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Abstract 

This paper formulates a novel distribution-free maximum likelihood estimator for binary and ordered 

response models and demonstrates its finite sample performance in a Monte Carlo simulation. The simulation 

examines an ordered response model, focusing on estimating the effect of an exogenous regressor (e.g., 

randomly assigned treatment status) on the choice probability for an ordered outcome. Estimations are 

implemented based on a binary specification, which converts the outcome to dichotomous values {0, 1}, or 

an ordinal specification, which uses the outcome as is. The simulation results show that the proposed 

estimator outperforms conventional parametric/semiparametric estimators in most cases for both 

specifications. The results also show that the superiority of the proposed estimator holds even in the presence 

of conditionally heteroscedastic variance. In addition, the estimates based on the ordinal specification are 

always superior to those based on the binary specification in all simulation designs, implying that converting 

ordered responses to dichotomous responses and estimating based on the binary specification may not be the 

optimal approach. 

 

 

JEL codes: C14, C25 

Keywords: semiparametric estimation, distribution-free maximum likelihood, binary choice model, ordered 

response model, Likert-type data, heteroscedastic variance 

  

 
* This study was supported by JSPS KAKENHI (Grant-in-Aid for Scientific Research) Grant Number 

22K01425. 
† Graduate School of International Cooperation Studies, Kobe University, 2–1, Rokkodai-cho, Nada-ku, 

Kobe 657-8501, Japan. E-mail: takahiro.ito@lion.kobe-u.ac.jp, Phone: +81-78-803-7148. 



2 

 

1. Introduction 

Over the past decade, there has been a sweeping trend in empirical fields in which estimation assumptions 

that researchers cannot verify tend to be eschewed. This so-called scientific humility is evident both in the 

prevalence of randomized experiments and in the dominance of “harmless” estimation methods, especially 

in microempirical studies. Randomized experiments require no ad hoc assumptions regarding the 

independence between a regressor of interest and the error, and “harmless” methods attempt to estimate with 

minimal unverifiable assumptions. Both approaches aim to make the estimates robust to possible model 

misspecification. 

Based on this background, the use of conventional (parametric) maximum likelihood (ML) 

estimation methods has been increasingly avoided by researchers. The asymptotic properties of ML 

estimators depend on the distributional assumptions of the errors in the estimation model. However, these 

assumptions cannot be verified, which reduces the application potential of the conventional ML method, in 

spite of its many advantages when the model is correctly specified. 

Meanwhile, theoretical developments have been ahead of the recent trend in the empirical fields. To 

address the drawbacks of parametric ML methods, many studies have proposed alternative semiparametric 

methods for limited dependent variable models, which are typical applications of ML methods. For example, 

listing only the ML-based methods closely related to this study, several semiparametric estimators have been 

proposed, such as Cosslett’s (1983) infinite-dimensional ML, the sieve ML (Duncan, 1986; Fernandez, 1986; 

Gallant and Nychka, 1987), Nawata’s (1990) grouping-based ML, and the kernel ML (Klein and Spady, 1993; 

Lee, 1995; Ai, 1997; Ichimura and Thompson, 1998) estimators.1 

In this study, I propose an alternative distribution-free ML estimator for binary and ordered response 

models by applying the resampling-based ML (RBML) estimator developed by Ito (2023). Binary and 

ordered response models are extensively used in empirical fields, especially in the behavioral and 

experimental social sciences, where Likert scale items are often employed as outcome variables.2 However, 

the semiparametric methods proposed thus far are seldom employed, probably due to their practical 

 
1 Other semiparametric methods than ML-based methods include maximum score estimation for discrete 

choice models (Manski, 1975, 1985; Horowitz, 1992), censored least absolute deviations estimation for 

censored regression models (Powell, 1984, 1986a; Newey and Powell, 1990), semiparametric least squares 

estimation (Horowitz, 1986; Ichimura and Lee, 1991; Lee, 1992; Ichimura, 1993), trimmed least squares (and 

trimmed least absolute deviations) estimation for censored and truncated regression models (Powell, 1986b; 

Honoré, 1992; Honoré and Powell, 1994), average derivative estimation (Stoker, 1986, 1991; Härdle and 

Stoker, 1989; Powell et al., 1989), maximum rank correlation estimation (Han, 1987; Sherman, 1993; 

Cavanagh and Sherman, 1998), and differencing estimation for sample selection models (Robinson, 1988; 

Ahn and Powell, 1993; and Yatchew, 1997). In addition, for sample selection models, several semiparametric 

estimations based on the control function approach have been proposed (Lee, 1982; Andrews, 1991; Das et 

al., 2003; and Newey, 2009). 
2 For example, approximately 10% (or 39) of the 401 articles published in Journal of Economic Behavior 

and Organization in 2020 use Likert-type ordinal variables. Among the 39 articles, 30 articles treat them as 

cardinal variables without considering the ordinal nature. 



3 

 

inconvenience. Ito’s (2023) RBML method has the potential to bridge the gap between the needs in empirical 

fields and the sparsity of well-performing practical semiparametric estimators. 

The key to the theoretical and practical advantages of this method is the use of a parametric 

likelihood function. By leveraging the asymptotic normality of the mean of resamples obtained by repeating 

Monte Carlo resampling with replacement from the original sample, the proposed method exploits a 

parametric likelihood function without any distributional assumption on the error (in the original equation). 

Thus, as shown by Ito (2023), the estimator possesses asymptotic properties comparable to those of the 

parametric ML estimator: The proposed estimator is consistent and asymptotically normally distributed (at 

rate 𝑁−1/2). The Monte Carlo study by Ito (2023) also showed that the estimator is strongly consistent and 

efficient compared to probit and other ML-based semiparametric estimators. 

In addition, employing a parametric likelihood function can alleviate the convergence problem. 

While semiparametric methods often have difficulty optimizing the likelihood function due to the complex 

computations of the unknown function (and probably its undulating shape), the proposed method is expected 

to have less difficulty maximizing the function, similar to parametric ML methods. Ito’s (2023) simulation 

analysis showed that the RBML method converged in all trials, while there were many cases in which other 

semiparametric estimators did not converge, even though simple models were used in the simulation.3 

This study also explores the small-sample performance of the RBML estimator by running a series 

of simulations for binary and ordered response models. In contrast to the simulation performed by Ito (2023), 

the Monte Carlo analysis in this study focuses on estimating the marginal impact of the regressor on the 

choice probability in more realistic situations. Specifically, the simulation is designed to be flexible to 

determine how discrete choice models should be analyzed in an experimental setting where the outcome 

variable is ordinal and the regressors are an exogenous treatment variable and other observed and unobserved 

components that are allowed to be correlated with each other. Moreover, the estimations are implemented 

using two different specifications. One is a binary specification in which the ordered outcome is converted 

to dichotomous values {0, 1}, and the other is an ordinal specification in which the ordered outcome are used 

as it is. Then, the small-sample performance of the proposed estimator is compared between the two 

specifications and with that of conventional estimators. 

The simulation results comparing the root-mean-square (relative) errors of the estimates show that 

the RBML estimator performs considerably better than other conventional estimators, such as probit-type 

and sieve ML estimators, in both the binary and ordinal specifications. The results also show that the 

superiority of the proposed estimator holds even in the presence of conditionally heteroscedastic variance, as 

suggested by the theoretical discussion. In addition, the estimates based on the ordinal specification are 

always superior to those based on the binary specification in all simulation designs. When the outcome 

 
3 Moreover, the new ML method is free from the perfect prediction (or complete separation) problem: it 

focuses on variations around the mean of (dependent and explanatory) variables by nature and not the one-

to-one correspondence between them. 
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variable is ordinal, researchers often employ OLS estimation (i.e., a linear probability model) by converting 

the outcome to binary. However, the above findings indicate that this approach may not always be a good 

option. In summary, the simulation analysis conducted in this study indicates that RBML estimation is the 

preferred method for estimating binary and ordinal response models.4 

The remainder of this paper is organized as follows. Section 2 reviews two approaches to estimating 

binary and ordered response models. In Section 3, I present an application example of an ordered response 

model. Section 4 describes the design of the Monte Carlo simulations and reports the results. Then, the 

conclusions follow in Section 5. 

 

2. Semiparametric Estimation of Ordered Response Models 

This section discusses estimation approaches for binary and ordered response models. The main focus is on 

the case of ordinal outcomes, but without loss of generality it is applicable to the binary case as well. In terms 

of the model’s specification, there are two distinct approaches. 

 

2.1. Latent index approach 

Let 𝑦𝑖 be an ordinal outcome (𝑦𝑖 ∈ 𝒴 = {1,⋯ , ℒ}) and 𝑥𝑖 denote a treatment variable in an experiment 

(i.e., 𝑥𝑖  is randomly assigned to individuals). In addition, 𝑥𝑖 ∈ 𝒳 = [𝒳,𝒳] ⊂ ℝ , where 𝒳  and 𝒳  are 

minimum and maximum values of the treatment status. To examine the effect of 𝑥𝑖  on 𝑦𝑖  based on 

semiparametric (or parametric) methods, I start by introducing a latent index with the following conditions: 

 

LIA Assumption: 

(a) There is an unknown function that associates 𝑥𝑖 (and other determinants, 𝐰𝑖 ∈ ℝ
𝐿) with the outcome 

𝑦𝑖, and the function has a positive or negative monotonic relationship with 𝑦𝑖: 

∃ 𝜑𝑖:ℝ
𝐿+1 → ℝ  s.t. 

