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Quantum entropy of extremal BHs: W. Cottrell, GS and P. Soler, arXiv:1611.06270 [hep-th].
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All inflationary theories

UV consistent  
theories Understanding the space of UV  

consistent inflationary theories also helps  
in assessing how inflation fares with data.

These questions can be asked sharply in the context of inflation:



Many experiments including BICEP/KECK, PLANCK, ACT,  
PolarBeaR, SPT, SPIDER, QUEIT, Clover, EBEX, QUaD, …  

can potentially detect primordial B-mode at the sensitivity r~10-2.

Further experiments, such as CMB-S4, PIXIE, LiteBIRD, DECIGO, 
Ali, .. may improve further the sensitivity to eventually reach r ~ 10-3.

Planck Collaboration: Constraints on inflation 55

Fig. 54. Marginalized joint 68 % and 95 % CL regions for ns and r0.002 from Planck alone and in combination with its cross-
correlation with BICEP2/Keck Array and/or BAO data compared with the theoretical predictions of selected inflationary models.

further improving on the upper limits obtained from the different
data combinations presented in Sect. 5.

By directly constraining the tensor mode, the BKP likeli-
hood removes degeneracies between the tensor-to-scalar ratio
and other parameters. Adding tensors and running, we obtain

r0.002 < 0.10 (95 % CL, Planck TT+lowP+BKP) , (168)

which constitutes almost a 50 % improvement over the Planck
TT+lowP constraint quoted in Eq. (28). These limits on tensor
modes are more robust than the limits using the shape of the
CTT
` spectrum alone owing to the fact that scalar perturbations

cannot generate B modes irrespective of the shape of the scalar
spectrum.

13.1. Implications of BKP on selected inflationary models

Using the BKP likelihood further strengthens the constraints
on the inflationary parameters and models discussed in Sect. 6,
as seen in Fig. 54. If we set ✏3 = 0, the first slow-roll pa-
rameter is constrained to ✏1 < 0.0055 at 95 % CL by Planck
TT+lowP+BKP. With the same data combination, concave po-
tentials are preferred over convex potentials with log B = 3.8,
which improves on log B = 2 obtained from the Planck data
alone.

Combining with the BKP likelihood strengthens the con-
straints on the selected inflationary models studied in Sect. 6.
Using the same methodology as in Sect. 6 and adding the BKP
likelihood gives a Bayes factor preferring R2 over chaotic in-
flation with monomial quadratic potential and natural inflation
by odds of 403:1 and 270:1, respectively, under the assumption
of a dust equation of state during the entropy generation stage.
The combination with the BKP likelihood further penalizes the
double-well model compared to R2 inflation. However, adding

Table 17. Results of inflationary model comparison using the
cross-correlation between BICEP2/Keck Array and Planck. This
table is the analogue to Table 6, which did not use the BKP like-
lihood.

Inflationary Model ln B0X

wint = 0 wint , 0

R + R2/6M2 . . . +0.3
n = 2 �6.0 �5.6
Natural �5.6 �5.0
Hilltop (p = 2) �0.7 �0.4
Hilltop (p = 4) �0.6 �0.9
Double well �4.3 �4.2
Brane inflation (p = 2) +0.2 0.0
Brane inflation (p = 4) +0.1 �0.1
Exponential inflation �0.1 0.0
SB SUSY �1.8 �1.5
Supersymmetric ↵-model �1.1 +0.1
Superconformal (m = 1) �1.9 �1.4

BKP reduces the Bayes factor of the hilltop models compared
to R2, because these models can predict a value of the tensor-to-
scalar ratio that better fits the statistically insignificant peak at
r ⇡ 0.05. See Table 17 for the Bayes factors of other inflationary
models with the same two cases of post-inflationary evolution
studied in Sect. 6.

13.2. Implications of BKP on scalar power spectrum

The presence of tensors would, at least to some degree, require
an enhanced suppression of the scalar power spectrum on large
scales to account for the low-` deficit in the CTT

` spectrum. We
therefore repeat the analysis of an exponential cut-off studied
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UV Sensitivity of Large Field Inflation

64 Inflation in effective field theory

derive the Lyth bound [252], which relates observable tensor modes to super-
Planckian displacements of the inflaton, ∆φ ! Mpl. We will begin with a
derivation of the Lyth bound in single-field slow-roll inflation, and then present
extensions to more general scenarios.

The Lyth bound
Substituting (2.38) into r = 16ε, we can relate the tensor-to-scalar ratio r to the
evolution of the inflaton field,

r = 8
(

1
Mpl

dφ
dN

)2

, where dN ≡ Hdt . (2.100)

Integrating (2.100) from the time N⋆ when modes that are observable in the
CMB exited the horizon, until the end of inflation at Nend ≡ 0 (see Fig. 2.7), we
get [252]

∆φ
Mpl

=
∫ N⋆

0
dN

√
r(N)

8
. (2.101)

To evaluate the integral in (2.101), it is useful to define

Neff ≡
∫ N⋆

0
dN

√
r(N)
r⋆

, (2.102)

where r⋆ is the tensor-to-scalar ratio measured in the CMB, so that

∆φ
Mpl

= Neff

√
r⋆
8

. (2.103)

In slow-roll inflation, the relation

d ln r

dN
= −

[
ns − 1 +

r

8

]
, (2.104)

combined with the observational constraints on ns − 1 and r described in Chap-
ter 1, imply that Neff ∼ N⋆ (see e.g. [253, 254]). Taking Neff ! 60, we conclude
that22

∆φ
Mpl

! 2 ×
( r

0.01

)1/2
. (2.105)

To arrive at a maximally conservative bound in single-field slow-roll inflation,
one can assume that slow-roll is valid only while the observed multipoles of the
CMB exit the horizon, corresponding to Neff ≈ 7. This leads to (cf. [252], which
used a smaller Neff because fewer multipoles had been observed in 1996)

∆φ
Mpl

! 0.25 ×
( r

0.01

)1/2
. (2.106)

22
One should not assume that simple models will approximately saturate (2.105); for
example, chaotic inflation scenarios involve displacements roughly twice as large as
required by the bound.

Downloaded from Cambridge Books Online by IP 150.244.109.125 on Wed Aug 05 08:02:31 BST 2015.
http://dx.doi.org/10.1017/CBO9781316105733.004
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Coupling the inflaton to the UV degrees 
of freedom in quantum gravity:

Quantum gravity forbids excursion > MP?

