Seeking higher spin fields through cosmic symmetry breakings

Maresuke Shiraishi

Kavli IPMU 🖙 NIT, Kagawa college

If vector field (s = 1) has nonzero background mode

Oprimordial correlators

 $\begin{aligned} \langle \boldsymbol{\zeta}^{2} \rangle &\sim \left[\int d\mathbf{T} \right]^{2} \langle \boldsymbol{\zeta}^{2} \left(\mathsf{H}_{\mathsf{int}}^{(\mathsf{I})} \right)^{2} \rangle \propto \mathsf{E}_{a} \mathsf{E}_{b} \langle \boldsymbol{\delta} \mathsf{E}_{a} \mathsf{\delta} \mathsf{E}_{b} \rangle \propto \mathsf{I} - (\mathbf{k} \cdot \mathbf{E})^{2} \\ \langle \boldsymbol{\zeta}^{3} \rangle &\sim \left[\int d\mathbf{T} \right]^{3} \langle \boldsymbol{\zeta}^{3} \left(\mathsf{H}_{\mathsf{int}}^{(\mathsf{I})} \right)^{2} \mathsf{H}_{\mathsf{int}}^{(2)} \rangle \propto \langle \boldsymbol{\delta} \mathsf{E}_{i} \mathsf{\delta} \mathsf{E}_{b} \rangle \langle \boldsymbol{\delta} \mathsf{E}_{i} \mathsf{\delta} \mathsf{E}_{b} \rangle \mathsf{E}_{b} \mathsf{E}_$

 $\begin{aligned} <\zeta^{4} > \sim \left[\int d\tau\right]^{4} <\zeta^{4} \left(\mathsf{H}_{\mathsf{int}}^{(1)}\right)^{2} \left(\mathsf{H}_{\mathsf{int}}^{(2)}\right)^{2} > \\ & \simeq <\delta \mathsf{E}_{\mathsf{a}} \ \delta \mathsf{E}_{\mathsf{c}} > <\delta \mathsf{E}_{\mathsf{b}} \ \delta \mathsf{E}_{\mathsf{d}} > <\delta \mathsf{E}_{\mathsf{a}} \ \delta \mathsf{E}_{\mathsf{b}} > \mathsf{E}_{\mathsf{c}} \ \mathsf{E}_{\mathsf{d}} \end{aligned}$

Aquadrupolar statistical anisotropy

Of course, quadrupolar anisotropy also appears in scalar-tensorcross and tensor-auto correlators: $\langle \zeta h \rangle$, $\langle h^2 \rangle$, $\langle \zeta^2 h \rangle$, $\langle h^3 \rangle$, ... If vector field (s = 1) couples to axion

$$\mathcal{L} = -\frac{1}{2} (\partial \phi)^2 - V(\phi) - \frac{1}{4} F^2 - \frac{\alpha}{4f} \phi F \tilde{F}$$
e.g., Sorbo: 1101.1525, Barnaby +: 1210.3257
$$\mathbf{A}_{\lambda}^{\prime\prime} + k^2 A_{\lambda} = 0 \quad \text{unpolarized,} \\ \text{i.e., } \mathbf{A}_{+} = \mathbf{A}.$$

$$+ 2\lambda \xi \frac{k}{\tau} A_{\lambda} \quad \text{A+ enhanced} \\ \text{exponentially!} \quad \mathbf{A}_{+} + \mathbf{A}_{+} \rightarrow \mathbf{\Phi} \rightarrow \zeta \\ \zeta_{\text{sou}} \propto \delta \phi_{\text{sou}} \propto \mathbf{E} \cdot \mathbf{B}$$

$$\xi = \frac{\alpha |\dot{\phi}|}{2fH} = \sqrt{\frac{\epsilon}{2}} \frac{\alpha M_{p}}{f} \quad \mathbf{A}_{+} + \mathbf{A}_{+} \rightarrow \mathbf{h}^{(+2)} \quad \text{marity violation}$$

$$\mathbf{h}_{+} \quad \mathbf{h}_{\times} \quad \mathbf{h}^{(+2)} \quad \mathbf{h}^{(-2)} \quad \mathbf{h}^{(-2)}$$

