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How did the Universe 
begin?

Big Bang (Past), Inflation 



Motivations for 
Inflation

 Original Motivation: Solving horizon and 
flatness problems (resolve fine tuning 
problems). 

 Greatest Success: Prediction of temperature 
fluctuations in CMB, cosmic structure and 
oscillations in angular power spectra. 
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1.4 The Physics of Inflation

We have shown that a given FRW background with time-dependent Hubble parameter H(t)

corresponds to cosmic acceleration if and only if

" ⌘ � Ḣ

H2
< 1 . (1.4.36)

For this condition to be sustained for a su�ciently long time, requires

|⌘| ⌘ |"̇|
H"

⌧ 1 , (1.4.37)

i.e. the fractional change of " per Hubble time is small. In this section, we discuss what

microscopic physics can lead to these conditions.

1.4.1 False Vacuum Inflation

The first version of inflation considered a universe dominated by the constant energy density

of a metastable false vacuum. This leads to an exponentially expanding de Sitter space with

H = const., and hence " = ⌘ = 0. However, classically, false vacuum inflation never ends.

Quantum-mechanically, tunnelling from the false vacuum to the true vacuum ends inflation

locally, but the post-inflationary universe looks nothing like our universe. The universe is either

empty or much too inhomogeneous. This is the graceful exit problem of old inflation. Any

successful inflationary mechanism has to include a way of ending inflation and successfully

reheating the universe. We will have to work a bit harder.

1.4.2 Slow-Roll Inflation

Consider a scalar field �, the inflaton, minimally coupled to Einstein gravity10

S =

Z

d4x
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M2
pl

2
R � 1
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gµ⌫@µ�@⌫� � V (�)

#

, (1.4.38)

where R is the four-dimensional Ricci scalar derived from the metric gµ⌫ and V (�) is so far an

arbitrary function:

10In principle, we could imagine a non-minimal coupling between the inflaton and the graviton, however, in

practice, non-minimally coupled theories can be transformed to minimally coupled form by a field redefinition.

Similarly, we could entertain the possibility that the Einstein-Hilbert part of the action is modified at high

energies. However, the simplest examples for this UV-modification of gravity, so-called f(R) theories, can again

be transformed into a minimally coupled scalar field with potential V (�).

Basics of Inflation
 Inflation driven by a 
scalar field (Inflaton) 
rolling down a potential.  

 Quantum fluctuations get 
stretched by expansion -> 
form temperature 
fluctuations in CMB —> 
cosmic structure. 



Is inflation a special 
initial condition?

 Big Bang (with no inflation): ‘special’ initial 
conditions. 

Inflation -> explains fine tuning + predicts 
temperature fluctuations in CMB.   

Is inflation also a ‘special initial state’? 

Usual discussion of inflation starts with Bunch-Davies 
(BD) vacuum state. 

BD vacuum state: QFT vacuum state adapted to 
expanding spacetime.



Successes of inflation (solving tuning problems 
and matching to data) resulted from this choice.  

BUT choosing vacuum initial state —> Free tuning? 

BD vacuum is a ‘special’ state. 

Out of all possible states, how do we know nature 
chose BD vacuum? 

Inflation gives us opportunity to test for 
deviations from BD vacuum scenario. 

Is inflation a special 
initial condition?



Scenarios of Inflation
Eternal Inflation 

Bubbles where 
inflation stops in 
fast inflation 
background.  
Measure problem. 
Push initial 
conditions back.

Finite Inflation 

Just enough to 
solve horizon 
and flatness 
problem or 
more. 
What came 
before that?



Signatures of Finite 
Inflation

Inflation generically washes out ‘initial conditions’.  

Finite inflation leaves more opportunities for 
signatures to survive. 

Entanglement during inflation produces 
observational signatures that survive inflation.



Quick Review of Entanglement 
and Related Terms 

Pure vs. Mixed States 

Cohered vs. Decohered 

Entanglement vs. No Entanglement 



Pure vs. Mixed States
Pure States Mixed States

⇢ = | ih | ⇢ =
X

n

pn| nih n|

Tr⇢2 = 1 Tr⇢2 < 1

Density Matrix: Density Matrix:

All information 
known

Information 
lost, statistical  

ensamble



Pure vs. Mixed States
Expand state in basis:
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Mixed density matrix:



Cohered vs. Decohered
Cohered Decohered

Exhibits ‘quantum 
behavior'

‘Behaves classically’

⇢P =
X

i

↵̃ii|iihi|⇢P =
X

i=j

↵̃ii|iihi|+
X

i 6=j

↵̃ o↵

ij |iihj|

Eigen States

↵̃ii = |↵i|2↵̃o↵

ij = ↵⇤
j↵i

Square Probability:Off-Diagonal Amplitudes:

Cohered - Pure: Decohered - Pure:



Cohered vs. Decohered

Cohered - Mixed

Decohered  - Mixed
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BBBB@
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Not Simultaneously  
Diagonalizable 



Entangled vs. Not Entangled

 E =
X

a,b

�ab|ai|bi
A

B
Tr⇢2E = 1.