UV completions control corrections?
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Axions & Large Field Inflation

They satisfy a shift symmetry that is only 
broken by non-perturbative effects:

decay constant

Natural Inflation [Freese, Frieman, Olinto]

V (�) = 1� ⇤

(1)
cos

✓
�

f

◆
+

X

k>1

⇤

(k)


1� cos

✓
k�

f

◆�

Pseudo-Nambu-Goldstone bosons are natural inflaton candidates.

⇤(n+1)

⇤(n)
⇠ e�m ⌧ 1 =) m & 1

Slow roll: f > MP
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Axions in String Theory

String theory has many higher-dimensional form-fields:

2-form gauge potential:

e.g.

3-form flux

gauge symmetry:

Integrating the 2-form over a 2-cycle gives an axion:

The gauge symmetry becomes a shift symmetry.

Axions with super-Planckian decay constants don’t seem to exist in 
controlled limits of string theory. Banks, Dine, Fox, Gorbatov, ‘03
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• For every long range gauge field there exists a particle 
of charge q and mass m, s.t.  

Arkani-Hamed, Motl, Nicolis, Vafa ‘06
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Heuristic Argument

+ +
Fe FeFg Fg

• Take a U(1) and a single family with q < m  ( WGC ) 

2m > M2 > 2q 3m > M3 > 3q Nm > MN > Nq M1 ! Q1

Extremal 
BH

BH

... ... 
• Infinitely many bound states 

MP ⌘ 1

• Postulate the existence of a state with q

m
� “1” ⌘ Q

Ext

M
Ext

M = Q

M > Q

M < Q

Figure 2. An extremal black hole can decay only if there exist particles

whose charge exceeds their mass.

The difficulties involving remnants are avoided if macroscopic black holes can evaporate

all their charge away, and so these states would not be stable. Since extremal black holes

have M = QMPl, in order for them to be able to decay into elementary particles, these

particles should have m < qMPl. Our conjecture also naturally follows from Gell-Mann’s

totalitarian principle (“everything that is not forbidden is compulsory”) because there should

not exist a large number of exactly stable objects (extremal black holes) whose stability is

not protected by any symmetries.

Another heuristic argument leading to same limit on Λ is the following. Consider the

minimally charged monopole solution in the theory. With a cutoff Λ, its mass is of order

Mmon ∼ Λ/g2 and its size is of order Rmon ∼ 1/Λ. It would be surprising for the minimally

charged monopole to already be a black hole because the values of all charges carried by

a black hole should be macroscopic (and effectively continuous); after all, a black hole is a

classical concept. Demanding that this monopole is not black yields

Mmon

M2
PlRmon

<∼ 1 ⇒ Λ <∼ gMPl (5)

2.3 Simple parametric checks

It is easy to check the conjecture in a few familiar examples. For U(1)’s coming from closed

heterotic strings compactified to four dimensions, for instance, we have

gMPl ∼ Ms , (6)

6
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WGC and Axions

• Formulate the WGC in a duality frame where the axions 
and instantons turn into gauge fields and particles, e.g.

Brown, Cottrell, GS, SolerWGC and Axions

T-dual

Type IIA Type IIB

Dp-Instanton 
(Axions)

S1S̃1

Rd�1 ⇥ S̃1

Rd Rd

D(p+1)-Particle 
(Gauge bosons)

Rd�1 ⇥ S1

• T-duality provides a subtle connection between 
instantons and particles

Brown, Cottrell, GS, Soler

• The WGC takes the form                                          and 
generalizes to a convex hull condition for multiple axions.

f · S
instanton

 O(1)MP

model-dependent, calculable



Multiple Axions and Convex Hull

3

massive-U(1)-charged particle, it briefly supports an as-
sociated electric field, but after a time of order the pho-
ton Compton wavelength, it balds [14] when the gauge
field is radiated away to infinity or through the horizon.

ii) New physics enters below the Planck scale. The
simplest way to reconcile the WGC with naturalness is
for the e�ective field theory to break down at a cuto�
defined by Eq. (8). There could be new light states regu-
lating quadratic divergences of „, e�ectively lowering �.
This option resolves the contradiction tautologically by
eliminating the hierarchy problem altogether. However,
a more interesting alternative occurs when the new states
do not couple to „. The quadratic divergence of „ is ro-
bust and m is large. If one of these new states satisfies
Eq. (1), then „ is irrelevant: the WGC and naturalness
are reconciled. Thus, asserting naturalness o�ers Eq. (8)
as a more precise version of the low cuto� conjecture of
Ref. [3] stated in Eq. (2).

MORE FORCES, MORE PARTICLES

Extending our results to various charged species of
di�erent spins, the WGC implies that at least one state
in the spectrum must satisfy Eq. (1) after taking into
account radiative corrections. Naturalness is violated in
parameter regions with a hierarchy between charges and
couplings that generate quadratic divergences (quartic
couplings, Yukawa couplings).

The story becomes more interesting for product gauge
symmetries. Consider a gauge group

rN
a=1 U(1)a and

particles i with charges qia and masses mi. We rep-
resent the charges, q̨i = qia, and charge-to-mass ra-
tios, z̨i = qiamPl/mi, as vectors of SO(N), the sym-
metry transforming the N photons among each other.
If present, photon kinetic mixing can be removed by a
general linear transformation on the photons, which is
equivalent to redefining charge vectors of states in the
theory.

To generalize the WGC for multi-charged particles,
Eq. (1) is inadequate and requires upgrading to a con-
straint on q̨i and mi. Ref. [3] briefly alluded to this
scenario, but detailed analysis will reveal quantitative
di�erences between the WGC as applied to a single
U(1) versus many. By symmetry, the proper general-
ized WGC must be SO(N) invariant. Naïvely, the WGC
could require at least one species i with |z̨i| > 1. How-
ever, this is insu�cient—it guarantees the existence of
one particle of large total charge, but preserves stability
for orthogonally-charged extremal black holes. A stricter
alternative is that for each U(1) there exists a species i
charged under that U(1) with |z̨i| > 1. Curiously, this is
still actually weaker than the true generalized WGC.

