研究業績
原著論文
- Yasuda, T., Nakajima, N., Ogi, T., Yanaka, T., Tanaka, I., Gotoh, T., Kagawa, W., Sugasawa, K., Tajima, K. (2024) Heavy water inhibits DNA double-strand break repairs and disturbs cellular transcription, presumably via quantum-level mechanisms of kinetic isotope effects on hydrolytic enzyme reactions. PLoS ONE 19: e0309689.
- Ninagawa, S., Matsuo, M., Ying, D., Oshita, S., Aso, S., Matsushita, K., Taniguchi, M., Fueki, A., Yamashiro, M., Sugasawa, K., Saito, S., Imami, K., Kizuka, Y., Sakuma, T., Yamamoto, T., Yagi, H., Kato, K., Mori, K. (2024) UGGT1-mediated reglucosylation of N-glycan competes with ER-associated degradation of unstable and misfolded glycoproteins. eLife 12: RP93117.3.
- Akagi, J.-i., Yokoi, M., Miyake, Y., Shirai, T., Baba, T., Cho, Y. M., Hanaoka, F., Sugasawa, K., Iwai, S., Ogawa, K. (2023) A formamidopyrimidine derivative from the deoxyguanosine adduct produced by food contaminant acrylamide induces DNA replication block and mutagenesis. J. Biol. Chem. 299: 105002.
- Kusakabe, M., Sugasawa, K. (2023) Fluorewscence-microscopy-based assay assessing regulatory mechanisms of global genome nucleotide excision repair in cultured cells. STAR Protoc. 4: 102378.
- Kim, J., Li, C.-L., Chen, X., Cui, Y., Golebiowski, F. M., Wang, H., Hanaoka, F., Sugasawa, K., Yang, W. (2023) Lesion recognition by XPC, TFIIH and XPA in DNA excision repair. Nature 617: 170-175.
- Kobayashi, H., Mayca Pozo, F., Sakai, W., Sato, K., Sugasawa, K. (2023) Identification of novel mutations and reassignment of archival xeroderma pigmentosum group C cell strains from Japanese patients. J. Dermatol. 50: 407-408.
- Kusakabe, M., Kakumu, E., Kurihara, F., Tsuchida, K., Maeda, T., Tada, H., Kusao, K., Kato, A., Yasuda, T., Matsuda, T., Nakao, M., Yokoi, M., Sakai, W., Sugasawa, K. (2022) Histone deacetylation regulates nucleotide excision repair through an interaction with the XPC protein. iScience 25: 104040.
- Zhang, Y., Mandemaker, I. K., Matsumoto, S., Foreman, O., Holland, C. P., Lloyd, W. R., Sugasawa, K., Vermeulen, W., Marteijn, J. A., Galardy, P. J. (2021) USP44 stabilizes DDB2 to facilitate nucleotide excision repair and prevent tumors. Front. Cell. Dev. Biol. 9: 663411.
- Yasuda, T., Takizawa, K., Ui, A., Hama, M., Kagawa, W., Sugasawa, K. Tajima, K. (2021) Human SIRT2 and SIRT3 deacetylases function in DNA homologous recombinational repair. Genes Cells 26: 328-335.
- Chen, L., Bellone, R. R., Wang, Y., Singer-Berk, M., Sugasawa, K., Ford, J. M., Artandi, S. E. (2021) A novel DDB2 mutation causes defective recognition of UV-induced DNA damages and prevalent equine squamous cell carcinoma. DNA Repair 97: 103022.
- Takeishi, A., Kogashi, H., Odagiri, M., Sasanuma, H., Takeda, S., Yasui, M., Honma, M., Suzuki, T., Kamiya, H., Sugasawa, K., Ura, K., Sassa, A. (2020) Tyrosyl-DNA phosphodiesterases are involved in mutagenic events at a ribonucleotide embedded into DNA in human cells. PLoS One 15: e0244790.