Tr B [⇢E ] = Tr B
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4
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Pure:

From Pure to Mixed State:

Reduced Density 
Matrix for A



Entangled vs. Not Entangled

 E =
X

a,b

�ab|ai|bi
A

B
Tr⇢2E = 1.

Tr B [⇢E ] = Tr B

2

4
X

a,b
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⇤
a0b0 |a, biha0, b0|

3

5

=
X

a,a0

�ab�
⇤ b
a0 |aiha0| = ⇢A

Pure:

From Pure to Mixed State:

Tr⇢2A < 1



Entangled vs. Not Entangled

A’ B’
Un-entangling the State:

Note: Diagonalizing reduced density  
       matrix does not eliminate  
       entanglement.
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�̃a0b0   is  
Separable.



Entangled vs. Not Entangled

A’ B’
Un-entangling the State:

Note: Diagonalizing reduced density  
       matrix does not eliminate  
       entanglement.

| Ei =
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=
X

a,b

X

a0,b0

�ab|a0i|b0iha0|aihb0|bi

=
X

a0,b0

�̃a0b0 |a0i|b0i =
X

a0,b0

↵a0�b0 |a0i|b0i

�̃a0b0

= | A0i ⌦ | B0i



Entanglement during 
Inflation

Inflaton fluctuations entangled with: 

Spectator Scalar Field,  

Metric perturbations, 

Ansatz: Entangled initial state at the beginning 
of inflation (at some finite time   ).

�

�ij ! h+, h⇥

⌧0

arXiv:1605.01008arXiv:1408.6859,



Bunch Davies Vacuum
Bunch Davies is the vacuum state of Field 
Theory adapted to expanding Universe.  

—-> Short wavelength modes in ground state 

In field space each mode in BD has a 
Gaussian Wavefunction:

 ~k['~k; ⌧ ] = Nk(⌧)e
[� 1

2Ak(⌧)'~k'�~k]



Bunch Davies State 
of Two Fields

 ~k

⇥
'~k,�~k; ⌧

⇤

Gaussian state with inflaton   and  :'

= Nk(⌧)e
[� 1

2 (Ak(⌧)'~k'�~k+Bk(⌧)�~k��~k)]

�



Entanglement with 
Spectator Scalar Field

 ~k

⇥
'~k,�~k; ⌧

⇤

= Nk(⌧)e
[� 1

2 (Ak(⌧)'~k'�~k+Bk(⌧)�~k��~k+Ck(⌧)('~k��~k+�~k'~k))]

Gaussian entangled state with inflaton  :

      : Entanglement Parameter Ck(⌧)

When        Ck(⌧) = 0 recover vacuum  
(Bunch Davies) solutions

'



Entanglement with Metric 
Perturbations

exp

2
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 ~k[⇣~k, h
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~k
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p
Nk(⌧) ⇥

           Tensor-Scalar Entanglement Parameters 

            + and x Polarization Entanglement 
Parameters 

C+
k (⌧), C⇥

k (⌧)

b3k(⌧), b1k(⌧)

Gaussian entangled state with gauge invariant inflaton  :⇣



Entangled State: Closer 
Look

How to think of this state? 

The plot of a 2D 
Gaussian of the form 

  is an ellipse with widths 
determined by A and B. 

Here there is no 
entanglement between x 
and y coordinates. 

 = Ne�
1
2 (Ax

2+By

2)



Entangled State: Closer 
Look

Our state of the form 

is a tilted ellipse with 
respect to the x and y 
coordinates.  

This is an entangled state 
in the x and y coordinates.  

 = Ne�
1
2 (Ax

2+By

2+2Cxy)



Entangled State: Closer 
Look

We could redefine the 
coordinates to   and   
such that the ellipse 
would no longer be 
tilted. 