To determine the proper generalized WGC, we re-
visit black hole decay kinematics. Consider a black

�z2

��z2

��z1

�z1

�z2

��z2

��z1

�z1

consistent with WGC inconsistent with WGC

Figure 1. Vectors representing charge-to-mass ratios for two
species charged under two Abelian gauge symmetries. When
the convex hull defined by these vectors contains the unit
ball, then extremal black holes can decay to particles and
the condition of the WGC is satisfied.

hole of charge Q̨, mass M , and charge-to-mass ratio
Z̨ = Q̨ mPl/M decaying to a final state comprised of ni

particles of species i. Charge and energy conservation
imply Q̨ =

q
i niq̨i and M >

q
i nimi. If ‡i = nimi/M

is the species i fraction of the total final state mass, then
Z̨ =

q
i ‡iz̨i and 1 >

q
i ‡i; decay requires that Z̨ be

a subunitary weighted average of z̨i. This criterion has
a geometric interpretation in charge space. Draw the
vectors ±z̨i corresponding to the charge-to-mass ratio of
each fundamental particle in the spectrum. A weighted
average of z̨i defines the convex hull spanned by the vec-
tors, delineating the space of Z̨ that is unstable to de-
cay. Any state outside the convex hull is stable. Since
extremal black holes correspond to |Z̨| = 1, the general-
ized WGC requires that the convex hull spanned by ±z̨i

contain the unit ball.
Consider a model of two Abelian factors and two

charged states. The left and right panels of Fig. 1 repre-
sent two possible choices for the charge-to-mass ratios of
the particles. Black holes of all possible charges are rep-
resented by the unit disc. The left panel of Fig. 1 depicts
a theory that is consistent with the WGC: the unit disc
is contained in the convex hull. Extremal black holes,
the boundary of this disc, can decay. However, the right
panel of Fig. 1 depicts a theory that violates the WGC:
there are regions of the unit disc not within the con-
vex hull, corresponding to stable black hole remnants.
Remarkably, this theory fails the WGC despite the fact
that |z̨1| > 1 and |z̨2| > 1. Simple geometry shows that
the WGC imposes the more stringent constraint:

(z̨ 2
1 ≠ 1)(z̨ 2

2 ≠ 1) > (1 + |z̨1 · z̨2|)2. (9)

For example, given orthogonal charges of equal magni-
tude, |z̨1| = |z̨2| = z and z̨1 ‹ z̨2, Eq. (9) implies z >

Ô
2,

manifestly stronger than the z > 1 condition required for
theories with a single U(1). Note that the WGC places
constraints on z̨1 and z̨2 that are not mathematically in-
dependent. Were a particular value of z̨1 experimentally

• Generalization of the WGC to multiple U(1)’s is a convex 
hull condition [Cheung, Remmen], which has been dualized to 
the WGC for multiple axions [Brown, Cottrell, GS, Soler];[Rudelius]



Strong vs Mild Form

• Consistencies suggested that the WGC takes stronger forms: 

• Madison Strong Form (1503.04783) [Brown, Cottrell, GS, Soler]:                  
“The lightest (possibly multi-particle) state in any given direction in 
charge space satisfies |zlightest| ≥ 1” 

• Harvard Strong Form (1509.06374) [Heidenreich, Reece, Rudelius]: 

Lattice WGC: For every point Q⃗ on the charge lattice, there is particle of 
charge Q⃗ with charge-to-mass ratio at least as large as that of a large, 
semi-classical, non-rotating extremal black hole with charge Q⃗BH ∝Q⃗. 

• The Lattice WGC was shown to be false. There are counter examples 
where the conjecture holds only by a proper sublattice (sublattice WGC)

• The precise form of the WGC is still being formulated. 

[Montero, GS, Soler];[Heidenreich, Reece, Rudelius]



Road Map

WGC

Inflation
BH

Neutrinos Higgs

WGC in 3 dimensions: M. Montero, GS and P. Soler, JHEP 1610 159 (2016). 

Quantum entropy of extremal BHs: W. Cottrell, GS and P. Soler, arXiv:1611.06270 [hep-th].



Arguments for the 
Weak Gravity Conjecture



Heuristic Argument
• Heuristic argument suggests ∃ a state w/                                    

• One often invokes the remnants argument [Susskind] for the WGC 
but the situations are different (finite vs infinite mass range). 

• Perfectly OK for some extremal BHs to be stable [e.g., Strominger, 
Vafa] as q ∈ central charge of SUSY algebra. 

• No q>m states possible (∵ BPS bound). 
• BPS BHs are the WGC states (boring option) 
• More subtle for theories with some q ∈ central charge 

• The WGC is a conjecture on the finiteness of the # of stable 
states that are not protected by a symmetry principle.

q

m
� “1” ⌘ Q

Ext

M
Ext

where Lm is the quantum field theory of some matter, the bare quantities are GN , the bare
Newtons constant, ⇤, the bare cosmological constant, and a, b, c, the higher dimension
irrelevant operator bare couplings. These terms are set to cancel the one loop divergences
in the theory due to matter couplings [49]. For simplicity we will take the matter sector to
consist of N minimally coupled scalar fields, with only quadratic Lagrangians,

Lm =
NX

j=1

1

2

⇥
@µ�j@

µ�j +m2
j�

2
j

⇤
. (2)

This is su�cient for our purposes. Generalizations to other matter sectors are straightfor-
ward, and as we will discuss below, do not change the essential conclusions.

The one-loop contributions to the e↵ective action from the matter sector will generically
exhibit quartic, quadratic and logarithmic UV divergences [49]. The quartic UV divergence
is the usual divergent contribution to the cosmological constant. If we truncate the matter
theory to the quadratic Lagrangian (2) it may or may not appear depending on the regulator.
The quadratic divergences are the wave-function renormalizations of the kinetic terms in (1),
and include renormalizations of the additional “R2” terms in the action.

μνγ

Τ (φ)αβ Τ (φ)αβ

Figure 1: One loop graviton vacuum polarization diagram.

To compute the one loop integrals, one first needs to regulate the divergent terms. We
do so by introducing a system of Pauli-Villars regulators for every matter field in (2). The
scheme is conceptually the same as in flat space, where one introduces a regulator for every
divergent loop. If the cuto↵ is above the inverse curvature scale we can start with a locally flat
region of space, introduce the regulators with minimal coupling to gravity. Because there are
five distinct types of required counterterms, reflecting five di↵erent divergences, one needs five
regulators for each matter scalar [52], denoted by �i (i = 1, . . . , 5) and coming with di↵erent
statistics, �i (where �i = ±1 for commuting and anticommuting fields respectively). The
regulator masses mi are much larger than the matter ones in order to formally cancel the UV
divergences, and define the UV cuto↵, µ. The choice of the regulators and their statistics
are determined by the requirements

5X

i=0

�i = 0 and
5X

i=0

�im
2
i = 0 (3)
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Evidences for the Weak Gravity Conjecture

Several lines of argument have been taken (so far):
• Holography [Nakayama, Nomura, ’15];[Harlow, ‘15];[Benjamin, Dyer, Fitzpatrick, Kachru, ‘16];

[Montero, GS, Soler, ‘16] 

• IR Consistencies (unitarity & causality) [Cheung, Remmen, ’14];[Andriolo,Junghans, Noumi, 
GS,’17, to appear]. 

