-Shenker-Stanford.
M Independent of particle mass, external force & metric form.

@ If the force is generated by field with higher spin s,
A< V25 -1k
[ CFT result; A S (S — 1)!4.', [Roberts & Stanford ‘14, Perlmutter‘16]}

¥ Extensions to string & branes in AdS to get insights from AdS/CFT
Chaotic motion of string & membrane in AdS BH spacetime
—> Bound on chaos in holographic QCD-like setup?
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4. Extension to string in AdS

5. Summary



STRING IN ADS

Gravity  String tension —]

q

String hanging from AdS boundary = “quark-anti quark pair”
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STRING IN ADS

Three shapes of static Nambu-Goto string in AdS

straight strings

/ A

unstable stable

=

A
eff. potential

V=
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STRING IN ADS

Square-shape approximation for string in AdS

“—F—>

r(t)

L = —T/d)\ ~ —L\/r4(t)f(7°(t)) -

72 (t)
)




STRING IN ADS

Square-shape approximation for string in AdS

L~ —L\/T4(t)f(’°(t)) - f?’r'((i)))

P2 (t) — {L\/r‘l(t)f(r(t)) —2(r(t) — rH)]

eff. potentialT /\/ r

_ -
re =rp |1+ O(r%L?)]

In the near horizon limit ( r. — ry ),

[7”2 + \? (r(t) — r*)z}

+ 2('r(t) — 'rH)

= 202 73/2(r)

A= 2nTy [1 + O(riILz)}

TH = TH/’II'

~/

B 27‘?__{1;2




STRING IN ADS

Numerical check of square-shape approx. & X\ = 27Ty

v’ String shape
(ry=1.0,r.=1.1) p
I,..-"'}'-""f\unstable string

unstable mode
o exp(iwt)

v Instability growth rate:
w? ~ — (2 — 3.8 x L'?)*

T

Consistent with
A~ K =2rgy




SUMMARY

B \We got a bound on chaos from classical BH-particle system
A< k=27T/h
which coincides with the bound by Maldacena-Shenker-Stanford.
M Independent of particle mass, external force & metric form.

€ Extension to string in AdS
v Unstable mode similar to the BH-particle system

v' Instability growth rate: A\ < k = 27T /h
?. Does this govern chaotic motion of string in AdS?