                         ∀(𝑦𝑖 , 𝑥𝑖 , 𝐰𝑖), (𝑦𝑖
′, 𝑥𝑖

′, 𝐰𝑖
′) ∈ 𝒴 ×𝒳 ×ℝ𝐿; 

                                          𝜑𝑖(𝑥𝑖
′, 𝐰𝑖

′) ⋛ 𝜑𝑖(𝑥𝑖, 𝐰𝑖) ⇒ 𝑦𝑖
′ ⋛ 𝑦𝑖  (positive), or 

                                          𝜑𝑖(𝑥𝑖
′, 𝐰𝑖

′) ⋚ 𝜑𝑖(𝑥𝑖, 𝐰𝑖) ⇒ 𝑦𝑖
′ ⋛ 𝑦𝑖  (negative) 

(b) 𝜑𝑖 is bounded and continuous in 𝒳. 

 

For example, suppose that 𝑦𝑖 is a Likert-type variable that represents a psychometric scale expressed by 

respondents about a subject of interest in the experiment. Then, 𝜑𝑖(𝑥𝑖 , 𝐰𝑖)  represents respondents’ 

psychological attitude or belief regarding the subject, which is unobservable to econometricians. 

 
4  All simulation results presented in this study can be replicated using a software package for Stata to 

implement the new distribution-free estimation in linear and discrete response models, which is available on 

my website. For details on the process of obtaining and using the package, see the Online Supplementary 

Material I of Ito (2023). 
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Under the (positive) monotonicity assumption (LIA Assumption (a)), a natural specification of the 

model is: 

𝑦𝑖 = ℓ   if  𝑐𝑖,ℓ ≥ 𝜑𝑖(𝑥𝑖 , 𝐰𝑖) > 𝑐𝑖,ℓ−1, 

where 𝑐𝑖,ℓ (ℓ = 1,⋯ , ℒ) are thresholds determining the value of 𝑦𝑖, where 𝑐𝑖,ℓ increases as ℓ increases 

(𝑐𝑖,0 < 𝑐𝑖,1 < ⋯ < 𝑐𝑖,ℒ), 𝑐𝑖,0 = −∞ and 𝑐𝑖,ℒ = ∞. Then, by LIA Assumption (b), applying a generalization 

of the Taylor expansion (Feller, 1971), we obtain 

𝜑𝑖(𝑥𝑖 ,𝐰𝑖) = ∑
𝑑𝑘𝜑𝑖(�̅�,𝐰𝑖) ⋅ (𝑥𝑖 − �̅�)

𝑘

𝑘!

∞

𝑘=0

, 

where 𝑑𝑘𝜑𝑖(�̅�,𝐰𝑖) is defined by 

𝑑𝑘𝜑𝑖(�̅�,𝐰𝑖) =

{
 

 lim
ℎ→0+

𝛥ℎ
𝑘𝜑𝑖(�̅�,𝐰𝑖)

ℎ𝑘
        if 𝑥𝑖 ≥ �̅�

lim
ℎ→0−

𝛥ℎ
𝑘𝜑𝑖(�̅�,𝐰𝑖)

ℎ𝑘
        if 𝑥𝑖 < �̅�

. 

𝛥ℎ
𝑘   is the 𝑘 -th finite difference operator (with respect to �̅� = 𝑁−1∑ 𝑥𝑖

𝑁
𝑖=1  ) with step size ℎ , that is, 

𝛥ℎ
𝑘𝜑𝑖(�̅�,𝐰𝑖) = 𝛥ℎ

𝑘−1𝜑𝑖(�̅� + ℎ,𝐰𝑖) − 𝛥ℎ
𝑘−1𝜑𝑖(�̅�,𝐰𝑖)  and 𝛥ℎ

1𝜑𝑖(�̅�,𝐰𝑖) = 𝛥ℎ
0𝜑𝑖(�̅� + ℎ,𝐰𝑖) −

𝛥ℎ
0𝜑𝑖(�̅�,𝐰𝑖) = 𝜑𝑖(�̅� + ℎ,𝐰𝑖) − 𝜑𝑖(�̅�,𝐰𝑖). Then, the following condition is further assumed. 

 

LIA Assumption: 

(c) There is a 𝐾 ∈ ℕ such that 𝑑𝑘𝜑𝑖(𝑥,𝐰𝑖) (for any 𝑘 > 𝐾) in the above Taylor equation is negligibly 

small in 𝒳: 

∀ 𝜖 > 0, ∃ 𝐾 ∈ ℕ  s.t.  ∀ 𝑖, ∀ 𝑥 ∈ 𝒳, ∀ 𝑘 ∈ ℕ; 𝑘 > 𝐾 ⇒ |𝑑𝑘𝜑𝑖(𝑥,𝐰𝑖)| < 𝜖. 

 

Thus, under LIA Assumptions (a)-(c), the following equation is derived: 

𝜑𝑖(𝑥𝑖, 𝐰𝑖) = [∑
𝑑𝑘𝜑𝑖(�̅�,𝐰𝑖)

𝑘!
(−�̅�)𝑘

𝐾

𝑘=0

] + {∑
𝑑𝑘𝜑𝑖(�̅�,𝐰𝑖)

𝑘!

𝐾

𝑘=1

(
𝑘

𝑘 − 1
) (−�̅�)𝑘−1} 𝑥𝑖

+ {∑
𝑑𝑘𝜑𝑖(�̅�,𝐰𝑖)

𝑘!

𝐾

𝑘=2

(
𝑘

𝑘 − 2
) (−�̅�)𝑘−2} 𝑥𝑖

2 +⋯+ ∑
𝑑𝑘𝜑𝑖(�̅�,𝐰𝑖)

𝑘!
(𝑥𝑖 − �̅�)

𝑘

∞

𝑘=𝐾+1

 

= 𝛼𝑖 +∑𝛽𝑖,𝑘𝑥𝑖
𝑘

𝐾

𝑘=1

+ 𝑅𝑖,𝐾,                                                                                     

where (
𝑚
𝑛
)  is an 𝑛 -combination of an 𝑚 -element set (i.e., (

𝑚
𝑛
) =

𝑚!

𝑛!(𝑚−𝑛)!
 ), 𝛼𝑖 = ∑ (𝑘!)−1 ⋅𝐾

𝑘=0

𝑑𝑘𝜑𝑖(�̅�,𝐰𝑖) ⋅ (−�̅�)
𝑘 , 𝛽𝑖,𝑗 = ∑ (𝑘!)−1 ⋅ 𝑑𝑘𝜑𝑖(�̅�,𝐰𝑖) ⋅ (

𝑘
𝑘 − 𝑟

) ⋅ (−�̅�)𝑘−𝑗𝐾
𝑘=𝑗   for 𝑗 ≤ 𝐾 , and 𝑅𝑖,𝐾 =

∑ (𝑘!)−1 ⋅ 𝑑𝑘𝜑𝑖(�̅�,𝐰𝑖) ⋅ (𝑥𝑖 − �̅�)
𝑘∞

𝑘=𝐾+1  . Therefore, decomposing 𝜑𝑖(𝑥𝑖 ,𝐰𝑖)  into the conditional 

expectation given 𝑥𝑖 and the remaining term yields 

𝜑𝑖(𝑥𝑖 , 𝐰𝑖) = E[𝜑𝑖(𝑥𝑖 ,𝐰𝑖)|𝑥𝑖] + 𝜀𝑖 = E [𝛼𝑖 +∑𝛽𝑖,𝑘𝑥𝑖
𝑘

𝐾

𝑘=1

+ 𝑅𝑖,𝐾| 𝑥𝑖] + 𝜀𝑖 = �̅� +∑ �̅�𝑘𝑥𝑖
𝑘

𝐾

𝑘=1

+ 𝜀𝑖
′, 
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where �̅� = E[𝛼𝑖|𝑥𝑖] = E[𝛼𝑖] , �̅�𝑘 = E[𝛽𝑖,𝑘|𝑥𝑖] = E[𝛽𝑖,𝑘] , 𝜀𝑖
′ = (𝛼𝑖 − �̅�) + ∑

𝐾

𝑘=1
(𝛽𝑖,𝑘 − �̅�𝑘)𝑥𝑖

𝑘 + E[𝑅𝑖,𝐾|𝑥𝑖] . 

Finally, we have 

        Pr[𝑦𝑖 = ℓ] = Pr[𝑐𝑖,ℓ ≥ 𝜑𝑖(𝑥𝑖, 𝐰𝑖) > 𝑐𝑖,ℓ−1] 

                             = Pr [𝑐ℓ̅ − �̅� −∑ �̅�𝑘𝑥𝑖
𝑘

𝐾

𝑘=1

≥ 𝜀𝑖
′ − 𝑐𝑖,ℓ

′ ] − Pr [𝑐ℓ̅−1 − �̅� −∑ �̅�𝑘𝑥𝑖
𝑘

𝐾

𝑘=1

≥ 𝜀𝑖
′ − 𝑐𝑖,ℓ−1

′ ] , 

where 𝑐ℓ̅ = E[𝑐𝑖,ℓ|𝑥𝑖] = E[𝑐𝑖,ℓ], and 𝑐𝑖,ℓ
′ = 𝑐𝑖,ℓ − 𝑐ℓ̅. 