- Sakai, W., Yuasa-Sunagawa, M., Kusakabe, M., Kishimoto, A., Matsui, T., Kaneko, Y., Akagi, J., Huyghe, N., Ikura, M., Ikura, T., Hanaoka, F., Yokoi, M., Sugasawa, K. (2020) Functional impacts of the ubiquitin-proteasome system on DNA damage recognition in global genome nucleotide excision repair. Sci. Rep. 10: 19704.
- Akagi, J., Hashimoto, K., Suzuki, K., Yokoi, M., de Wind, N., Iwai, S., Ohmori, H., Moriya, M., Hanaoka, F. (2020) Effect of sequence context on Polζ-dependent error-prone extension past (6-4) photoproducts. DNA Repair 87: 102771.
- Khouj, E. M., Prosser, S. L., Tada, H., Chong, W. M., Liao, J. C., Sugasawa, K., Morrison, C. G. (2019) Differential requirements for the EF-hand domains of human centrin 2 in primary ciliogenesis and nucleotide excision repair. J. Cell Sci. 132: jcs228486.
- Sassa, A., Tada, H., Takeishi, A., Harada, K., Suzuki, M., Tsuda, M., Sasanuma, H., Takeda, S., Sugasawa, K., Yasui, M., Honma, M., Ura, K. (2019) Processing of a single ribonucleotide embedded into DNA by human nucleotide excision repair and DNA polymerase η. Sci. Rep. 9: 13910.
- Matsumoto, S., Cavadini, S., Bunker, R. D., Grand, R. S., Potenza, A., Rabl, J., Yamamoto, J., Schenk, A. D., Schübeler, D., Iwai, S., Sugasawa, K., Kurumizaka, H., and Thomä, N. H. (2019) DNA damage detection in nucleosomes involves DNA register shifting. Nature 571: 79-84.
- Yasuda, T., Kagawa, W., Ogi, T., Kato, T. A., Suzuki, T., Dohmae, N., Takizawa, K., Nakazawa, Y., Genet, M. D., Saotome, M., Hama, M., Konishi, T., Nakajima, N. I., Hazawa, M., Tomita, M., Koike, M., Noshiro, K., Tomiyama, K., Obara, C., Gotoh, T., Ui, A., Fujimori, A., Nakayama, F., Hanaoka, F., Sugasawa, K., Okayasu, R., Jeggo, P. A., and Tajima, K. (2018) Novel function of HATs and HDACs in homologous recombination through acetylation of human RAD52 at double-strand break sites. PLoS Genetics 14: e1007277.
- Nukina, K., Hayashi, A., Shiomi, Y., Sugasawa, K., Ohtsubo, M., and Nishitani, H. (2018) Mutations at multiple CDK phosphorylation consensus sites on Cdt2 increase the affinity of CRL4Cdt2 for PCNA and its ubiquitination activity in S phase. Genes Cells 23: 200-213.
- Nakamura, T., Murakami, K., Tada, H., Uehara, Y., Nogami, J., Maehara, K., Ohkawa, Y., Saitoh, H., Nishitani, H., Ono, T., Nishi, R., Yokoi, M., Sakai, W., and Sugasawa, K. (2017) Thymine DNA glycosylase modulates DNA damage response and gene expression by base excision repair-dependent and independent mechanisms. Genes Cells 22: 392-405.
- Calses, P. C., Dhillon, K. K., Tucker, N., Chi, Y., Huang, J. W., Kawasumi, M., Nghiem, P., Wang, Y., Clurman, B. E., Jacquemont, C., Gafken, P. R., Sugasawa, K., Saijo, M., and Taniguchi, T. (2017) DGCR8 mediates repair of UV-induced DNA damage independently of RNA processing. Cell Rep. 19: 162-174.
- Tanaka, M., Takahara, M., Nukina, K., Hayashi, A., Sakai, W., Sugasawa, K., Shiomi, Y., and Nishitani, H. (2017) Mismatch repair proteins recruited to ultraviolet light-damaged sites lead to degradation of licensing factor Cdt1 in the G1 phase. Cell Cycle 16: 673-684.