Isotropic case

Statistical anisotropy creates directional dependence

Parity violation search

<u>CMB</u>

relic of the primordial fluctuations stretched by the inflationary expansion

$$T/E(n) \sim \zeta \Delta_{T/E}(s)$$

$$a_{\ell m}^{T/E} \sim \zeta \Delta_{T/E}^{(s)}$$

 $T/E(n) \sim [h^{(+2)} + h^{(-2)}] \Delta_{T/E}^{(t)}$ $B(n) \sim [h^{(+2)} - h^{(-2)}] \Delta_{B}^{(t)}$

$$a_{\ell m} X = \int d^2 n X(n) Y_{\ell m}^*(n)$$

 $\begin{aligned} \mathbf{a}_{\ell m}^{\mathsf{T/E}} &\sim \left[\mathbf{h}^{(+2)} + (-1)^{\ell} \mathbf{h}^{(-2)} \right] \Delta_{\mathsf{T/E}}^{(t)} \\ \mathbf{a}_{\ell m}^{\mathsf{B}} &\sim \left[\mathbf{h}^{(+2)} - (-1)^{\ell} \mathbf{h}^{(-2)} \right] \Delta_{\mathsf{B}}^{(t)} \end{aligned}$

odd parity in l-space

 $\begin{aligned} a_{\ell m}^{T} \sim h^{(+)} + (-1)^{\ell} h^{(-)} & a_{\ell m}^{B} \sim h^{(+)} - (-1)^{\ell} h^{(-)} \\ C_{\ell 1 \ell 2}^{TT}, C_{\ell 1 \ell 2}^{BB} \sim \langle h^{(+)}h^{(+)} \rangle + (-1)^{\ell 1 + \ell 2} \langle h^{(-)}h^{(-)} \rangle \\ C_{\ell 1 \ell 2}^{TB} \sim \langle h^{(+)}h^{(+)} \rangle - (-1)^{\ell 1 + \ell 2} \langle h^{(-)}h^{(-)} \rangle \\ B_{\ell 1 \ell 2 \ell 3}^{TTT}, B_{\ell 1 \ell 2 \ell 3}^{TBB} \sim \langle h^{(+)}h^{(+)}h^{(+)} \rangle + (-1)^{\ell 1 + \ell 2 + \ell 3} \langle h^{(-)}h^{(-)}h^{(-)} \rangle \\ B_{\ell 1 \ell 2 \ell 3}^{TTB}, B_{\ell 1 \ell 2 \ell 3}^{BBB} \sim \langle h^{(+)}h^{(+)}h^{(+)} \rangle - (-1)^{\ell 1 + \ell 2 + \ell 3} \langle h^{(-)}h^{(-)}h^{(-)} \rangle \end{aligned}$

Kamionkowski & Souradeep: 1010.4304, MS, Nitta, Yokoyama: 1107.0682

GW correlators	CMB correlators		
$< h^{(+)} \cdots h^{(+)} > = p < h^{(-)} \cdots h^{(-)} >$	$\Sigma \ell_n = even$	$\Sigma \ell_n = odd$	
P-even (p = +)	TT, BB, TTT, TBB	TB, TTB, BBB	
P-odd (p = -)	TB, TTB, BBB	TT, BB, TTT, TBB	

$$C^{BB} \sim P_{h}^{(+)} + P_{h}^{(-)} \sim r P_{\zeta}$$

$$C^{TB} \sim P_{h}^{(+)} - P_{h}^{(-)} \sim r \chi P_{\zeta}$$

$$\left(\frac{S}{N}\right)_{TB}^2 = \sum_{\ell} (2\ell+1) \frac{(C_{\ell}^{TB})^2}{C_{\ell}^{TT} C_{\ell}^{BB}}$$

unconstrained since $C_{\ell}^{TT} >> C_{\ell}^{BB} \sim C_{\ell}^{TB}$

$$\bigstar \underline{\text{tensor NG}} \quad f_{\mathrm{NL}}^{\mathrm{tens}} \equiv \lim_{k_i \to k} \frac{\langle h_{\mathbf{k}_1}^{(+)} h_{\mathbf{k}_2}^{(+)} h_{\mathbf{k}_3}^{(+)} \rangle}{\langle \zeta_{\mathbf{k}_1} \zeta_{\mathbf{k}_2} \zeta_{\mathbf{k}_3} \rangle |_{f_{\mathrm{NL}}^{\mathrm{eq}} = 1}}$$

f _{NL} tens / 10 ²	Even	Odd	A11
SMICA T T+E	2 ± 15 0 ± 13	120 ± 110	4 ± 15
SEVEM T T+E	$\begin{array}{c} 2\pm15\\ 4\pm13 \end{array}$	120 ± 110	5 ± 15
NILC T T+E	3 ± 15 1 ± 13	110 ± 100	5 ± 15

consistent with WMAP limits: MS +: 1409.0265 $f_{NL}^{tens} / 10^2 = 4 \pm 16$ (even), 80 ± 110 (odd)