Notably, the key identification condition for �̅�𝑘 is that 𝑅𝑖,𝐾 is negligible (by LIA Assumption (c)) 

and that the treatment variable 𝑥𝑖 is independent of the functional form of 𝜑𝑖(⋅), other factors 𝐰𝑖 and the 

thresholds 𝑐𝑖,ℓ (from the randomness of 𝑥𝑖 by definition). Thus, E[𝛼𝑖|𝑥𝑖] = E[𝛼𝑖], E[𝛽𝑖,𝑘|𝑥𝑖] = E[𝛽𝑖,𝑘], 

E[𝑐𝑖,ℓ|𝑥𝑖] = E[𝑐𝑖,ℓ] and E[𝑅𝑖,𝐾|𝑥𝑖] ≈ 0, which ensures E[𝜀𝑖
′ − 𝑐𝑖,ℓ

′ |𝑥𝑖] ≈ 0. Note that it is possible to control 

for some observed variables (a subset of 𝐰𝑖) in addition to 𝑥𝑖, and the inclusion of control variables does 

not affect the causal estimation of 𝑥𝑖. Therefore, given knowledge of 𝜑𝑖(⋅), distribution-free ML methods, 

including Ito’s (2023) RBML estimation method, can be employed to identify �̅�𝑘  without further 

assumptions.5 

In actual applications, however, we have no information on 𝜑𝑖(⋅) . Thus, the validity of LIA 

Assumptions (b) and (c) may be extremely questionable. However, the existence of higher-order terms can 

be evaluated empirically by including them on the right-hand side and performing statistical tests. 

Furthermore, in some special cases, the causal relationship between 𝑥𝑖 and 𝑦𝑖 can be estimated without 

LIA Assumptions (b) and (c). For example, when the treatment status is dichotomous (namely, being treated 

or not), as in many experimental settings, the equation takes a simple form:6 

𝑦𝑖 = E[𝛼𝑖 + 𝛽𝑖𝑥𝑖|𝑥𝑖] + 𝜀𝑖 = �̅� + �̅�𝑥𝑖 + 𝜀𝑖, (1) 

where 𝛼𝑖 = 𝜑𝑖(0,𝐰𝑖)  and �̅� = E[𝛼𝑖|𝑥𝑖] = E[𝑥𝑖] ; 𝛽𝑖 = 𝜑𝑖(1,𝐰𝑖) − 𝜑𝑖(0,𝐰𝑖)  and �̅� = E[𝛽𝑖|𝑥𝑖] =

E[𝛽𝑖] ; and 𝜀𝑖 = (𝛼𝑖 − �̅�) + (𝛽𝑖 − �̅�)𝑥𝑖  and E[𝜀𝑖|𝑥𝑖] = 0 . Additionally, as discussed in Section 3.2, 

(𝛽𝑖 − �̅�)𝑥𝑖 in 𝜀𝑖 is the source of heteroskedasticity, but the RBML method can address this problem. 

 

2.2. Direct approach 

The second approach attempts to estimate the effect of 𝑥𝑖 on 𝑦𝑖 by directly connecting 𝑦𝑖 and (a function 

 
5 If we employ a fully parametric model such as an ordered probit (ordered logit) model to estimate �̅�𝑘, we 

must also assume that (𝜀𝑖
′ − 𝑐𝑖,ℓ

′  ) is identically and independently distributed with a normal (logistic) 

distribution. When the error component is normally distributed with mean zero and variance 𝜎2, we have 

Pr[𝑦𝑖 = ℓ] = Φ(𝑐ℓ
∗ − 𝛼∗ −∑𝛽𝑘

∗𝑥𝑖
𝑘

𝐾

𝑘=1

) −Φ(𝑐ℓ−1
∗ − 𝛼∗ −∑𝛽𝑘

∗𝑥𝑖
𝑘

𝐾

𝑘=1

) , 

where Φ is the cumulative distribution function of the standard normal distribution, 𝑐ℓ
∗ = 𝑐ℓ̅/𝜎, 𝛼∗ = �̅�/𝜎, 

and 𝛽𝑘
∗ = �̅�𝑘/𝜎. 

6 In addition, if 𝑦𝑖 and 𝑥𝑖 are jointly normal, the expected value of 𝑦𝑖 given 𝑥𝑖 has no second- or higher-

order terms, and the equation has the same form as Eq. (1). 
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of) 𝑥𝑖 based on the following assumptions: 

 

DA Assumption: 

(a) The values of 𝑦𝑖 are cardinal numbers (i.e., 𝑦𝑖 is a cardinal variable). 

(b) There is an unknown function that associates 𝑥𝑖 and other determinants (𝐰𝑖 ∈ ℝ
𝐿) with the outcome 

𝑦𝑖: 

∃ 𝜓𝑖:ℝ
𝐿+1 → ℝ  s.t.  ∀(𝑦𝑖 , 𝑥𝑖 , 𝐰𝑖) ∈ 𝒴 ×𝒳 ×ℝ𝐿; 𝑦𝑖 = 𝜓𝑖(𝑥𝑖 ,𝐰𝑖), 

(c) 𝜓𝑖 is bounded and continuous in 𝒳, and therefore, we have 𝜓𝑖(𝑥𝑖, 𝐰𝑖) = ∑ {𝑘!}−1𝑑𝑘𝜓𝑖(�̅�,𝐰𝑖) ⋅
∞
𝑘=0

(𝑥𝑖 − �̅�)
𝑘, where 𝑑𝑘𝜓𝑖(�̅�,𝐰𝑖) is defined by 

𝑑𝑘𝜓𝑖(�̅�,𝐰𝑖) =

{
 

 lim
ℎ→0+

𝛥ℎ
𝑘𝜓𝑖(�̅�,𝐰𝑖)

ℎ𝑘
      if 𝑥𝑖 ≥ �̅�

lim
ℎ→0−

𝛥ℎ
𝑘𝜓𝑖(�̅�,𝐰𝑖)

ℎ𝑘
     if 𝑥𝑖 < �̅�

. 

(d) There is a 𝐾 ∈ ℕ such that 𝑑𝑘𝜓𝑖(𝑥,𝐰𝑖) (for any 𝑘 > 𝐾) is negligibly small in 𝒳: 

∀ 𝜖 > 0, ∃ 𝐾 ∈ ℕ s.t. ∀ 𝑖, ∀ 𝑥 ∈ 𝒳, ∀ 𝑘 ∈ ℕ; 𝑘 > 𝐾 ⇒ |𝑑𝑘𝜓𝑖(𝑥,𝐰𝑖)| < 𝜖. 

 

Then, based on the above assumptions, we have 

𝑦𝑖 = E[𝜓𝑖(�̅�𝑖
′,𝐰𝑖)|𝑥𝑖] + 𝜐𝑖 = E [𝛾𝑖 +∑𝛿𝑖,𝑘𝑥𝑖

𝑘

𝐾

𝑘=1

+ 𝑆𝑖,𝐾| 𝑥𝑖] + 𝜐𝑖 = �̅� +∑𝛿�̅�𝑥𝑖
𝑘

𝐾

𝑘=1

+ 𝜐𝑖
′, 

where 𝛾𝑖 = ∑ (𝑘!)−1 ⋅ 𝑑𝑘𝜓𝑖(�̅�,𝐰𝑖) ⋅ (−�̅�)
𝑘𝐾

𝑘=1  , 𝛿𝑖,𝑙 = ∑
𝐾

𝑘=𝑙
(𝑘!)−1 ⋅ 𝑑𝑘𝜓𝑖(�̅�,𝐰𝑖) ⋅ (

𝑘
𝑘 − 𝑙

) ⋅ (−�̅�)𝑘−𝑙  for 

𝑙 ≤ 𝐾 , 𝑆𝑖,𝐾 = ∑ (𝑘!)−1𝑑𝑘𝜓𝑖(�̅�,𝐰𝑖)(𝑥𝑖 − �̅�)
𝑘∞

𝑘=𝐾+1  , �̅� = E[𝛾𝑖|𝑥𝑖] = E[𝛾𝑖] , 𝛿�̅� = E[𝛿𝑖,𝑗|𝑥𝑖] = E[𝛿𝑖,𝑗] , and 

𝜐𝑖
′ = (𝛾𝑖 − �̅�) + ∑ (𝛿𝑖,𝑗 − 𝛿�̅�)𝑥𝑖

𝑘𝐾
𝑘=1 + E[𝑆𝑖,𝐾|𝑥𝑖]. Note again that E[𝜐𝑖

′|𝑥𝑖] ≈ 0 because of DA Assumption 

(d) and the random assignment of 𝑥𝑖 (by definition). Thus, with knowledge of 𝜓𝑖(⋅) (with DA Assumptions 

(b) to (d)), we can estimate the effect of 𝑥𝑖 on 𝑦𝑖 via ordinary least squares (OLS) estimation. 