• Cosmic Censorship [Horowitz, Santos, Way, ’16];[Crisford, Horowitz, Santos, ’17] 

• Axion Black Holes [Hebecker, Soler, ’17]; [Montero, Uranga Valenzuela, ’17] 

Evidences for stronger versions of the WGC:
• Consistencies with T-duality [Brown, Cottrell, GS, Soler, ‘15] and dimensional reduction 

[Heidenreich, Reece, Rudelius ’15]. 
• Modular invariance + charge quantization suggest a sub-lattice WGC [Montero, 

GS, Soler, ‘16] (see also [Heidenreich, Reece, Rudelius ’16]) 

Further evidence based on entropy considerations [Cottrell, GS, Soler, ’16].          
(I’ll comment on some recent erroneous claims in [Fisher, Mogni, ’17])



Back to the Basic

What’s wrong if the WGC is violated in the 4D Einstein-Maxwell theory?



Microscopic Intuition

• In the semi-classical, Newton limit, the microcanonical entropy for a 
system of N stable particles with Δm2 ≡ m2 - q2  > 0 is unbounded. 

• A divergence in entropy, if real, would undermine the consistency of 
the theory, but an upgrade of this analysis to include GR + quantum 
is hindered by the presence of horizons. 

• We cannot exclude a UV completion saving us from this catastrophe 
but the WGC suggests that no such consistent UV framework exists.

‘gravo-thermal catastrophe’ 
 [Antonov, ’62]; [Padmanabhan, ’89] 



Horizon Entropy

• No reason a priori for it to agree with the microcanonical entropy but 
the equivalence was shown in some cases [Lewkowycz, Maldacena ’13]. 

• We computed the 1-loop corrected BH geometry and entropy 
using the quantum entropy function formalism [Sen, ’05-‘12]. 

• The Wald formula [Wald, ’93] computes the horizon entropy for an arbitrary 
local Lagrangian, e.g.,  

• Sen’s entropy function formalism instructs us to apply Wald's formula to 
the quantum corrected 1PI effective action, which is not necessarily local. 

• For a near horizon geometry that approaches AdS2 x X, we can rewrite 
Wald’s formula in terms of a Legendre transform of the near-horizon 
Lagrangian density. This method applies even to non-local Lagrangians.
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first law of black hole mechanics which was derived in the context of Einstein-Hilbert
action

1

16π

∫
R
√
gd4x.

Generically in string theory, we expect corrections (both in α′ and gs) to the
effective action that has higher derivative terms involving Riemann tensor and other
fields.

I =
1

16π

∫
(R +R2 +R4F 4 + · · · ).

How do the laws of black hole thermodynamics get modified?

Wald derived the first law of thermodynamics in the presence of higher deriva-
tive terms in the action [16, 17, 18]. This generalization implies an elegant formal
expression for the entropy S given a general action I including higher derivatives

S = 2π

∫

ρ2

δI

δRµναβ
ϵµαϵνβ

√
hd2Ω,

where ϵµν is the binormal to the horizon, h the induced metric on the horizon, and
the variation of the action with respect to Rµναβ is to be carried out regarding the
Riemann tensor as formally independent of the metric gµν .

As an example, let us consider the Schwarzschild solution of the Einstein
Hilbert action. In this case, the event horizon is S2 which has two normal di-
rections along r and t. We can construct an antisymmetric 2-tensor ϵµν along these
directions so that ϵrt = ϵtr = −1.
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Then the Wald entropy is given by
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giving us the Bekenstein-Hawking formula as expected.

2.5 Extremal Black Holes

For a physically sensible definition of temperature and entropy in (2.6) the mass
must satisfy the bound M2 ≥ Q2. Something special happens when this bound is
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Summary of Findings

• While corrections from neutral particles have been obtained previously, 
integrating out charged particles introduce some new features: 
Loops of massive charged particles can induce ‘unexpected’ 
contributions to the horizon entropy of extremal black holes.

• Our previous paper (1611.06270) established this result for N=0,1 BHs. 

• In a forthcoming paper, we demonstrate that this feature persists even 
with the full structure of N=2 SUGRA. 

• This finding is puzzling because: 

• Intuitively, we don’t expect loops of massive particles could alter the 
area law of a macroscopic BH. 

• How do we reconcile this finding w/ the results on the entropy of N≥2 
BHs in string theory?



Summary of Findings

• A resolution to this puzzle: we should not integrate out these extremal 
particles to begin with. For RR U(1)’s in string theory, they are the D-brane 
states that have already been integrated out.

• This is how the conifold singularity is resolved [Strominger, ’95]. At 
special points in the moduli space (e.g., conifold), these D-brane 
states are massless, hence the effective action exhibits singularity. 

• This gives evidence for the magnetic WGC which identifies the UV cutoff 
to the mass scale of the extremal particles: 

• A corollary is that in any UV complete theory of quantum gravity, an 
extremal particle cannot be fundamental, rather it must be a soliton. 

⇤ . qMP



Sketch of the Argument

• The near-horizon geometry is AdS2 x S2 

• The heat kernel is defined by: 

where D is a generalized laplacian of the field to be integrated out. 

• The 1-loop correction:                              where 𝜖 = UV cutoff. 