- Kakumu, E., Nakanishi, S., Shiratori, H. M., Kato, A., Kobayashi, W., Machida, S., Yasuda, T., Adachi, N., Saito, N., Ikura, T., Kurumizaka, H., Kimura, H., Yokoi, M., Sakai, W., and Sugasawa, K. (2017) Xeroderma pigmentosum group C protein interacts with histones: regulation by acetylated states of histone H3. Genes Cells 22: 310-327.
- Osakabe, A., Arimura, Y., Matsumoto, S., Horikoshi, N., Sugasawa, K., and Kurumizaka, H. (2017) Polymorphism of apyrimidinic DNA structures in the nucleosome. Sci. Rep. 7: 41783.
- Ono, R., Masaki, T., Mayca Pozo, F., Nakazawa, Y., Swagemakers, S. M., Nakano, E., Sakai, W., Takeuchi, S., Kanda, F., Ogi, T., van der Spek, P. J., Sugasawa, K., and Nishigori, C. (2016) A 10-year follow-up of a child with mild case of xeroderma pigmentosum complementation group D diagnosed by whole-genome sequencing. Photodermatol. Photoimmunol. Photomed. 32: 174-180.
- Cavadini, S., Fischer, E. S., Bunker, R. D., Potenza, A., Lingaraju, G. M., Goldie, K. N., Mohamed, W. I., Faty, M., Petzold, G., Beckwith, R. E., Tichkule, R. B., Hassiepen, U., Abdulrahman, W., Pantelic, R. S., Matsumoto, S., Sugasawa, K., Stahlberg, H., and Thomä, N. H. (2016) Cullin-RING ubiquitin E3 ligase regulation by the COP9 signalosome. Nature 531: 598-603.
- Horikoshi, N., Tachiwana, H., Kagawa, W., Osakabe, A., Matsumoto, S., Iwai, S., Sugasawa, K., and Kurumizaka, H. (2016) Crystal structure of the nucleosome containing ultraviolet light-induced cyclobutane pyrimidine dimer. Biochem. Biophys. Res. Commun. 471: 117-122.
- Kino, K., Sugasawa, K., Miyazawa, H., and Hanaoka, F. (2016) 2,2,4-Triamino-5(2H)-oxazolone is a weak substrate for nucleotide excision repair. J. Pharm. Negative Results 7: 42-45.
- Osakabe, A., Tachiwana, H., Kagawa, W., Horikoshi, N., Matsumoto, S., Hasegawa, M., Matsumoto, N., Toga, T., Yamamoto, J., Hanaoka, F., Thomä, N. H., Sugasawa, K., Iwai, S., and Kurumizaka, H. (2015) Structural basis of pyrimidine-pyrimidone (6-4) photoproduct recognition by UV-DDB in the nucleosome. Sci. Rep. 5: 16330.
- Okuda, M., Kinoshita, M., Kakumu, E., Sugasawa, K., and Nishimura, Y. (2015) Structural insight into the mechanism of TFIIH recognition by the acidic string of the nucleotide excision repair factor XPC. Structure 23: 1827-1837.
- Li, C.-L., Golebiowski, F. M., Onishi, Y., Samara, N. L., Sugasawa, K., and Yang, W. (2015) Tripartite DNA lesion recognition and verification by XPC, TFIIH, and XPA in nucleotide excision repair. Mol. Cell 59: 1025-1034.
- Akita, M., Tak, Y.-S., Shimura, T., Matsumoto, S., Okuda-Shimizu, Y., Shimizu, Y., Nishi, R., Saitoh, H., Iwai, S., Mori, T., Ikura, T., Sakai, W., Hanaoka, F., and Sugasawa, K. (2015) SUMOylation of xeroderma pigmentosum group C protein regulates DNA damage recognition during nucleotide excision repair. Sci. Rep. 5: 10984.