In these coordinates the 
state would no longer 
be entangled; however, 
the Hamiltonian would 
have coupling terms 
between   and  . 

x̃ ỹ

ỹ
x̃



Schrödinger Picture QFT
Schrödinger Equation:

i
@

@⌧
 E =

�
H⇣~k +H�,� ~k

�
 E

Quadratic decoupled  
Hamiltonian for  
inflaton fluctuation

Entangled 
Gaussian State

Quadratic decoupled  
Hamiltonian for spectator 
scalar field or metric  
perturbations

Equations of motion for mode functions 
of inflaton and entangled perturbations



Observables: Primordial
Two point correlation function 

h'~k'�~ki(⌧) ⌘ Tr
⇣
⇢~k(⌧)'~k'�~k

⌘

Density Matrix

Primordial Power Spectrum

P (k) ⌘ k3

2⇡2
h'~k'�~ki

���
⌧!0�

⇢~k['~k, '̃~k; ⌧ ] =

Z
D2�~kh'~k,�~k| (⌧)ih (⌧)|'̃~k,�~ki



Observables: Primordial to CMB

�T (~n)

T0
=

Background  
Temperature

T0 = 2.7K

Temperature 
Fluctuation

⇥(~n) ⌘ �T (~n)

T0
=

X

`m

a`mY`m(~n) a`m =

Z
d⌦Y ⇤

`m(~n)⇥(~n)

CTT
ll0 =

1

2`+ 1

X

m

ha⇤`ma`0mi ha⇤`ma`0m0i = CTT
ll0 �mm0

Harmonic Expansion:

Angular Power Spectrum:

⇣ ! �⇢ ! �T



Observables: Primordial to CMB

�T (~n)

T0
=

Background  
Temperature

T0 = 2.7K

Temperature 
Fluctuation

Angular Power Spectrum:

CTT
`



E and B Polarizations

E Modes B Modes

E < 0 E > 0 B > 0B < 0

CMB polarization decomposed in E (curl-free) and B 
(divergence-free) modes. 

Scalar Perturbations  
Tensor (gravity) perturbs 
Gravity Lensing

Vector (velocity) perturbs 
Tensor (gravity) perturbs 



E and B Polarizations

E Modes B Modes

E < 0 E > 0 B > 0B < 0

TE,    EE,    BB,    TB,    EB
CTE

` CEE
` CBB

` CEB
`CTB

`

More Angular Power Spectra:  

Usually 
Zero



Observational Effects
Scalar-Scalar Entanglement 

Small oscillations in the primordial 
power —> oscillations in angular power 

Scalar-Tensor Entanglement  

Same as Scalar-Scalar 

Non-Zero TB and EB power spectra 

Correlation between l multipoles 



Primordial Power 
Scalar-Scalar
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q
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P(k)

k

Entanglement Straight Parameter: �

� = 0.3

� = 0.1

� = 0.0

Larger     , larger oscillation amplitudes�

No 
Entanglement

Ck / �
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Angular Power Spectrum 
Difference with Zero 

Entanglement Angular Power

0 200 400 600 800 1000
l

150

100

50

0

50

100

150

200

∆
C
TT l,l
l(
l+
1)
T
2 0
/2
π[
µK

2
]

Residuals for DTTl with |b0|=0.01, |c0|=0.01, case(2+)

Residuals for DTTl with |b0|=0.01, |c0|=0.1, case(2+)

Residuals for DTTl with |b0|=0.01, |c0|=0.2, case(2+)
Binned (∆ l =30) residuals of best fit to Planck data

D
TT
l
with |b3k(τ0)|=0.01, |C

+(τ 0) =0.01|

D
TT
l
with (|b3k τ0)|=0.01, |C (τ0) =0.1|

D
TT
l
with (|b3k τ0)|=0.01, |C (τ0) =0.2|

+

+

Residuals of

Residuals of

Residuals of

Binned TT residuals of best fit to Planck data

ΔC
TT l,l
l(l
+1
)T

2 0/
2π
[μ
K
2 ]

l



Angular Power Spectrum 
Difference with Zero 

Entanglement Angular Power
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TB and EB Power Spectra 
Tensor-Scalar Entanglement

CTB,EB
ll0 = 4⇡

Z

dk

k

n

�T,E
l2 (k)�B

l02(k)P
+⇥(k)�ll0

o

hh+
~k
h⇥
�~k

i 6= 0 bk1, bk3

Correlation of the temperature and the 
E, B polarizations: 

thanks to , the + and x 
 polarization entanglement parameters.