This approach, however, has a significant flaw: There are serious doubts about the validity of DA 

Assumption (a). Thus, in this approach, 𝑦𝑖 is often summarized as a binary variable, 𝐷𝑖, based on a certain 

criterion (e.g., 𝐷𝑖 = 1[𝑦𝑖 > ℓ
′], ℓ′ ∈ (1, ℒ)). Since cardinality is not required in the binary case, we can 

estimate 𝐷𝑖 = �̅� + ∑
𝐾

𝑘=1
𝛿�̅�𝑥𝑖

𝑘 + 𝜐𝑖 with only DA Assumptions (b) to (d). This is known as a linear probability 

model (LPM). Although the LPM uses a limited information on the outcome variable in practice, the 

identification assumptions are the same as those in the latent index approach. Therefore, when the outcome 

variable is originally binary, the latent index and direct approaches differ only in their way of approaching 

the model, while relying on the same assumptions. Thus, to determine which method performs better, they 

must be tested empirically. In Section 4, I compare the performance of several semiparametric estimators for 

the binary choice and ordered response models by running a series of Monte Carlo simulations. 
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3. RBML Estimation 

The RBML estimation method proposed by Ito (2023) utilizes a parametric likelihood function by leveraging 

the asymptotic normality of the mean of re-samples obtained by repeated random drawing with replacement 

from the original sample. Specifically, the method consists of two main steps: 1) construction of a new dataset 

through Monte Carlo “in-sample” resampling with replacement and 2) construction and estimation of the 

likelihood. In this section, I first describe these steps briefly using a simple linear regression model as an 

example, then discuss the issue of conditionally heteroscedastic variance, and finally present an application 

example for an ordered response model. 

 

3.1. Procedure 

Suppose that the sample consists of independent observations {(𝑦𝑖 , 𝑥𝑖)| 𝑖 = 1,⋯ ,𝑁} and that the model can 

be expressed as 

𝑦𝑖 = 𝛼0 + 𝛽0𝑥𝑖 + 𝜀𝑖, (2) 

where 𝑦𝑖 ∈ ℝ is an outcome of interest, 𝑥𝑖 ∈ ℝ is an exogenous treatment status, and 𝜀𝑖 is the error with 

E[𝜀𝑖|𝑥𝑖] = 0. 

In the first step, a new dataset is constructed as follows: 

 

(i) Randomly draw an observation from {(𝑦𝑖 , 𝑥𝑖)} 𝑀 times with replacement (𝑀 is sufficiently large). 

(ii) Calculate �̃� = √𝑁𝑀/(𝑁 − 1)(∑ 𝑦𝑗
𝑀
𝑗=1 /𝑀 − 𝜇𝑁,𝑦)  and �̃� = √𝑁𝑀/(𝑁 − 1)(∑ 𝑥𝑗

𝑀
𝑗=1 /𝑀 − 𝜇𝑁,𝑥) , 

where 𝑦𝑗  and 𝑥𝑗  are the 𝑗 -th drawn observations and 𝜇𝑁  is the sample average, that is, 𝜇𝑁,𝑦 =

∑ 𝑦𝑖
𝑁
𝑖=1 /𝑁 and 𝜇𝑁,𝑥 = ∑ 𝑥𝑖

𝑁
𝑖=1 /𝑁. 

(iii) Repeat (i) and (ii) 𝑇  times to obtain an independent and identically distributed (i.i.d.) sample 

{(�̃�𝑡 , �̃�𝑡)| 𝑡 = 1,⋯ , 𝑇} (𝑇 = 𝑇∗ +𝑁, where 𝑇∗ is sufficiently large). 

 

The linear relationship between 𝑦𝑖 and 𝑥𝑖 in Eq. (2) gives 

�̃�𝑡 = 𝛽0�̃�𝑡 + 𝜀�̃�, (3) 

where 𝜀�̃�  ~ N(0, 𝜎𝑁
2) 

𝑑
→  N(0, 𝜎0

2) , 𝜎𝑁
2 = ∑ 𝜀𝑖

2𝑁
𝑖=1 /𝑁 , and 𝜎0

2 = lim
𝑁→∞

E[𝜎𝑁
2] . Regarding the distribution 

property of 𝜀�̃� , see Ito (2023); in particular, see Proposition 1 and Proposition A1 in his paper for the 

homoscedasticity (i.e., E[𝜀𝑖
2|𝑥𝑖] = 𝜎

2) and heteroscedasticity cases (i.e., E[𝜀𝑖
2|𝑥𝑖] = 𝜎𝑖

2), respectively. It is 

noteworthy that even if 𝜀𝑖 in Eq. (2) has a heteroscedastic variance that depends on 𝑥𝑖 (i.e., 𝜎𝑖
2 = ℎ𝑖(𝑥𝑖)), 

the variance of 𝜀�̃� in Eq. (3) does not depend on �̃�𝑡. This could be of great advantage of Ito’s (2023) RBML 

method over conventional ML methods in estimating discrete choice models. The following section discusses 

such a case of conditionally heteroscedastic variance. 

Finally, in the second step, based on the normality of 𝜀�̃�, we construct and estimate the likelihood 

function expressed as: 
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𝐿(𝛽, 𝜎; �̃�𝑡 , �̃�𝑡) =
1

𝜎√2𝜋
exp{−

1

2
(
�̃�𝑡 − 𝛽�̃�𝑡

𝜎
)
2

}. 

 

3.2. The issue of heteroscedasticity 

This section discusses the implications of the heteroscedasticity issue for the RBML method. The presence 

of conditionally heteroskedastic variance is particularly problematic when estimating discrete choice models. 

Suppose that Eq. (2) represents a latent index that determines a binary response outcome, e.g., 𝑑𝑖 =

1[𝑦𝑖 > 0] = 1[𝛼0 + 𝛽0𝑥𝑖 + 𝜀𝑖 > 0], and that the variance of 𝜀𝑖 depends on 𝑥𝑖, E[𝜀𝑖
2|𝑥𝑖] = ℎ(𝑥𝑖). In this 

case, it is well known that the probit ML estimation yields the inconsistent estimate of 𝛽0 (Yatchew and 

Griliches, 1985). There is also the concern that the sign of the marginal effect on the choice probability is not 

the same as the sign of 𝛽0 (Wooldridge, 2005). 

For the RBML method, however, this is not the case. As a typical case of heteroscedastic variance, 

I use the example presented in Section 2, where the error term in the original equation is expressed as 𝜀𝑖 =

(𝛼𝑖 − E[𝛼𝑖]) + (𝛽𝑖 − E[𝛽𝑖])𝑥𝑖 . Thus, the issue relies on the distributional properties of 𝛼𝑖 , 𝛽𝑖 , and 𝑥𝑖 . 

Assuming that 𝑥𝑖 (a treatment variable in an experiment) is independent of 𝛼𝑖 and 𝛽𝑖, the limit distribution 

of the error in the RBML estimation (𝜀�̃�) is expressed as: 

𝜀�̃�  
𝑑
→ N(0, 𝜎𝛼

2 + 2𝜎𝛼𝛽𝜇𝑥 + 𝜎𝛽
2𝜇𝑥

2). (4) 

See Appendix A.1 for details on the assumptions and derivation. This indicates that while the conditional 

variance of the original error 𝜀𝑖 in Eq. (2) depends on 𝑥𝑖, that of 𝜀�̃� in Eq. (3) does not depend on �̃�𝑡. In 

short, the heteroscedasticity of the error in the original equation does not matter in the RBML estimation. 

A simulation exercise confirms the above results. Panels A and B in Figure 1 show the distribution 

plots of the data around the regression lines expressed by Eqs. (2) and (3) (with an additional control variable 

𝑤𝑖), respectively. The simulated data used in this exercise were created with the same design as in Section 4, 

and larger and brighter hexagons indicate higher observation frequencies. While 𝜀𝑖 in Eq. (2) (measured as 

the distance from the regression line in Panel A) shows more dispersion with increasing 𝑥𝑖, 𝜀�̃� in Eq. (3) 

(the distance from the regression line in Panel B) seems to be unrelated to the value of �̃�𝑡. The regression 

results reported at the top of each panel also show that 𝜀𝑖 in the original equation is significantly associated 

with 𝑥𝑖, but this is not the case for 𝜀�̃�. Thus, conditionally heteroscedastic variance disappears in the data 

construction process in the RBML estimation, indicating that the RBML estimators do not suffer from this 

problem, unlike parametric ML estimators. 

[Figure 1 around here] 

 

3.3. Application to ordered response model 

The RBML method estimates binary and ordered response models in a very similar manner. Here, the 

application of the RBML method to an ordered response model is presented; for the application to a binary 
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choice model, see Section 3.2 of Ito (2023). 

Suppose there exists a sample {(𝑦𝑖 , 𝐱𝑖)| 𝑖 = 1,⋯ ,𝑁} , where 𝑦𝑖 ∈ {1,⋯ , ℒ}  and 𝐱𝑖
′ ∈ ℝ𝐿  are 

independent random variables with finite means and variances. Assuming that LIA Assumption (a) holds, the 

model can be expressed as follows: 

𝑦𝑖 = ℓ[𝑐𝑖,ℓ ≥ 𝜑𝑖(𝐱𝑖) > 𝑐𝑖,ℓ−1], (5) 

where ℓ[⋅] (ℓ ∈ {1,⋯ , ℒ}) is an indicator variable that takes the value of ℓ when the condition inside the 

brackets is true, 𝜑𝑖: ℝ
𝐿 → ℝ is an unobserved index function and 𝑐𝑖,ℓ is the ℓ-th cutoff point with 𝑐𝑖,0 =

−∞  and 𝑐𝑖,ℒ = ∞ . Then, I assume that E[𝜑𝑖(𝐱𝑖)|𝐱𝑖] = 𝛼0 + 𝐱𝑖𝜷𝟎 + E[𝜀𝑖|𝐱𝑖] , where 𝛼0 ∈ ℝ , 𝜷0 ∈ ℝ
𝐿 

are unknown population parameters to be estimated and 𝜀𝑖 ∈ ℝ is an unobserved component. I also assume 

that Rank[∑ (1, 𝐱𝑖)
′(1, 𝐱𝑖)

𝑁
𝑖 ] = 𝐿 + 1, E[𝜀𝑖|𝐱𝑖] = 0 and E[𝜀𝑖

2|𝐱𝑖] = 𝜎0
2 (< ∞). 