$I\sigma$ signals of parity-odd NG

$$\mathcal{L} = -\frac{1}{2} \left(\partial\phi\right)^2 - V(\phi) - \frac{1}{4}F^2 - \frac{\alpha}{4f}\phi F\tilde{F}$$

Barnaby, Namba, Peloso: 1102.4333 Cook & Sorbo: 1307.7077 MS, Ricciardone, Saga: 1308.6769

$$\xi \equiv \frac{\alpha |\dot{\phi}|}{2 f H} < 3.3$$

P-odd TTE and TEE are very informative $\Im \delta f_{NL}(T+E) / \delta f_{NL}(T) \sim 0.1$ Let's see Planck 2018 * usual P-even scalar case: ~ 0.5

$$\mathcal{L} = -\frac{1}{2} \left(\partial\phi\right)^2 - V(\phi) - \frac{1}{2} \left(\partial\sigma\right)^2 - V(\sigma) - \frac{1}{4}F^2 - \frac{\alpha}{4f}\sigma F\tilde{F}$$

e.g., Barnaby +: 1206.6117, Cook & Sorbo: 1307.7077, Ferreira & Sloth: 1409.5799

●inflaton Φ does not directly couple to A and sustains a stable inflation due to $V_{\Phi} >> V_{\sigma}$

 \odot pseudoscalar σ enhances A, generating sourced modes

Source modes roughly have a peak @ $k \sim k_* = -T_*$

Depending on k*, a detectable peak appears in B-mode spectrum!

BB

TΒ

 $BBB \sim \langle h_{+2}(sou)h_{+2}(sou)h_{+2}(sou) \rangle$

TTT is undetectable, but BBB is detectable

tensor NG >> scalar NG Agrawal, Fujita, Komatsu: 1707.03240

Statistical anisotropy search

Interesting (l_1, l_2) configurations

inflation			CMB		
parity symmetry	rotational symmetry	models	$ \ell_1 - \ell_2 = 0$	$ \ell_1 - \ell_2 = 1$	$ \ell_1 - \ell_2 = 2$
\bigcirc	\bigcirc	standard inflation	XX, TE	-	-
×	\bigcirc	f(Ф)*FF, f(Ф)*RR	all	_	_
	×	f(Φ)F ² + A ^{vev} ≠ 0	XX, TE	TB, EB	XX, TE
×	×	f(Φ)*FF + A ^{vev} ≠ 0	all	all	all

 $XX \equiv TT$, EE, BB, all $\equiv XX$, TE, TB, EB

Bartolo, Matarrese, Peloso, MS: 1411.2521

off-diagonal components contain pure anisotropic information

primordial correlators: parity O isotropy ×

$$|\ell_1 - \ell_2| = even in TT, TE, EE, BB$$

 $|\ell_1 - \ell_2| = \text{odd in TB, EB}$

$$\langle \zeta_{\mathbf{k}_1} \zeta_{\mathbf{k}_2} \rangle = (2\pi)^3 \delta^{(3)} (\mathbf{k}_1 + \mathbf{k}_2) P(k_1) \left[1 + g_* (\hat{\mathbf{k}}_1 \cdot \hat{\mathbf{p}})^2 \right]$$

Planck 2015: g* = 0.23^{+1.70}-1.24×10⁻²

off-diagonal componets of TE, EE, BB, TB, EB have NOT measured yet!