• Quantum corrected entropy can be obtained by extremizing: 

It is a useful observation that regardless of the detailed form of the corrections, the

near-horizon geometry is described by AdS2 ⇥ S2, which we write as:

ds2 ⌘ g
µ⌫

dxµdx⌫ = a2
✓
�r2dt2 +

dr2

r2

◆
+ b2

�
d✓2 + sin2 ✓d�2

�
(3.2)

F = Edt ^ dr

Here a and b parameterize the radii of AdS2 and S2, respectively, and E represents the

electric field sourced by the black hole. In terms of this parameterization, the Wald entropy

is now given by [34] minimizing the entropy functional, E , defined by:

E(Q;E, a, b) = 2⇡
⇥
QE � 4⇡a2 b2 L

GR+EM

(E, a, b)
⇤
, (3.3)

with L
GR+EM

evaluated on the near-horizon geometry (3.2). More precisely, the entropy of

a black hole of electric charge Q is given by S(Q) = min
a,b,E

E .
At tree level the entropy is straightforward to compute. First, the lagrangian density is

computed on the background (3.2). One finds:

L(0)
GR+EM

= M2
P

✓
1

b2
� 1

a2

◆
+

E2

2a4
(3.4)

Plugging this into the expression for E and minimizing we immediately get the equations:

E0 =
Q

4⇡
(3.5)

a20 = b20 =
Q2

32⇡2M2
P

For the sake of reference, the ADMmass of the full solution is also known to beM =
p
2QM

P

.

Finally, plugging this solution back in to (3.3) we find the expected Beckenstein-Hawking

formula:

S(0) =
Q2

4
=

A

4G
N

(3.6)

3.2 One-Loop Correction

We now wish to repeat this procedure with the 1-loop corrections induced by the matter fields

included. In general, these corrections may be calculated using the heat kernel formalism,

as explained in [35]. To summarize, one first computes the heat kernel, K(x, y; s), defined

by:

(@
s

�D)K(x, y; s) = 0 K(x, y; 0) = �4(x� y) (3.7)
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3.2 One-Loop Correction

We now wish to repeat this procedure with the 1-loop corrections induced by the matter fields

included. In general, these corrections may be calculated using the heat kernel formalism,

as explained in [37]. To summarize, one first computes the heat kernel, K(x, y; s), defined

by:
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�D)K(x, y; s) = 0 K(x, y; 0) = �4(x� y) (3.7)

where D is a generalized laplacian containing the kinetic and mass terms of the field being

integrated out. Once this is known, the one loop correction is:

L(1) =
1

2

Z 1

✏

2

ds

s
K(s) (3.8)

where ✏ is a UV cuto↵. The notation K(s) is shorthand for K(x, x; s) which is independent

of x in the near-horizon geometry. In the present case, the geometry is the product space

AdS2 ⇥ S2 and so the heat kernel factorizes into K = K
AdS2 ⇥K

S

2 . This fact allows one to

compute the heat kernel using the techniques of [37, 41, 42]. The total K is just the sum of

the result for the di↵erent matter fields considered. The results are as follows:
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Heat Kernel

• Since the near horizon is AdS2 x S2  the heat kernel factorizes. We 
can apply results of [Banerjee, Gupta, Sen];[Comtet, Houston];[Pioline, Troost]: 

• Charged Scalars:

• Chiral Fermions:           

where 

• The heat kernel is IR divergent for Δm2<0, signaling an instability 
to Schwinger pair production of superextremal particles.

Charged Scalar

K
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2

4⇡2a2b2

1X
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Here, � labels a momentum mode in AdS2 with physical momentum �/a and l labels an

angular momentum mode in S2. The functions ⇢
s

(�) and ⇢
f

(�) are the spectral densities for

bosons and fermions respectively. Finally, the heat kernel for an N = 1 chiral multiplet is

simply obtained by adding these two expressions: KN=1 = K
s

+K
f

.

We have introduced the notation �m2 which will be critical for the rest of our discussion.

In general, this takes the form:

�m2 = m2 � q2E2

a2
(3.11)

If the classical description is valid then by (3.5) this becomes:

�m2 = m2 � 2q2M2
P

(3.12)

Therefore, we see that to leading order �m2 precisely delineates the extremality bound that

we would infer from large black holes. We will henceforth refer to m2 > 2q2M2
P

, m2 < 2q2M2
P

and m2 = 2q2M2
P

as sub-, super-, and extremal particles, respectively.

It is obvious from equations (3.9) and (3.10) that the convergence of the s integral

in (3.8) will depend on the sign of �m2. In particular, for subextremal particles (such

that �m2 � 0), the s integral will always be suppressed at large s. On the other hand,

superextremal particles (such that �m2 < 0) give rise to IR divergences for su�ciently large

black holes. The extremal case (�m2 = 0) requires special care since the suppression of the s

integral comes from the factor e�s/(4a2) (bosons) or e�s/b

2
(fermions). Given the importance
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Chiral Fermion

K
f

(s) =
e�s�m

2

4⇡2a2b2

1X

l=0

(2l + 2)

Z 1

0

d�� ⇢
f

(�) e�s[�2
/a

2+(l+1)2/b2] (3.10)

⇢
f

(�) =
sinh(2⇡�)

cosh(2⇡qE)� cosh(2⇡�)

Here, � labels a momentum mode in AdS2 with physical momentum �/a and l labels an

angular momentum mode in S2. The functions ⇢
s

(�) and ⇢
f

(�) are the spectral densities for

bosons and fermions respectively. Finally, the heat kernel for an N = 1 chiral multiplet is

simply obtained by adding these two expressions: KN=1 = K
s

+K
f

.

We have introduced the notation �m2 which will be critical for the rest of our discussion.

In general, this takes the form:

�m2 = m2 � q2E2

a2
(3.11)

If the classical description is valid then by (3.5) this becomes:

�m2 = m2 � 2q2M2
P

(3.12)

Therefore, we see that to leading order �m2 precisely delineates the extremality bound that

we would infer from large black holes. We will henceforth refer to m2 > 2q2M2
P

, m2 < 2q2M2
P

and m2 = 2q2M2
P

as sub-, super-, and extremal particles, respectively.