In ordered response models, the data construction through the Monte Carlo “in-sample” resampling 

explained in Section 3.1 is performed based on groups classified by the value of 𝑦𝑖, with ℒ − 1 groups from 

{(𝑦𝑖 , 𝐱𝑖)| 𝑦𝑖 = 1 or 𝑦𝑖 = 2} to {(𝑦𝑖 , 𝐱𝑖)| 𝑦𝑖 = ℒ − 1 or 𝑦𝑖 = ℒ}. For example, the outcome variable for the 

𝑡-th observation from {(𝑦𝑖 , 𝐱𝑖)| 𝑦𝑖 = ℓ or 𝑦𝑖 = ℓ + 1} is expressed as 

�̃�ℓ,𝑡 = √
𝑁ℓ𝑀ℓ
𝑁ℓ − 1

(
1

𝑀ℓ
∑𝑦𝑗,𝑡 − �̅�ℓ

𝑦𝑗,𝑡 ∈ 𝒴ℓ ∪ 𝒴ℓ+1

) , 

where 𝒴ℓ = {𝑦𝑖| 𝑦𝑖 = ℓ} , 𝒴ℓ+1 = {𝑦𝑖| 𝑦𝑖 = ℓ + 1} , 𝑁ℓ = #[𝒴ℓ ∪ 𝒴ℓ+1] , 𝑀ℓ = 𝑁ℓ ×𝑀/𝑁ℒ , 𝑁ℒ =

∑ #[𝒴ℓ ∪ 𝒴ℓ+1]
ℒ−1
ℓ=1  and �̅�ℓ = 𝑁ℓ

−1∑ 𝑦𝑖𝑦𝑖∈ 𝒴ℓ ∪ 𝒴ℓ+1 . Letting 𝜑𝑖(𝐱𝑖) in Eq. (5) be denoted by 𝑦𝑖
∗ and �̃�ℓ,𝑡

∗  

be the latent index corresponding to �̃�ℓ,𝑡, we obtain the following relationship (see Appendix A.2 for the 

derivation): 

�̃�ℓ,𝑡 > 0

�̃�ℓ,𝑡 ≤ 0

if  �̃�ℓ,𝑡
∗ = �̃�ℓ,𝑡𝜷0 + 𝜀ℓ̃,𝑡 > 𝛾ℓ,𝑡

if  �̃�ℓ,𝑡
∗ = �̃�ℓ,𝑡𝜷0 + 𝜀ℓ̃,𝑡 ≤ 𝛾ℓ,𝑡.

(6) 

where �̃�ℓ,𝑡 and 𝜀ℓ̃,𝑡 are the (vector of) explanatory variables and the error term for the 𝑡-th observation 

created in the data construction stage from {(𝑦𝑖 , 𝐱𝑖)| 𝑦𝑖 = ℓ or 𝑦𝑖 = ℓ + 1} , 𝛾ℓ,𝑡  is a threshold variable 

defined in Eq. (A-1) in the appendix that is assumed to be independent of �̃�ℓ,𝑡 and 𝜀ℓ̃,𝑡,
7 and (𝛾ℓ,𝑡 − 𝜀ℓ̃,𝑡) 

follows N(0, 𝜎𝑁,ℓ
2 ). The relationship in Eq. (6) also holds for other pairwise groups, and each group has 𝑇ℓ 

(= 𝑁ℓ × 𝑇/𝑁ℒ) observations. Thus, the RBML estimator for the ordered response model is defined as values 

that satisfy 

�̂�RB = argmax
𝜽∈𝚯

ln 𝐿𝑁(𝜽; �̃�, �̃�)                                                                                                     

= argmax
𝜽∈𝚯

∑∑[1[�̃�ℓ,𝑡 ≤ 0] lnΦ(−�̃�ℓ,𝑡𝜽ℓ) + 1[�̃�ℓ,𝑡 > 0] lnΦ(�̃�ℓ,𝑡𝜽ℓ)]

𝑇ℓ

𝑡=1

ℒ−1

ℓ=1

, (7) 

 
7 In the absence of this random threshold assumption, it is impossible to estimate 𝜷 unless an additional 

identification condition is assumed. Ito (2023) shows that the simulation result strongly supports the random 

threshold assumption. 
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where 𝜽ℓ = 𝜷/𝜎𝑁,ℓ, 𝚯 is a compact subset of ℝ𝐾(ℒ−1), which contains the true value 𝜽0, and Φ(∙) is the 

standard normal cumulative distribution function. Note that in the RBML estimation, the parameters in Eq. 

(7) are identified up to a scale, as in the conventional ordered probit estimation; however, the scale is different 

(and also varies with ℓ). In the actual estimation, a weighted average of 𝜽ℓ is estimated. This is because 

while it is theoretically possible to estimate different 𝜽ℓ , the relative magnitude of any two coefficients 

remains the same (i.e., ∀ 𝑘′ & 𝑘;  𝜃𝑘′,ℓ/𝜃𝑘,ℓ = 𝛽𝑘′/𝛽𝑘) for all ℓ. 

 

4. Monte Carlo Simulation 

This section examines the performance of the RBML estimator on small samples by running a series of 

simulations where the RBML method is applied to (1) binary and (2) ordinal response models. The main 

purpose of the simulations is to determine how the model should be analyzed when ordinal responses are the 

outcome variable. The details of the simulation design are described below. 

 

4.1. Simulation design 

The outcome variable is assumed to be an ordered categorical response on a scale of one to five, which is 

determined in the following manner: 

𝑦𝑖 =∑ℓ[𝑐𝑖,ℓ ≥ 𝑦𝑖
∗ > 𝑐𝑖,ℓ−1]

5

ℓ=1

 

where 𝑦𝑖
∗  is a latent variable, as explained below, and 𝑐𝑖,ℓ  represents the ℓ -th cutoff point (threshold). 

When estimating the model as a binary response model, the dependent variable is converted into a 

dichotomous variable as 𝑑𝑖 = 1[𝑦𝑖 ≥ 4].  

The cutoff points 𝑐𝑖,ℓ are randomly drawn from the uniform distribution, 𝑐𝑖,1 ∈ {𝑐|𝑃5(𝐲
∗) ≤ 𝑐 ≤

𝑃15(𝐲
∗)} , 𝑐𝑖,2 ∈ {𝑐|𝑃20(𝐲

∗) ≤ 𝑐 ≤ 𝑃30(𝐲
∗)} , 𝑐𝑖,3 ∈ {𝑐|𝑃45(𝐲

∗) ≤ 𝑐 ≤ 𝑃55  (𝐲∗)} , and 𝑐𝑖,4 ∈ {𝑐|𝑃75(𝐲
∗) ≤

𝑐 ≤ 𝑃85(𝐲
∗)}, where 𝑃𝑗(𝐲

∗) represents the 𝑗-th percentile value of {𝑦𝑖
∗: 𝑖 = 1,⋯ ,𝑁}. These random cutoff 

points are heterogeneous across observations. 

The focus of this simulation is on the marginal effect of a treatment variable, denoted by 𝑥𝑖, on the 

above categorical outcome 𝑦𝑖. For the treatment variable 𝑥𝑖, I consider two cases: binary and continuous 

cases. The binary treatment is defined as 𝑥𝑖
𝑑 = 1[𝑎𝑖 < 𝑏], where 𝑎𝑖~U(0,1), and 𝑏~U(0.3,0.5). Thus, in 

the population, 40% of the observations are treated (𝑥𝑖
𝑑 = 1 ). For the continuous treatment case, 𝑥𝑖

𝑐 =

1[𝑎𝑖 < 𝑏] × 𝑐𝑖, where 𝑎𝑖~U(0,1), 𝑏~U(0.3,0.5), and 𝑐𝑖~U(0.5,1.5); hence, 40% of the observations are 

assigned uniform random numbers between 0.5 and 1.5, and the other observations are assigned a value of 0. 

Then, the latent variable (𝑦𝑖
∗) is determined by 

𝑦𝑖
∗ = 𝛼𝑖 + 𝛽𝑖𝑥𝑖 +𝑤𝑖, 

where 𝑥𝑖 is the treatment variable described above, 𝛽𝑖 is the individual treatment effect, and 𝛼𝑖 and 𝑤𝑖 

represent the effects of unobservables and observables. 𝛼𝑖  is assumed to follow a continuous uniform 

distribution with a mean of zero and a variance of three in the population (𝛼𝑖  ~ U(−3,3), with E[𝛼𝑖] = 0 



12 

 

and Var[𝛼𝑖] = 3). For 𝛽𝑖, two cases with different distributional assumptions are considered: In the first 

case, 𝛽  is constant, 𝛽𝑖 = 0.5  for all 𝑖  (Design 1), and in the second case, 𝛽𝑖  is heterogeneous and 

assumed to be a random variable that follows an exponential distribution with a rate parameter of one 

multiplied by 0.5, that is, 𝛽𝑖  ~ 0.5 ⋅ Exp(1) with E[𝛽𝑖] = 0.5, Var[𝛽𝑖] = 0.25 (Design 2). The reason why 

the variance of 𝛼𝑖 is much larger than that of 𝛽𝑖 is that all unobserved components are considered to be 

included in 𝛼𝑖. Moreover, if the variance of 𝛽𝑖 is too large, a significant fraction of 𝛽𝑖 values could be of 

opposite sign (i.e., negative), which could lead to a negative average impact in a small sample. 