primordial correlators: parity O isotropy × Gaussianity ×

triangle condition: $|\ell_1 - \ell_2| \leq \ell_3 \leq |\ell_1 + \ell_2|$

Isotropic measurement of anisotropic bispectrum

$$B_{\ell_{1}\ell_{2}\ell_{3}} \equiv \sum_{m_{1}m_{2}m_{3}} \begin{pmatrix} \ell_{1} & \ell_{2} & \ell_{3} \\ m_{1} & m_{2} & m_{3} \end{pmatrix} \langle a_{\ell_{1}m_{1}}a_{\ell_{2}m_{2}}a_{\ell_{3}m_{3}} \rangle$$

$$= \begin{pmatrix} \ell_{1} & \ell_{2} & \ell_{3} \\ m_{1} & m_{2} & m_{3} \end{pmatrix}^{-1} \int \frac{d^{2}\hat{\mathbf{A}}}{4\pi} \langle a_{\ell_{1}m_{1}}a_{\ell_{2}m_{2}}a_{\ell_{3}m_{3}} \rangle$$

$$\int \frac{d^{2}\hat{\mathbf{A}}}{4\pi} B_{\zeta}(k_{1},k_{2},k_{3}) = \sum_{n} c_{n}P_{n}(\hat{\mathbf{k}}_{1}\cdot\hat{\mathbf{k}}_{2})P_{\zeta}(k_{1})P_{\zeta}(k_{2}) + (2 \text{ perm})$$
MS, Komatsu, Peloso, Barnaby: I 302.3056

Planck 2015: 1502.01592

$$\mathcal{L} \supset f(\phi) \left(-\frac{1}{4}F^2 + \frac{\gamma}{4}F\tilde{F} \right)$$

***electric part:** $\mathbf{E} \equiv \mathbf{E}^{\text{vev}} + \delta \mathbf{E} = -\frac{\sqrt{f(\phi)}}{a^2} \mathbf{A}' = -\frac{\sqrt{f(\phi)}}{a^2} \left(\frac{\mathbf{V}}{\sqrt{f(\phi)}}\right)'$

when $f(\phi) \propto a^{-4} \propto \tau^4$ $E^{vev} = const$

• EOM of perturbations: $\delta V_{\lambda}'' + \left(k^2 + \frac{4\lambda\gamma}{\tau}k - \frac{2}{\tau^2}\right) \delta V_{\lambda} = 0$

$$|\delta E_{+}| \approx \frac{e^{2\pi|\gamma|}}{|\gamma|^{3/2}} \frac{3H^{2}}{2^{5/2}\sqrt{\pi}k^{3/2}} \qquad |\delta E_{+}| \gg |\delta E_{-}|$$

 $\begin{aligned} & \leftarrow \text{curvature correlators:} & <\zeta_{\text{sou}}^2 > \sim <\zeta_{(1)}^2 > \propto E_{\text{vev}}^2 \, \delta E^2 \\ & \zeta_{\text{sou}} \propto E_{\text{vev}} \cdot \delta E + \delta E^2 & <\zeta_{\text{sou}}^3 > \sim <\zeta_{(1)} \zeta_{(1)} \zeta_{(2)} > \propto E_{\text{vev}}^2 \, \delta E^4 \\ & = \zeta_{(1)} + \zeta_{(2)} & <\zeta_{\text{sou}}^4 > \sim <\zeta_{(1)} \zeta_{(1)} \zeta_{(2)} \zeta_{(2)} > \propto E_{\text{vev}}^2 \, \delta E^6 \end{aligned}$

parity violation in the scalar sector

MS: 1608.00368

parity tranformation $\zeta(\mathbf{k}) \rightarrow \zeta(-\mathbf{k})$ cf. $h^{(s)}(\mathbf{k}) \rightarrow h^{(-s)}(-\mathbf{k})$

Rotational invariance enforces parity invariance in 2 and 3-pt correlators

$$\langle \zeta(\mathbf{k}_1)\zeta(\mathbf{k}_2)\rangle = \langle \zeta(-\mathbf{k}_1)\zeta(-\mathbf{k}_2)\rangle \\ \langle \zeta(\mathbf{k}_1)\zeta(\mathbf{k}_2)\zeta(\mathbf{k}_3)\rangle = \langle \zeta(-\mathbf{k}_1)\zeta(-\mathbf{k}_2)\zeta(-\mathbf{k}_3)\rangle \\ \langle \zeta(\mathbf{k}_1)\zeta(\mathbf{k}_2)\zeta(\mathbf{k}_3)\rangle = \langle \zeta(-\mathbf{k}_1)\zeta(-\mathbf{k}_2)\zeta(-\mathbf{k}_3)\rangle$$