“Parity Violation” in CMB



Primordial Non-Gaussianity
Three point correlation function

Shapes

Equilateral Squeezed Folded/Flattened

~k1
~k2

~k3

k1 = k2 = k3 k1 ⌧ k2 = k3 k1 ⇡ k2 + k3

h⇣~k1
⇣~k2

⇣~k3
i = (2⇡)3�(~k1 + ~k2 + ~k3)B⇣(k1, k2, k3)



Primordial Non-Gaussianity

Equilateral Squeezed Folded/Flattened

k1 = k2 = k3 k1 ⌧ k2 = k3 k1 ⇡ k2 + k3

Multi-field 
inflation

Higher  
derivative 

correlations 
in inflation

Non 
Bunch-Davies 

inflation models 
(cannot be high 
in single field)



Primordial Non-Gaussianity 
from Scalar-Scalar Entanglement 

Equilateral Squeezed Folded/Flattened

k1 = k2 = k3 k1 ⌧ k2 = k3 k1 ⇡ k2 + k3

h⇣3i = h⇣3iBD(1 + 3�) + �h⇣3iNON�BD

(Preliminary result - not finalized)

Entanglement strength parameter << 0.5



What do we hope to learn 
from the bispectrum?

Will it distinguish entanglement of 
2 fields during inflation from 
multi-field inflation? 

Another bound on entanglement 
strength parameter.  

Understand what characteristic 
bispectrum shape to expect from 
entanglement. 



Schrödinger Picture 
Bispectrum Setup 
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Cubic order expanded state: 



Schrödinger Picture 
Bispectrum Setup 
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Expansion parameter



Schrödinger Picture 
Bispectrum Setup 
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Cubic order coefficients 



Schrödinger Picture 
Bispectrum Setup 
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All combinations of fields at cubic order



Schrödinger Picture 
Bispectrum Setup 
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Quadratic entangled  
Gaussian state



Schrödinger Picture 
Bispectrum Setup 

i
@

@⌧
 = (H(2) + µH(3)) 

O(µ0) :
@

@⌧
 (2) = H(2) (2)

O(µ1) :
@

@⌧
 (3) = H(2) (3) +H(3) (2)

For each order of    s.t. 

Schrödinger Equation:

µ  =  (2) + µ (3)



Bispectrum: 
Perturbative Solution

i
@

@⌧
 = (H(2) + µH(3)) 

Equations of motion 
for cubic state 

coefficients (Z, Y, W, X).
1) 

2) Find perturbative solutions to these equations 
(expanding in powers of small entanglement  
strength parameter).

3) Use the solutions of cubic state coefficients  
(Z, Y, W, X) to calculate bispectrum.



Entangled Bispectrum
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Calculating the entangled bispectrum in terms 
of the cubic and quadratic coefficients: 



Contributions of Different 
Orders to the Bispectrum
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23
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X
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X
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XlRCiRCjRBlR]

Looking at orders of entanglement strength 
parameter   :  

CkR / �

�

ZR, YR / 1 + �(...) +O(�2) WR, XR / �(...) +O(�2), ,

/ 1 + �(...) / �3(...) + ... / �2(...) + ... / �3(...) + ...



Contributions of Different 
Orders to the Bispectrum
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XlRCiRCjRBlR]

Looking at orders of entanglement strength 
parameter   :  �

/ 1 + �(...) / �3(...) + ... / �2(...) + ... / �3(...) + ...

To lowest order in �



First Order Bispectrum

Equilateral Squeezed Folded/Flattened

k1 = k2 = k3 k1 ⌧ k2 = k3 k1 ⇡ k2 + k3

h⇣3i = h⇣3iBD(1 + 3�) + �h⇣3iNON�BD

(Preliminary result - not finalized)

Entanglement strength parameter << 0.5



First Order Bispectrum

h⇣3i = h⇣3iBD(1 + 3�) + �h⇣3iNON�BD

(Preliminary result - not finalized)

Entanglement strength parameter << 0.5

/ func(k1, k2, k3)

ki + kj � kl

ki + kj = kl
h⇣3iNON-BD ! 1

Artificial divergence!

Present because assumed  
non-BD at infinite past.

Realistically there would be 
cutoff at large momenta.



Finding Bound on Entanglement 
Strength Parameter

h⇣3i = h⇣3iBD(1 + 3�) + �h⇣3iNON�BD

Taking the equilateral and squeezed (local) 
limits of the first order bispectrum —>can  
put a rough upper limit on   . �

Equilateral Squeezed

k1 = k2 = k3 k1 ⌧ k2 = k3

Using Planck 
non-Gaussianity  
limits. 