Then, 𝑤𝑖 follows the beta distribution with shape parameters drawn randomly from {1,3,5} and is 

adjusted to have unit variance in the population. The beta distribution was selected because the skewness and 

kurtosis of variables from the beta distribution can be negative or positive depending on the combination of 

the shape parameters. Ito (2023) showed that the RBML estimator is more efficient when the regressors are 

leptokurtic; therefore, the kurtosis of the regressors is randomly determined in this simulation. The correlation 

between the observed/unobserved components is set as: 

Corr(𝐙𝑖) = (

1
0 1
0 𝑎 1
0 𝑏 𝑐 1

) , 

where 𝐙𝑖 = (𝑥𝑖 , 𝑤𝑖 , 𝛼𝑖 , 𝛽𝑖), 𝑎, 𝑏~U(−0.2,0.2), and 𝑐~U(0,0.4). 

[Table 1 around here] 

Table 1 summarizes the simulation design. In the simulation, the sample size in a trial is set to 500 

(𝑁 = 500), and each design consists of 500 independent trials. The descriptive statistics of the variables used 

in a trial are presented in Table A1 in Appendix A.3. 

 

4.2. Results 

The simulation results for the binary and continuous treatment cases are reported in Table 2. For discrete 

choice models, researchers’ interest is generally in the marginal effect on the choice probability, not in the 

coefficient estimate. In addition, the marginal effect to be estimated in this simulation study differs in different 

trials due to the design. Therefore, for ease of comparison, I present the root mean relative square error 

(RMRSE), calculated as √𝑇−1∑ {(𝑀�̂�𝑡 −𝑀𝐸𝑡)/𝑀𝐸𝑡}
2𝑇

𝑡  , where 𝑀𝐸𝑡  and 𝑀�̂�𝑡  are the marginal effect 

and its estimate in the 𝑡 -th trial (𝑡 = 1,⋯ , 500 ), respectively. In addition, to compare the small-sample 

performance of the RBML estimator with that of other parametric and semiparametric estimators, the results 

based on OLS, probit-type ML, Gallant and Nychka’s (1987) Hermite polynomial sieve ML, Klein and 

Spady’s (1993) Nadaraya–Watson kernel ML, and Ichimura’s (1993) semiparametric least squares (SLS) 

estimations are also reported in the tables.8  

 
8  The sieve ML, kernel ML, and SLS estimations are implemented using the –snp–, –sml–, and –sls– 
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[Table 2 around here] 

Table 2 shows that the RBML estimator performs quite well in the small sample case. According to 

the results based on the binary response specification in Panel A, the RBML estimator outperforms the other 

estimators, including the OLS, probit, and sieve ML estimators, in terms of the RMRSE. Notably, kernel-

based semiparametric estimators such as the kernel ML and SLS estimators tend to be less efficient probably 

because the unknown functions are computed nonparametrically, but the RBML method, which does not 

require nonparametric calculations, does not suffer from such efficiency loss. 

Moreover, according to Panel B, the results based on the ordered response specification show that 

the RBML estimator is more efficient than other estimators in most cases. It is also noteworthy that the 

RMRSE values of the three estimators (RBML, ordered probit, and sieve ML estimators) in Panel B are 

always smaller than those of the estimators in Panel A. This implies that the ordered response model 

employing ordinal values of the outcome variable improves the accuracy of the causal estimation. When the 

outcome variable is ordered response data, researchers often employ a linear probability model (LPM), that 

is, OLS estimation based on a binary choice specification, by converting the outcome into binary. The 

simulation results indicate that although the LPM (OLS) estimator performs well compared to the probit 

estimator in the binary specification, it is less efficient than the three estimators in the ordinal response 

specification in terms of efficiency. 

Based on the simulation analysis, the following two conclusions can be drawn. First, when analyzing 

an ordered outcome variable, it is recommended to use an ordered response model instead of a LPM based 

on binary specification. Second, the RBML method can be the best approach to apply in realistic situations 

where there exist unobserved nonnormal components and heterogeneous treatment effects among individuals. 

 

5. Conclusion 

This study formulated the innovative distribution-free ML estimator proposed by Ito (2023) for binary and 

ordered response models and demonstrated how ordinal dependent variables should be analyzed in 

experimental settings. Consistent with the simulation results in Ito (2023), the Monte Carlo simulation in this 

study, which focused on marginal effect estimates, showed that the RBML estimator performs exceedingly 

well in scenarios with nonnormal unobserved components and heteroskedasticity. The results also showed 

that estimating a binary choice model by binarizing the ordinal outcome variable may not always be a good 

option. 

Although the simulation designs employed in this study are relatively flexible, they represent only a 

few possible examples. With this caveat, the RBML estimation method may be the best choice for causal 

inference in binary and ordered response models. Even when estimating these models by conventional 

 
commands in Stata. See De Luca (2008) for the –snp– and –sml– commands and Barker (2014) for the –sls– 

command. 
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methods, the RBML method should be implemented to verify the robustness of their estimation results.  

 

Appendix A: Derivations of Eqs. (4) and (6) and summary statistics of the simulated data 

A.1. Derivation of the result in Eq. (4) 

Taking 𝑀  observations from {𝜀𝑖| 𝑖 = 1,⋯ ,𝑁}  with resampling with replacement in the first step (see 

Section 3.1) is equivalent to taking one observation randomly from {𝜀𝑖| 𝑖 = 1,⋯ ,𝑁}  and repeating 𝑀 

times. Therefore, letting E[𝛼𝑖] = 𝛼0 and E[𝛽𝑖] = 𝛽0, 𝜀�̃� can be expressed as 

𝜀�̃� = √
𝑁𝑀

𝑁 − 1
(
∑ 𝜀𝑗𝑡
𝑀
𝑗=1

𝑀
) = √

𝑁𝑀

𝑁 − 1

∑ ∑ 𝑤𝑖𝑗𝑡𝜀𝑖
𝑀
𝑗

𝑁
𝑖

𝑀
=
√𝑀′

𝑀
∑∑𝑤𝑖𝑗𝑡{(𝛼𝑖 − 𝛼0) + (𝛽𝑖 − 𝛽0)𝑥𝑖}

𝑀

𝑗

𝑁

𝑖

 

  =
√𝑀′

𝑀
∑∑𝑤𝑖𝑗𝑡{(𝛼𝑖 − �̅�𝑁) + (�̅�𝑁 − 𝛼0)

𝑀

𝑗

𝑁

𝑖

 

                     +(𝛽𝑖 − �̅�𝑁)(𝑥𝑖 − �̅�𝑁) + (�̅�𝑁 − 𝛽0)𝑥𝑖 + (𝛽𝑖 − �̅�𝑁)�̅�𝑁} 

  = �̃�𝑡 + √𝑀′(�̅�𝑁 − 𝛼0) + �̃�𝑡 +
√𝑀′

𝑀
∑∑𝑤𝑖𝑗𝑡{(�̅�𝑁 − 𝛽0)(𝑥𝑖 − �̅�𝑁)

𝑀

𝑗

𝑁

𝑖

 

                     +(�̅�𝑁 − 𝛽0)�̅�𝑁 + (𝛽𝑖 − �̅�𝑁)�̅�𝑁} 

  = �̃�𝑡 + √𝑀′(�̅�𝑁 − 𝛼0) + �̃�𝑡 + (�̅�𝑁 − 𝛽0)�̃�𝑡 +√𝑀′(�̅�𝑁 − 𝛽0)�̅�𝑁 + 𝛽𝑡�̅�𝑁, 

where 𝑤𝑖𝑗𝑡 is a random variable that has a value of one if the 𝑖-th observation is drawn at the 𝑗-th iteration 

in the 𝑡 -th resampling stage and zero otherwise (hence, ∑ ∑ 𝑤𝑖𝑗𝑡
𝑀
𝑗

𝑁
𝑖 = 𝑀 ), 𝑀′ = 𝑁𝑀/(𝑁 − 1) , �̃�𝑡 =

√𝑀′/𝑀 ⋅ ∑ ∑ 𝑤𝑖𝑗𝑡(𝛼𝑖 − �̅�𝑁)
𝑁
𝑖

𝑀
𝑗  , �̃�𝑡 = √𝑀′/𝑀 ⋅ ∑ ∑ 𝑤𝑖𝑗𝑡

𝑁
𝑖

𝑀
𝑗   (𝛽𝑖 − �̅�𝑁)(𝑥𝑖 − �̅�𝑁) , 𝛽𝑡 = √𝑀′/𝑀 ⋅

∑ ∑ 𝑤𝑖𝑗𝑡(𝛽𝑖 − �̅�𝑁)
𝑁
𝑖

𝑀
𝑗  , and �̅�𝑁 = 𝑁

−1∑ 𝑚𝑖
𝑁
𝑖   for 𝑚 = 𝛼, 𝛽, 𝑥 . Then, if we assume that 

{(𝛼𝑖, 𝛽𝑖 , 𝑥𝑖)| 𝑖 = 1,⋯ ,𝑁}  are i.i.d. with an unknown joint distribution with finite mean 𝛍  and finite 

variance 𝚺 such that 

𝛍 = (𝛼0, 𝛽0, 𝜇𝑥), 𝚺 = (

𝜎𝛼
2

𝜎𝛼𝛽 𝜎𝛽
2

0 0 𝜎𝑥
2

) , 

Proposition 1 of Ito (2023) indicates that �̃�𝑡 + 𝛽𝑡  
𝑑
→ N(0, 𝜎𝛼

2 + 2𝜎𝛼𝛽 + 𝜎𝛽
2), �̃�𝑡  

𝑝
→  0, and �̃�𝑡  

𝑑
→  N(0, 𝜎𝑥

2). 