4-pt is the lowest-order parity-violating correlator

 $\langle \zeta(\mathbf{k}_1)\zeta(\mathbf{k}_2)\zeta(\mathbf{k}_3)\zeta(\mathbf{k}_4)\rangle \in \mathbf{C}$

 $\neq \langle \zeta(-\mathbf{k}_1)\zeta(-\mathbf{k}_2)\zeta(-\mathbf{k}_3)\zeta(-\mathbf{k}_4) \rangle$ $\parallel \\ \langle \zeta(\mathbf{k}_1)\zeta(\mathbf{k}_2)\zeta(\mathbf{k}_3)\zeta(\mathbf{k}_4) \rangle^*$

lγl

Beyond large-scale CMB correlators

$$\langle \zeta_{\mathbf{k}_1} \zeta_{\mathbf{k}_2} \rangle = (2\pi)^3 P_{\zeta}(k_1) \delta^{(3)}(\mathbf{k}_1 + \mathbf{k}_2) \left[1 + \sum_M g_{2M} f(k_1) Y_{2M}(\hat{k}_1) \right]$$

 $\langle \zeta_{\mathbf{k}_1} \zeta_{\mathbf{k}_2} \rangle = (2\pi)^3 P_{\zeta}(k_1) \delta^{(3)}(\mathbf{k}_1 + \mathbf{k}_2) \left[1 + 2\sum_M A_{1M} f(k_1) Y_{1M}(\hat{x}) \right]$

anisotropic 3D galaxy power

MS, Sugiyama, Okumura: 1612.02645

$$P^{s}(\mathbf{k}, \hat{n}) = P_{m}(\mathbf{k}, \hat{n}, \hat{p}) \begin{bmatrix} b + f(\hat{k} \cdot \hat{n})^{2} \end{bmatrix}^{2}$$

directional dep. RSD

BipoSH decomposition $\propto \sum_{\ell \ell' LM} P_{\ell \ell'}^{LM}(k) \{Y_{\ell}(\hat{k}) \otimes Y_{\ell'}(\hat{n})\}_{LM}$

if isotropic, i.e., $P_m = P_m(|\mathbf{k}|)$ $P_{\ell\ell'}^{LM} = P_\ell(k)\delta_{\ell,\ell'}\delta_{L,0}\delta_{M,0}$

if anisotropic, the $L \ge 1$ components also become nonzero!

$$P_{\ell\ell'}^{2M}(k) = P_{\ell'}(k) \sqrt{\frac{5}{4\pi}} (2\ell+1) \left(\begin{smallmatrix} \ell & \ell' & 2 \\ 0 & 0 & 0 \end{smallmatrix} \right)^2 g_{2M} f(k)$$
$$P_{\ell\ell'}^{1M}(k) = P_{\ell}(k) \sqrt{\frac{3}{\pi}} (2\ell'+1) \left(\begin{smallmatrix} \ell & \ell' & 1 \\ 0 & 0 & 0 \end{smallmatrix} \right)^2 A_{1M} f(k)$$

 $\Delta A_{IM} / 10^{-2}$

f(k)	SDSS	CMASS	PFS	Euclid
$(k/k_A^c)^{-1/2}$ $(1-k/k_A^q)^2$	4.4 (7.2) 1.4 (2.9)	$2.4 (5.0) \\ 0.70 (2.0)$	$\begin{array}{c} 1.6\\ 0.48\end{array}$	$\begin{array}{c} 0.84\\ 0.26\end{array}$

 Δg_{2M} / 10-2

f(k)	SDSS	CMASS	PFS	Euclid
$(k/k_g)^1$	1.2(3.3)	0.55(2.4)	0.40	0.22
1	2.3(5.1)	1.1(3.5)	0.78	0.43
$(k/k_g)^{-1}$	2.8(3.5)	1.7(2.5)	1.0	0.55
$(k/k_g)^{-2}$	$0.93 \ (0.65)$	0.66(0.51)	0.36	0.19

Constraints from the BOSS-CMASS data

Sugiyama, MS, Okumura: 1704.02868

<u> Anisotropic Tμ correlations</u>

energy injections due to acoustic waves distort CMB's blackbody (BB)!