What do we hope to learn 
from the bispectrum?

Will it distinguish entanglement of 2 
fields during inflation from multi-field 
inflation? Different shape produced.  

Another bound on entanglement 
strength parameter. Can find rough 
upper bound.  

Understand what characteristic 
bispectrum shape to expect from 
entanglement. Good indicator for non-
BD vacuum initial state. 



Final Entangled Remarks

Several distinguishing observational features 
of entanglement. 

These can help us constrain or rule out 
entanglement further validating standard 
picture —> MCMC analysis in progress. 

If signatures of entanglement are observed, 
this might point to finite inflation and or the 
mechanism that started it!



Thank you



How Inflation Works

Causal Contact
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Big Bang Singularity

Last Scattering 
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Horizon Problem
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Observables: CMB

CXX0

l,l0,m,m0 =
X

s,s0

Iss0 = 4⇡

Z
dk

k

X

s,s0

�X
l,s(k, ⌘0)�

X0

l0,s0(k, ⌘0)

Z
d⌦k̂P

ss0(k)�sY
⇤
lm(k̂, e)�s0Yl0m0(k̂, e)

s = 0,±2

X,X 0 = T,E,B

P ss0

�X
l,s(k, ⌘0)

Angular Power Spectrum —> CMB

-         : spin of the perturbation 

-                    (Temperature, E-mode, B-mode) 

-     : primordial power spectrum 

-            : transfer function



What does the CMB tell us? 
(Cosmic Microwave Background)

Mostly homogeneous and isotropic  

Small inhomogeneity ~ 

Planck CMB 2015
�T

T
⇡ 10�5



Particle 
Horizon

Last Scattering 
Surface

Us

Horizon Problem



How Inflation Works

Regions < 2 degrees apart 
never causally connected 



Flatness Problem
Why is the spatial curvature of the 

universe so small?

Friedmann Equation:

H2 =

✓
ȧ

a

◆2

=
8⇡

3
G (⇢I + ⇢k + ⇢r + ⇢m + ⇢DE)

/ a⇡0

/ a�2
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/ a�3
/ a⇡0

Inflation

Curvature

Relativistic 
Matter

Non-Relativistic 
Matter

Dark  
Energy 
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Flatness Problem
Why is the spatial curvature of the 

universe so small?
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How Inflation Works: Set Up

Flat FLRW Background - maximally symmetric, 
homogeneous and isotropic:

ds2 = a2(⌧)[�d⌧2 + dr2r2d⌦]

Scale factor

H =
1

a

da

dt
=

ȧ

a
Hubble Parameter:

Physical to Comoving Time: dt = a(⌧)d⌧

Comoving Hubble Radius: (aH)�1



How Inflation Works: Conditions

Inflation satisfied 2 conditions: 

1. Shrinking comoving Hubble radius —> accelerated 
expansion <-> slowly varying Hubble parameter.

2. Expansion is long enough ~ 60 e-folds.

d

dt
(aH)�1 < 0

d2a

dt2
> 0 , ✏ ⌘ Ḣ

H2
< 1

⌘ ⌘ |✏̇|
H✏

<< 1



What we want to know

What is the Universe 
composed of? 

What is the 
‘fundamental’ theory? 

How did the Universe 
begin?

- Dark Matter 
- Dark Energy 

(or Modified Gravity?) 
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What we want to know

What is the Universe 
composed of? 

What is the 
‘fundamental’ theory? 

How did the Universe 
begin?

- String Theory ? 
- Quantum Gravity ? 
- AdS/CFT ? 



Schrödinger Picture 
Bispectrum Setup 

i
@

@⌧
 = (H(2) + µH(3)) 

Schrödinger Equation:

Squad =

Z
d

4
xa

3(t)

"
✏M

2
pl

2c2s
(@µ⇣@

µ
⇣) +

M

2
pl

2c2s
(@µ�@

µ
�)

#

Hamiltonian from  
quadratic action



Schrödinger Picture 
Bispectrum Setup 

i
@

@⌧
 = (H(2) + µH(3)) 

Schrödinger Equation:

S(3) =

Z
dx(3)dt

h
� 2�c

⌃

a3✏

c2sH
⇣̇3 � g̃⇣̇(@i⇣)

2 +
a3✏

c2s
(2s+ ✏� ⌘)⇣⇣̇2

+a✏(✏+ ⌘)⇣(@i⇣)
2 � 2

a3✏2

c4s
⇣̇@i⇣@

i@�2⇣̇
i

Hamiltonian from  
cubic action