It is obvious from equations (3.9) and (3.10) that the convergence of the s integral

in (3.8) will depend on the sign of �m2. In particular, for subextremal particles (such

that �m2 � 0), the s integral will always be suppressed at large s. On the other hand,

superextremal particles (such that �m2 < 0) give rise to IR divergences for su�ciently large

black holes. The extremal case (�m2 = 0) requires special care since the suppression of the s

integral comes from the factor e�s/(4a2) (bosons) or e�s/b

2
(fermions). Given the importance
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2.2 One-Loop Correction

We now wish to repeat this procedure with the 1-loop corrections induced by the matter fields
included. In general, these corrections may be calculated using the heat kernel formalism, as
explained in [13]. To summarize, one first computes the heat kernel, K(x,y;s), defined by:

(∂s �D)K(x,y;s) = 0 K(x,y;0) = d 4(x� y) (2.7)

where D is a generalized laplacian containing the kinetic and mass terms of the field being inte-
grated out. Once this is known, the one loop correction is:

L (1) =
1
2

Z •

e2

ds
s

K(s) (2.8)

and the net effective action is:
L = L (0) +L (1) +Lct (2.9)

where Lct is the counterterm lagrangian. The notation K(s) is shorthand for K(x,x;s) which is
independent of x in the near-horizon geometry. In the present case, the geometry is the product
space AdS2 ⇥ S2 and so the heat kernel factorizes into K = KAdS2 ⇥KS2 . This fact allows one to
compute the heat kernel using the techniques of [14, 15, 13]. The total K is just the sum of the
result for the different matter fields considered. The results are as follows:

Charged Scalar

Ks(s) =
e�sDm2

4p2a2b2

•

Â
l=0

(2l +1)
Z •

0
dl l rs(l )e�s[(l 2+ 1

4)/a2+l(l+1)/b2] (2.10)

rs(l ) =
sinh(2pl )

cosh(2pl )+ cosh(2pqE)

Chiral Fermion

Kf (s) =
e�sDm2

4p2a2b2

•

Â
l=0

(2l +2)
Z •

0
dl l r f (l )e�s[l 2/a2+(l+1)2/b2] (2.11)

r f (l ) =
sinh(2pl )

cosh(2pqE)� cosh(2pl )

where we have defined:

Dm2 = m2 � q2E2

a2 (2.12)

! m2 �2q2M2
P

and the arrow above indicates the classical value.
A crucial feature of the density of states presented here is that modes with l  qE are sup-

pressed by e�2pqE . In terms of physical energies, this corresponds to Energy ⌧
p

2qMP. In other

5
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(Sub)Extremal Particles

• One has to be careful in expanding the heat kernel:         

• A qE expansion is only valid for intermediate BHs where: 

even both intermediate and large BHs have a >> 1/MP, so a semi-
classical treatment of gravity should remain valid.

3.5 The heat kernel for charged particles

Once the particles mass rises to the extremality bound, the Schwinger pair production decay

channel shuts o↵ and the black hole becomes exactly stable. We would like to perform

calculations analogous to those of Section 3.3 in this case. The first step requires us to

obtain the large radius expansions (more precisely, the s/a2 ⌧ 1 expansions) of the charged

heat kernels (3.9) and (3.10) analogous to (3.19) and (3.20). This will prove to be a much

more subtle task than in the neutral case.

Let us focus first on the scalar heat kernel. The l-dependent contribution from the S2 fac-

tor is unchanged with respect to the neutral case (3.18). The �-dependent contribution from

the AdS2 sector changes significantly. Given its importance, we reproduce expression (3.9)

once again here:

K
s

(s) =
e�s�m

2

4⇡2a2b2

1X

l=0

(2l + 1)

Z 1

0

d�� ⇢
s

(�)e�s[(�2+ 1
4)/a2+l(l+1)/b2] (3.28)

⇢
s

(�) =
sinh(2⇡�)

cosh(2⇡�) + cosh(2⇡qE)

Notice that, through the electric field E, the black hole radius now enters the spectral

density ⇢
s

(�), since classically E ⇠ aM
p

. Much care is needed in performing the appropriate

expansion of this function. Two very di↵erent regimes can be distinguished: large black

holes qE � 1 and intermediate black holes qE ⌧ 1. Figure 1 shows the di↵erent forms of

the spectral densities in the two regimes.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.2

0.4

0.6

0.8

1.0

(a) Intermediate Black Hole (qE = 0.1)

6 8 10 12 14

0.2

0.4

0.6

0.8

1.0

(b) Large Black Hole (qE = 10)

Figure 1: Spectral densities for large and small qE. One can see that the spectral density
for qE � 1 resembles a step function.

The physical interpretation of the two regimes is as follows. While in both of them the

black hole radii remain above the Planck scale, and hence remain in a regime where e↵ects
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Relation to the WGC

• See [Cottrell, GS, Soler, ’16] for results of various cases (intermediate/
large BHs, loops of (sub)extremal bosons/fermions, SUSY or not). 

• As an example, we found that for an intermediate BH, including 
loop corrections from an extremal scalar: 

• For large BHs, loops of (sub)extremal particles do not induce 
corrections to the entropy, other than renormalizing the couplings. 

• {Fisher, Mogni, ’17] recently repeated our computations for an 
extremal scalar and confirmed our formulae in the valid region. 

• However they made an erroneous claim of proving the WGC: 
they found the second law of thermodynamics is violated for large 
Q, but this is the regime where the qE expansion breaks down.

proceeding as before one finds:

E
s

= 2⇡

⇢
QE � 4⇡a2 b2


M2

P

✓
1

b2
� 1

a2

◆
+

E2

2a4
(3.44)

+

✓
m4

32⇡2
� m2

48⇡2

✓
1

b2
� 1

a2

◆
+

1

240⇡2

✓
1

a4
+

1

b4

◆
� 1

144⇡2a2b2
+

q2E2

96⇡2a4

◆
ln (a2m2)

��

E
f

= 2⇡

⇢
QE � 4⇡a2 b2


M2

P

✓
1

b2
� 1

a2

◆
+

E2

2a4
(3.45)

�
✓

m4

32⇡2
+

m2

96⇡2

✓
1

b2
� 1

a2

◆
� 1

960⇡2

✓
1

a4
+

1

b4

◆
� 1

576⇡2a2b2
� q2E2

48⇡2a4

◆
ln (b2m2)

��

The first line in each of these expressions represents the classical entropy function, written in

terms of the renormalized Planck mass and gauge field strength. The log terms in the second

lines, although reminiscent of renormalization, are actually coming from a resummation of

the corrections appearing in ln(�m/m) and should therefore be thought of as a physical

correction.