 $rac{1}{2}$ $z > 2 \times 10^6$: $e^- + \gamma \rightarrow e^- + 2\gamma$

 N_{Y} changes, BB is restored

•5×10⁴ < z < 2×10⁶ : e⁻ + γ → e⁻ + γ N_Y = const, BB is not restored

Anisotropic 21cm power spectrum

MS, Munoz, Kamionkowski, Raccanelli : 1603.01206

advantage
• tomography: 20 < z < 50
• small scale: k < 10² Mpc⁻¹

$$\ell^{2}C_{\ell}^{N} = \frac{(2\pi)^{3}T_{sys}^{2}(\nu)}{\Delta\nu t_{o}f_{cover}^{2}} \left(\frac{\ell}{\ell_{cover}(\nu)}\right)^{2} \ell_{cover}(\nu) \equiv \frac{2\pi D_{base}}{\lambda}$$

$$SKA: D_{base} = 6km, f_{cover} = 0.02, t_{o} = 5yr$$

$$FRA: D_{base} = 100km, f_{cover} = 0.2, t_{o} = 10yr$$

<i>f</i> (<i>k</i>) g 2M	CVL 21 cm	SKA	FRA	CVL CMB T	CVL CMB T + E
$(k/k_q)^2$	$5.0 \times 10^{-10} \ (3.2 \times 10^{-9})$	4.2 (22)	$1.4 \times 10^{-5} \ (6.6 \times 10^{-5})$	$5.5 imes10^{-4}$	$3.2 imes 10^{-4}$
$(k/k_{q})^{1}$	$6.7 \times 10^{-8} \ (4.3 \times 10^{-7})$	20 (95)	$3.6 imes 10^{-4} \ (1.7 imes 10^{-3})$	$1.5 imes10^{-3}$	$8.3 imes10^{-4}$
1	$7.9 imes 10^{-6} (5.0 imes 10^{-5})$	33 (150)	$1.3 imes 10^{-3} \ (6.3 imes 10^{-3})$	$3.4 imes 10^{-3}$	$1.9 imes 10^{-3}$
$(k/k_g)^{-1}$	$3.8 \times 10^{-4} \ (2.4 \times 10^{-3})$	17 (78)	$1.3\times 10^{-3}~(7.2\times 10^{-3})$	$4.3 imes 10^{-3}$	$2.1 imes 10^{-3}$
$(k/k_{g})^{-2}$	$3.2 \times 10^{-4} \ (2.0 \times 10^{-3})$	3.4 (16)	$4.2\times 10^{-4}~(2.4\times 10^{-3})$	$6.1 imes 10^{-5}$	$3.7 imes 10^{-5}$
f(k) Aim	CVL 21 cm	SKA	FRA	CVL CMB T	CVL CMB $T + E$
$1 - k/k_A$	$8.0 imes 10^{-7} \ (5.1 imes 10^{-6})$	13 (62)	$6.4 imes 10^{-4} (3.3 imes 10^{-3})$	$1.3 imes 10^{-3}$	$9.3 imes10^{-4}$
$(1-k/k_A)^2$	$1.4 imes 10^{-7} \ (8.7 imes 10^{-7})$	14 (64)	$6.9\times 10^{-4}~(3.6\times 10^{-3})$	$1.5 imes 10^{-3}$	$1.0 imes 10^{-3}$

	CMB anisotropy	galaxy	CMB distortion	21cm
scale [Mpc ⁻¹]	10-4 - 10 ⁻¹	10 ⁻³ - 10 ⁻¹	10+1 - 10+4	< 10+2
роw: Δg2м, ΔA1м	10-2	10 ⁻² (CMASS) 10 ⁻³ (PFS)	>> 1 (CMBpol) 10 ⁻² (CVL)	> 1 (SKA) 10 ⁻⁵ (CVL)
bis: ∆c₂	10	10 (2020's?) [e.g. 1507.05903 (SKA), 1607.05232 (LSST)]	10 ² (CMBpol) 10 ⁻³ (CVL)	10-2 (CVL) [1506.04152]
tris: ∆d₂	100	?	104 (CMBpol) 10-2 (CVL)	?

s nonvanishing components: g_{2M} , g_{4M} , ..., $g_{(2s-2)M}$ and $g_{(2s)M}$

Baltolo, Kehagias, Liguori, Riotto, MS, Tansella: 1709.05695

 $g_{(2s)M}$ is almost independent of s, so $g_{(2s)M} \sim 10^{-3}$ will be detectable