Note that if {(𝛼𝑖 , 𝛽𝑖 , 𝑥𝑖)| 𝑖 = 1,⋯ ,𝑁}  have different means and variances for each 𝑖 , namely, they are 

independent but not identically distributed (i.n.i.d.), such as 

𝛍𝑖 = (𝛼𝑖,0, 𝛽𝑖,0, 𝜇𝑖,𝑥), 𝚺𝑖 = (

𝜎𝑖,𝛼
2

𝜎𝑖,𝛼𝛽 𝜎𝑖,𝛽
2

0 0 𝜎𝑖,𝑥
2

) , 

Proposition A.1 of Ito (2023) is applied. Then, from the law of large number (LLN), �̅�𝑁  
𝑝
→ 𝛼0, �̅�𝑁  

𝑝
→ 𝛽0, 
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and �̅�𝑁  
𝑝
→ 𝜇𝑥. Therefore, the conclusion follows from the Slutzky theorem. 

 

A.2. Derivation of Eq. (6) 

Let �̃�ℓ,𝑡
∗   be a latent variable obtained in the 𝑡 -th resampling stage from 𝒴ℓ

∗ ∪ 𝒴ℓ+1
∗   in the RBML data 

construction. Then, this variable can be expressed as 

�̃�ℓ,𝑡
∗ = √

𝑁ℓ𝑀ℓ
(𝑁ℓ − 1)

(
1

𝑀ℓ
∑𝑦𝑗,𝑡

𝑀ℓ

𝑗=1

− �̅�ℓ
∗) 

= √
𝑁ℓ𝑀ℓ
(𝑁ℓ − 1)

(

  
 1

𝑀ℓ
∑ ∑𝑤𝑖𝑗𝑡𝑦𝑖

∗

𝑀ℓ

𝑗=1𝑦𝑖
∗∈ 𝒴ℓ

∗

∪ 𝒴ℓ+1
∗

−
1

𝑁ℓ
( ∑ 𝑦𝑖

∗

𝑦𝑖
∗∈ 𝒴ℓ

∗

+ ∑ 𝑦𝑖
∗

𝑦𝑖
∗∈ 𝒴ℓ+1

∗

)

)

  
 

 

= √
𝑁ℓ𝑀ℓ
(𝑁ℓ − 1)

{
1

𝑀ℓ
( ∑ ∑𝑤𝑖𝑗𝑡𝑦𝑖

∗

𝑀ℓ

𝑗=1𝑦𝑖
∗∈ 𝒴ℓ

∗

+ ∑ ∑𝑤𝑖𝑗𝑡𝑦𝑖
∗

𝑀ℓ

𝑗=1𝑦𝑖
∗∈ 𝒴ℓ+1

∗

)− (𝑛ℓ,0�̅�ℓ,0
∗ + 𝑛ℓ,1�̅�ℓ,1

∗ )} , 

where 𝒴ℓ
∗ = {𝑦𝑖

∗| 𝑦𝑖 = ℓ} , 𝒴ℓ+1
∗ = {𝑦𝑖

∗| 𝑦𝑖 = ℓ + 1} , 𝑁ℓ = #[𝒴ℓ
∗ ∪ 𝒴ℓ+1

∗ ] , 𝑀ℓ = 𝑁ℓ ×𝑀/𝑁ℒ  , 𝑁ℒ =

∑ #[𝒴ℓ
∗ ∪ 𝒴ℓ+1

∗ ]ℒ−1
ℓ=1  , �̅�ℓ

∗ = 𝑁ℓ
−1∑ 𝑦𝑖

∗
𝑦𝑖
∗∈ 𝒴ℓ

∗ ∪ 𝒴ℓ+1
∗  , 𝑛ℓ0 = 𝑁ℓ0/𝑁ℓ , 𝑁ℓ0 = #[𝒴ℓ

∗] , �̅�ℓ0
∗ = 𝑁ℓ0

−1∑ 𝑦𝑖
∗

𝑦𝑖
∗∈ 𝒴ℓ

∗  , 

𝑛ℓ1 = 𝑁ℓ1/𝑁ℓ, 𝑁ℓ1 = #[𝒴ℓ+1
∗ ], and �̅�ℓ1

∗ = 𝑁ℓ1
−1∑ 𝑦𝑖

∗
𝑦𝑖
∗∈ 𝒴ℓ+1

∗ . Then, defining 𝛾ℓ,𝑡 as 

𝛾ℓ,𝑡 = 𝑁ℓ
−
1
2 ∑ {(

𝑁ℓ − 1

𝑁ℓ
2𝑀ℓ

)

−
1
2

(
∑ 𝑤𝑖𝑗𝑡
𝑀ℓ
𝑗=1

𝑀ℓ
−
1

𝑁ℓ
)(𝑦𝑖

∗ − �̅�ℓ0
∗ )}

𝑦𝑖
∗∈ 𝒴ℓ

∗

                       

+𝑁
ℓ

−
1
2 ∑ {(

𝑁ℓ − 1

𝑁ℓ
2𝑀ℓ

)

−
1
2

(
∑ 𝑤𝑖𝑗𝑡
𝑀ℓ
𝑗=1

𝑀ℓ
−
1

𝑁ℓ
)(𝑦𝑖

∗ − �̅�ℓ1
∗ )}

𝑦𝑖
∗∈ 𝒴ℓ+1

∗

, (A-1) 

the above equation for �̃�𝑡 can be rewritten as 

�̃�ℓ,𝑡
∗ = 𝛾ℓ,𝑡 +√

𝑁ℓ𝑀ℓ
(𝑁ℓ − 1)

{𝑚ℓ0,𝑡�̅�ℓ0
∗ +𝑚ℓ1,𝑡�̅�ℓ1

∗ − (𝑛ℓ0�̅�ℓ0
∗ + 𝑛ℓ1�̅�ℓ1

∗ )} 

                                = 𝛾ℓ,𝑡 +√
𝑁ℓ𝑀ℓ

(𝑁ℓ − 1)
{(1 −𝑚ℓ1,𝑡)�̅�ℓ0

∗ +𝑚ℓ1,𝑡�̅�ℓ1
∗ − ((1 − 𝑛ℓ1)�̅�ℓ0

∗ + 𝑛ℓ1�̅�ℓ1
∗ )} 

= 𝛾ℓ,𝑡 +√
𝑁ℓ𝑀ℓ
(𝑁ℓ − 1)

(𝑚ℓ1,𝑡 − 𝑛ℓ1)(�̅�ℓ1
∗ − �̅�ℓ0

∗ ),                       (A-2) 

where 𝑚ℓ0,𝑡 = 𝑀ℓ0,𝑡/𝑀, 𝑀ℓ0,𝑡 is the number of draws from 𝒴ℓ
∗ in the 𝑡-th resampling stage). Note that 

𝛾ℓ,𝑡 ~
𝑖.𝑖.𝑑.

 N(0, 𝜎𝑁,ℓ
2 ) , where 𝜎𝑁,ℓ

2 = 𝑛ℓ0𝜎ℓ0
2 + 𝑛ℓ1𝜎ℓ1

2  , 𝜎ℓ0
2 = 𝑁ℓ0

−1∑ (𝑦𝑖
∗ − �̅�ℓ0

∗ )2𝑦𝑖
∗∈ 𝒴ℓ

∗  , and 𝜎ℓ1
2 =
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𝑁ℓ1
−1∑ (𝑦𝑖

∗ − �̅�ℓ1
∗ )2𝑦𝑖

∗∈ 𝒴ℓ+1
∗ . If {𝑦𝑖| 𝑖 = 1,⋯ ,𝑁} are i.i.d., applying Proposition 1 of Ito (2023) with the finite 

variance assumption (Var[𝑦𝑖] < ∞ ), we obtain the result that 𝛾ℓ,𝑡  
𝑑
→ N(0, 𝑛ℓ0𝜎ℓ0

2 + 𝑛ℓ1𝜎ℓ1
2 )  as 𝑁  and 

therefore 𝑁ℓ approach infinity, where 𝜎ℓ0
2 = Var(𝑦𝑖

∗| 𝑦𝑖 = ℓ) and 𝜎ℓ1
2 = Var(𝑦𝑖

∗| 𝑦𝑖 = ℓ + 1). In addition, 

when {𝑦𝑖: 𝑖 = 1,⋯ ,𝑁} are independent and not identically distributed (i.n.i.d), by applying Proposition A1 

of Ito (2023) for 𝑦𝑖
∗ with the additional assumption that lim

𝑁→∞
∑ E|𝑦𝑖

∗|2+𝛿𝑁
𝑖=1 /(∑ Var(𝑦𝑖

∗)𝑁
𝑖=1 )

1+𝛿/2
= 0 for 

some 𝛿 > 0, we have 𝛾ℓ,𝑡  
𝑑
→  N(0, 𝑛ℓ0𝜎ℓ0

2 + 𝑛ℓ1𝜎ℓ1
2 ) as 𝑁 → ∞ (hence, 𝑁ℓ → ∞). 