The quantum entropy function evaluated at the classical solution is:

S
s

⇡ E(Q;E0, a0, b0) =
Q2

4
�
✓

1

90
+

q2Q2

192⇡2
+

q4Q4

1024⇡4

◆
ln(q2Q2) +O(Q0) (3.46)

with a similar result for fermions. The corrections are small for qQ ⌧ 1, which is the only

regime in which this result is to be trusted. As qQ ! 1, the exponential suppression factor

transitions from e�s/4a2 to e�sm

2
, as demonstrated in (3.34)

We may also write down the result for a minimally coupled N = 1 supersymmetric

particle in this background simply by adding the contributions from a (complex) scalar and

a charged (Weyl) fermion: KN=1 = K
s

+K
f

. For qQ ⌧ 1, one finds:

SN=1 ⇡ E(Q;E0, a0, b0) =
Q2

4
�

✓
q2Q2

64⇡2
+

1

24

◆
ln(q2Q2) +O(Q0) (3.47)

3.8 Comments On Cuto↵s

So far, we have been operating under the assumption that the UV cuto↵, ✏, is independent of

q and M
P

and may be taken to zero. In this case, we can unambiguously identify divergences

and cancel them with counterterms. However, the pole in the fermionic density of states, as

well as the arguments of [1], suggest that we should in fact place our cuto↵ at or below a UV

scale of qM
P

. However, if the cuto↵ were to be placed below qM
P

, it would also be below

the mass scale of the particles we are integrating out. In this case, we should not integrate

out these particles at all, rather, if such particles are present, we should think of them as

solitonic objects in the low energy e↵ective field theory.
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WGC, Multiple Point Principle, and the Standard Model Landscape
Y. Hamada and GS, arXiv:1707.06326 [hep-th].



WGC for Branes

• We have seen the evidences for and applications of the WGC for 
particles (and instantons). Analogously for branes, the WGC is: 

where = applies only to BPS, otherwise < 
• This led [Ooguri,Vafa, ’16] to conjecture that non-SUSY AdS vacua 

supported by fluxes are unstable (AdS fragmentation). 
• This conjecture is best supported by the lack of counter examples in 

string theory, but is supposed to hold more generally. 
• A stronger form of their conjecture: 

 “all non-SUSY AdS (in theories whose low energy description 
is Einstein gravity coupled to a finite # of fields) are unstable”

• How do we test this conjecture?

“Tp  Qp”



Standard Model Landscape

• After the Higgs discovery, we know that there is an additional 
Higgs vacuum at high scale, other than the EW vacuum: 

• This high scale vacuum can be AdS4, M4, or dS4 depending on 
the top quark mass and the higher-dimensional operators. 

• Applying this conjecture to the SM landscape, we can constrain 
the Higgs potential and BSM physics. [Hamada, GS]. 
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Mt=171.00430 GeV
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Figure 1: The 4-dimensional Higgs potential as a function of the physical Higgs field h,
Eq. (1). In the left panel, we put c

6

= 0. The potential has AdS, flat or dS vacua depending
on the value of the top mass. In the right panel, the c

6

term is included while Mt is fixed.
We again have AdS, flat or dS minima corresponding to the value of c

6

.

the mostly positive metric convention. In our universe, we have ⇤
4

' 3.25 ⇥
10meV4. If we consider the high scale vacuum in four dimensions, ⇤

4

can
take other values. We also add V all

S1 , the one-loop Casimir energy, for later
convenience. The remaining terms include the Higgs boson, fermions and the
SU(3)⇥ SU(2) gauge fields.

Since the radius of S1 is denoted by L, the volume of the compactified space
is 2⇡L, and so the momentum is quantized as 2⇡n/L. The metric of this S1

compactification is

ds2 =
�

gij + L2AiAj

�

dxidxj + 2L2Aidxidx3

+ L2 (dx
3

)2 , (5)

where x
3

is the compactified dimension, 0  x
3

 2⇡, Ai is the graviphoton,
and i, j = 0, 1, 2. Then, we have the following decomposition:

det (�gµ⌫) = L2 det (�gij) , R = R(3) � 2
1

L
r2L� 1

4
L2Fµ⌫F

µ⌫ , (6)

where µ, ⌫ = 0, 1, 2, 3, R(3) is the Ricci scalar constructed from gij. The dimen-
sional reduction yields

S =

Z

d3x
p

�g(3)(2⇡L)



1

2
M2

P

⇢

R(3) � 2
1

L
r2L� 1

4
L2Fµ⌫F

µ⌫

�

� ⇤
4

� V all

S1

�

=

Z

d3x
p

�g(3)(2⇡L)



1

2
M2

P

⇢

R(3) � 1

4
L2Fµ⌫F

µ⌫

�

� ⇤
4

� V all

S1

�

, (7)

where the total derivative is omitted in the last equality. Performing the redef-

7



Standard Model Landscape

• The SM gives rise to a rich landscape of vacua in 2d & 3d upon 
compactification, dependent on the type (Majorana or Dirac) and 
masses of the neutrinos [Arkani-Hamed, Dubovsky, Nicolis, Villadoro]. 

• The SM with minimal Majorana neutrino masses seems to give 
rise to a non-SUSY AdS vacuum [Arkani-Hamed et al]. This led 
[Ooguri, Vafa, ’16] to conjecture that this model is in the swampland. 

• We carried out a systematic study of the SM landscape in 2d and 
3d, including more general BCs and Wilson lines  [Hamada, GS]. 

• We found a runaway behavior at small compactification radii (≲ GeV-1). 
These candidate non-SUSY AdS neutrino vacua are subject to quantum 
tunneling instabilities, a possibility overlooked in [Arkani-Hamed, 
Dubovsky, Nicolis, Villadoro]; [Ibanez, Martin-Lozano, Valenzuela] 

• Our result is consistent with the OV conjecture.



Multiple Point Criticality Principle

• There may nonetheless be an interesting correlation between the 
neutrino mass and the 4d cosmological constant scale, 

• The Multiple Point Criticality principle [Froggatt, Nielsen, ’96];
[Bennett, ’96] which demands the coexistence of degenerate phases 
had some successes in predicting the Higgs mass. 

• Applying the multiple point criticality principle to 2/3d and 4d vacua, we 
predicted that the 𝝂s are Dirac w/ mass of lightest 𝝂≃O (1-10) meV.  

• Our predictions can be tested by future CMB, large-scale structure, and 
21cm line observations. 
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String Theory Constructions



Axion Monodromy

• Axion is mapped to a massive gauge field. 