The last expression in Eq. (A-2) implies that when �̃�ℓ,𝑡
∗ > 𝛾ℓ,𝑡 , since �̅�ℓ1

∗ > 0 > �̅�ℓ0
∗  , we have 

(𝑚ℓ1,𝑡 − 𝑛ℓ1) > 0, which means that relatively more observations are taken from {(𝑦𝑖
∗, 𝐱𝑖)| 𝑦𝑖 = ℓ + 1} in 

the 𝑡-th resampling stage than those in the sample, and therefore �̃�ℓ,𝑡 > 0. On the other hand, when �̃�ℓ,𝑡
∗ ≤

𝛾ℓ,𝑡 , we have (𝑚ℓ1,𝑡 − 𝑛ℓ1) ≤ 0  and �̃�ℓ,𝑡 ≤ 0 . Therefore, the introduction of a threshold variable 𝛾ℓ,𝑡 

yields Eq. (6). 

 

A.3. Summary statistics of the simulated data in a trial 

Table A1 presents summary statistics of the simulated data used in a trial in the simulation analysis 

conducted in Section 4. 

[Table A3 around here] 
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Tables and Figures 

 

Table 1: Model description 

A) Dependent variable 𝑦𝑖 = 1[𝑦𝑖
∗ < 𝑐𝑖,1] + 2[𝑐𝑖,1 ≤ 𝑦𝑖

∗ < 𝑐𝑖,2] 

+3[𝑐𝑖,2 ≤ 𝑦𝑖
∗ < 𝑐𝑖,3] + 4[𝑐𝑖,3 ≤ 𝑦𝑖

∗ < 𝑐𝑖,4] + 5[𝑐𝑖,4 ≤ 𝑦𝑖
∗] 

B) Cutoff points 𝑐𝑖,1~U(𝑃5(𝐲
∗), 𝑃15(𝐲

∗)), 𝑐𝑖,2~U(𝑃20(𝐲
∗), 𝑃30(𝐲

∗)), 

𝑐𝑖,3~U(𝑃45(𝐲
∗), 𝑃55(𝐲

∗)), and 𝑐𝑖,4~U(𝑃75(𝐲
∗), 𝑃85(𝐲

∗)) 

C) Latent variable 𝑦𝑖
∗ = 𝛼𝑖 + 𝑥𝑖𝛽𝑖 +𝑤𝑖 

D) Explanatory variables 

 (1) Binary treatment (𝑥𝑖
𝑑) 

𝑥𝑖
𝑑 = 1[𝑎𝑖 < 𝑏], where 𝑎𝑖~U(0,1) and 𝑏~U(0.3,0.5), with 

E[𝑥𝑖
𝑑] = 𝑏 andVar[𝑥𝑖

𝑑] = 𝑏(1 − 𝑏) 

 (2) Continuous treatment (𝑥𝑖
𝑐) 

𝑥𝑖
𝑐 = 1[𝑎𝑖 < 𝑏] × 𝑐𝑖, where 𝑎𝑖~U(0,1), 𝑏~U(0.3,0.5), and 

𝑐𝑖~U(0.5,1.5), with E[𝑥𝑖
𝑐] = 𝑏 andVar[𝑥𝑖

𝑐] = 𝑏(13/12 − 𝑏) 

 (3) Control variable (𝑤𝑖) 

𝑤𝑖 = 𝑎𝑖/√(𝑏 ⋅ 𝑐)/{(𝑏 + 𝑐)2(𝑏 + 𝑐 + 1)}, where 

𝑎𝑖~Beta(𝑏, 𝑐), 𝑏, 𝑐 ∈ {1,3,5}, with E[𝑤𝑖] = √𝑏(𝑏 + 𝑐 + 1)/𝜃 

andVar[𝑤𝑖] = 1 

E) Coefficients (𝛼𝑖 and 𝛽𝑖) 

 (1) Heterogenous 𝛼𝑖 𝛼𝑖~U(−3,3) with E[𝛼𝑖] = 0 andVar[𝛼𝑖] = 3 

 (2) Heterogenous 𝛽𝑖 𝛽𝑖 = 0.5𝑎𝑖, where 𝑎𝑖~Exp(1), with E[𝛽𝑖] = 0.5 andVar[𝛽𝑖] = 0.25 

F) Correlation among variables and 

coefficients Corr(𝐗) = (

1
0 1
0 𝑎 1
0 𝑏 𝑐 1

),  

where 𝐗𝑖 = (𝑥𝑖, 𝑤𝑖 , 𝛼𝑖 , 𝛽𝑖), 𝑎, 𝑏~U(−0.2,0.2), and𝑐~U(0,0.4) 

Notes: 𝑃𝑘(𝐲
∗) is the 𝑘-th percentile value of 𝐲∗ = {𝑦𝑖

∗| 𝑖 = 1,⋯ ,𝑁}. 𝑈(𝑎, 𝑏) is the continuous uniform 

distribution in the interval [𝑎, 𝑏]. Beta(𝑎, 𝑏) is the beta distribution with parameters 𝑎 and 𝑏. 𝜒2(𝑎) is 

the chi-square distribution with 𝑎  degrees of freedom. Exp(𝑎)  is the exponential distribution with 

parameter 𝑎 > 0 . U(𝑎, 𝑎 + 1,⋯ , 𝑏 − 1, 𝑏) , where 𝑎  and 𝑏  are integers and 𝑎 < 𝑏 , is the discrete 

uniform distribution from 𝑎 to 𝑏. 
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Table 2: Simulation results for the root mean square relative errors of the estimates 

 (1) (2)  (3) (4) 

The treatment variable 𝑧: Binary  Continuous 

Heterogenous 𝛼𝑖 (nonnormal error) Yes Yes  Yes Yes 

Heterogenous 𝛽𝑖 (heteroscedasticity) No Yes  No Yes 

A) Based on the binary response model (𝑦𝑖 is converted into a binary outcome, 𝑑𝑖 = 1[𝑦𝑖 ≥ 4]) 

ANML (M=T=100,000) 0.497 0.526  0.451 0.487 

LPM (OLS) 0.507 0.546  0.453 0.494 

Probit 0.507 0.546  0.455 0.496 

Sieve ML (Gallant and Nychka, 1987) 0.511 0.565  0.462 0.507 

Kernel ML (Klein and Spady, 1993) 0.570 0.622  0.511 0.580 

SLS (Ichimura, 1994) 0.586 0.646  0.552 0.601 

B) Based on the ordered response model (𝑦𝑖 ∈ {1,2,3,4,5}) 

ANML (M=T=100,000) 0.379 0.397  0.371 0.406 

Ordered probit 0.467 0.489  0.429 0.467 

Sieve ML (Gallant and Nychka, 1987) 0.391 0.423  0.358 0.415 
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A) Original data 

 

B) Data generated through the RBML method 

Figure 1: Data distribution and heteroscedasticity 

Notes: Panel A uses the simulated data based on the same design as in Section 4, and Panel B uses the data 

generated in the RBML estimation process (i.e., the first step described in the text) from the data used in 

Panel A. Larger and brighter hexagons indicate higher observation frequencies. At the top of each panel, the 

result of regressing the errors (measured as the distance from the regression line) on the variable of interest 

and its square term is reported. 
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Table A1: Summary statistics of the simulated data in a trial 

Variable Obs. Mean Std. Dev. Min Max 

Outcome variables: 𝑦𝑖~Uniform{1,5} and𝑑𝑖 = 1[𝑦𝑖 ≥ 4] 

[Design 1] 𝑦𝑖 500 3.372 1.210 1.000 5.000 

 𝑑𝑖 500 0.500 0.501 0.000 1.000 

[Design 2] 𝑦𝑖 500 3.334 1.214 1.000 5.000 

 𝑑𝑖 500 0.480 0.500 0.000 1.000 

Latent variables      

[Design 1]𝑦𝑖
∗ 500 3.557 1.959 −1.044 9.074 

[Design 2]𝑦𝑖
∗ 500 3.569 2.043 −1.044 10.335 

Explanatory variables      

𝑥𝑖
𝑑 (binary treatment) 500 0.444 0.471 0.000 1.000 

𝑥𝑖
𝑐 (continuous treatment) 500 0.169 0.295 0.000 1.499 

𝑤𝑖  500 3.319 0.959 0.463 5.855 

Error/Unobservables      

𝛼𝑖 (uniform distribution) 500 0.153 1.743 −2.995 2.995 

𝛽𝑖 (exponential distribution) 500 0.499 0.501 0.001 3.956 

Cutoff variables      

𝑐𝑖,1  500 0.794 0.284 0.300 1.276 

𝑐𝑖,2  500 1.944 0.209 1.588 2.312 

𝑐𝑖,3  500 3.633 0.215 3.253 4.002 

𝑐𝑖,4  500 5.348 0.180 5.032 5.657 
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