• Gauge symmetry:

2⇡f�

Monodromy by brane coupling
[Silverstein, Westphal, ‘08]; 
[McAllister, Silverstein, Westphal, 08] 
F-term axion monodromy 
(embeddable in SUGRA of string theory) 
[Marchesano, GS, Uranga ’14] 
See also [Blumenhagen, Plauschinn ’14];
[Hebecker, Kraus, Witowski, ’14]

� ! �+ 2⇡f

F ! F � n



Effective 4d Description

✤ Coupling the axion to a 4-form field strength F4 = dC3


✤ Upon integrating out C3 


 one finds a quadratic potential


with a shift symmetry: 

gating degrees of freedom in 4d, we can integrate it out via its equation of motion

⇤ F4 = f0 + g�, (2.2)

leading to an induced scalar potential for the axion

V
KS

=
1

2
(f0 + g�)2. (2.3)

Notice that even if the 3-form in four dimensions does not have propagating degrees of

freedom, it can still yield a non-vanishing field strength giving a positive contribution

f0 to the vacuum energy. The discrete identification of the scalar is a gauge symmetry

which involves a change in f0, as follows

� ! �+ 2⇡f , f0 ! f0 � 2⇡gf (2.4)

At the quantum level2, the vacuum value of the 4-form flux f0 is quantized in units

of membrane charge (we will come back to these membranes in section 4)

f0 = n⇤2
k

, n 2 Z (2.5)

Hence we have the following consistency condition [42]

2⇡fg = k⇤2
k

, k 2 Z (2.6)

which will be important when discussing explicit relaxion monodromy models.

This structure underlies the axion monodromy inflationary models (see e.g. [14–19]),

in which the scalar potential is multivalued with a multibranched structure dictated

by the above discrete shift symmetry, akin to the “repeated zone scheme” familiar

from solid-state physics [42, 43] (see Figure 1 for a qualitative picture). Each branch

is labelled by the value of f0. Once a specific branch is chosen, one can go up in the

potential away from the minimum and travel a distance�� larger than the fundamental

periodicity f . This is specially useful for large field inflationary models in which one

needs a trans-Planckian field excursion for the inflation even if all the scales of the

theory remain sub-Planckian. The relation between F-term axion monodromy and

a Kaloper-Sorbo (KS) potential like (2.1) was explicitly shown in [18], and further

generalised in [41] for any axion of a given string compatification.

2At the classical level, f0 can take an arbitrary constant value implying that the continuous shift of

the axion is also a symmetry of the action. However, as emphasized in [40] the actual value of the 4-

form field strength in four dimensions (and not only its shift when crossing a membrane) satisfies Dirac

quantization. When embedding the model in string theory, this quantized value indeed corresponds

to the integer flux of the magnetic dual in higher dimensions [40, 41]

5

f0 = ne where n 2 Z

Axion Monodromy

Both a shift symmetry and a quadratic potential are manifest

� ! �+
e

µ
n ! n � 1 n 2 Z

With the consistency condition e
µ = f

Is this model still protected from corrections?
Possible corrections take the form

|F
4

|n+2

M

2n
p

The condition to suppress these corrections in the e↵ective
potential

� .
M

2

p

µ

Large field range when µ ⌧ Mp

Jonathan Brown Tunneling in Axion Monodromy

section 4 we discuss nucleation of membranes bounding bubbles of vacua corresponding

to di↵erent branches of the axion potential, and exploit the possible role of the Weak

Gravity Conjecture in the evaluation of the transition rates. This discussion is applied

to the case of relaxion models in section 5. In section 6 we discuss possible embeddings

of the relaxion structure into a string theory setting. We finally leave section 7 for

general comments and conclusions. We complete the main text with four appendices.

Appendix A reviews axion monodromy in terms of a dual 3-form with a 2-form gauge

symmetry. In appendix B we derive the tunnelling probability formulae discussed in

the text. Appendix C discusses the Weak Gravity Conjecture as applied to (d�1)-form

gauge fields. Finally appendix D shows some details of the axion potential derived from

the DBI action, as used in section 6.

2 Axion monodromy

In [6] the authors argue that the discrete shift symmetry of � has to be necessarily

gauged in a consistent quantum theory of gravity and therefore can not be broken by

any term in the action. This implies that if � is an axion or a pseudo-Nambu-Goldostone

boson (pNGB), the coupling g is not naturally small but indeed theoretically incon-

sistent. However, the authors in [6] miss the possibility that � is not a pNGB but an

axion with multi-branched potential, so that the theory is consistent with a mass term

and interactions for the axions while preserving an underlying discrete shift symmetry

(see e.g. [14–19], also [20–36] for applications to inflationary potentials). Our present

work is the first concrete proposal to implement a monodromy realization of relaxion

models, and explore its implications.

In this section we review axion monodromy models, explaining the mechanism by

which periodic scalars get multi-branched potentials from the introduction of a coupling

to a 3-form field. It also serves to fix notation and conventions.

As described in [16] (see [39] for related ideas in a di↵erent context), an e�cient way

to describe the introduction of potential terms for axionic scalars is to couple them to a

3-form gauge field. Consider for instance the simplest case, which eventually describes

a massive axion. It corresponds to the lagrangian

L = �1

2
(@

µ

�)2 � 1

2
|F4|2 + g�F4, (2.1)

where F4 = dC3 the field strength of the 3-form. Since the 3-form field has no propa-

4

V =
1

2
(f0 + g�)2



Planck-suppressed Corrections

✤ Gauge symmetry ⇒ UV corrections only depend on F4


⇤ ! ⇤e↵ = ⇤

✓
⇤

µ

◆

X

n

cn
F 2n

⇤4n µ2�2
X
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cn

✓
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Axion Monodromy Inflation
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Current bound combining Planck+BICEP2/KECK+BAO: r < 0.07



Inflationary Observables

• Taking into account constraints from moduli stabilization:

Flux flattening generates a 

family of m2ϕ2 inflation with:

[Landete, Marchesano, GS, Zoccarato, ’17]

r ' 0.04� 0.14

ns ' 0.96� 0.97
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Conclusions

• Progress in experimental cosmology and string theoretical considerations may help 
narrow down the range of r. 

• We have formulated the WGC for (a large class of) axions which can be dualized to U(1) 
gauge fields. 

• Axion Monodromy is an interesting exception to the WGC, though there may be other 
considerations (e.g., backreaction) that limit r. 

• Flux flattening can lower r to within current experimental bound and yet detectable in 
the foreseeable future, e.g., the flux flattened m2ϕ2 family has r ≃ 0.04-0.14. 

• We test the WGC from entropic considerations. 
• Loops of charged particles can lead to unexpected corrections to the classical 

geometry and entropy of a large extremal BH unless: 

• ∃ super-extremal particle for the BH to decay (electric WGC) 
• or, ∃ a UV cutoff set by extremal states (magnetic WGC) 

• WGC & Multiple Point Principle offer interesting predictions about Higgs and neutrino 
physics.
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