- Matsumoto, S., Fischer, E. S., Yasuda, T., Dohmae, N., Iwai, S., Mori, T., Nishi, R., Yoshino, K., Sakai, W., Hanaoka, F., Thomä, N. H., and Sugasawa, K. (2015) Functional regulation of the DNA damage-recognition factor DDB2 by ubiquitination and interaction with xeroderma pigmentosum group C protein. Nucleic Acids Res. 43: 1700-1713.
- Sakai, W. and Sugasawa, K. (2014) FANCD2 is a target for caspase 3 during DNA damage-induced apoptosis. FEBS Lett. 588: 3778-3785.
- Toga, T., Kuraoka, I., Watanabe, S., Nakano, E., Takeuchi, S., Nishigori, C., Sugasawa, K., and Iwai, S. (2014) Fluorescence detection of cellular nucleotide excision repair of damaged DNA. Sci. Rep. 4: 5578.
- Unno, J., Itaya, A., Taoka, M., Sato, K., Tomida, J., Sakai, W., Sugasawa, K., Ishiai, M., Ikura, T., Isobe, T., Kurumizaka, H., and Takata, M. (2014) FANCD2 binds CtIP and regulates DNA-end resection during DNA interstrand crosslink repair. Cell Rep. 7: 1039-1047.
- Moriyama, T., Fujimitsu, Y., Yoshikai, Y., Sasano, T., Yamada, K., Murakami, M., Urano, T., Sugasawa, K., and Saitoh, H. (2014) SUMO-modification and elimination of the active DNA demethylation enzyme TDG in cultured human cells. Biochem. Biophys. Res. Commun. 447: 419-424.
- Okashita, N., Kumaki, Y., Ebi, K., Nishi, M., Okamoto, Y., Nakayama, M., Hashimoto, S., Nakamura, T., Sugasawa, K., Kojima, N., Takada, T., Okano, M., and Seki, Y. (2014) PRDM14 promotes active DNA demethylation through the Ten-eleven translocation (TET)-mediated base excision repair pathway in embryonic stem cells. Development 141: 269-280.
- Krasikova, Y. S., Rechkunova, N. I., Maltseva, E. A., Anarbaev, R. O., Pestryakov, P. E., Sugasawa, K., Min, J.-H., and Lavrik, O. I. (2013) Human and yeast DNA damage recognition complexes bind with high affinity DNA structures mimicking in size transcription bubble. J. Mol. Recognit. 26: 653-661.
- Nishi, R., Sakai, W., Tone, D., Hanaoka, F., and Sugasawa, K. (2013) Structure-function analysis of the EF-hand protein centrin-2 for its intracellular localization and nucleotide excision repair. Nucleic Acids Res. 41: 6917-6929.
- Kikuchi, K., Narita, T., Pham, V. T., Iijima, J., Hirota, K., Keka, I. S., Mohiuddin, M., Okawa, K., Hori, T., Fukagawa, T., Essers, J., Kanaar, R., Whitby, M. C., Sugasawa, K., Taniguchi, Y., Kitagawa, K., and Takeda, S. (2013) Structure-specific endonucleases Xpf and Mus81 play overlapping but essential roles in DNA repair by homologous recombination. Cancer Res. 73: 4362-4371.
- Krasikova, Y. S., Rechkunova, N. I., Maltseva, E. A., Pestryakov, P. E., Petruseva, I. O., Sugasawa, K., Chen, X., Min, J.-H., and Lavrik, O. I. (2013) Comparative analysis of interaction of human and yeast DNA damage recognition complexes with damaged DNA in nucleotide excision repair. J. Biol. Chem. 288: 10936-10947.
- Pines, A., Vrouwe, M. G., Marteijn, J. A., Typas, D., Luijsterburg, M. S., Cansoy, M., Hensbergen, P., Deelder, A., de Groot, A., Matsumoto, S., Sugasawa, K., Thoma, N., Vermeulen, V., Vrieling, H., and Mullenders, L. (2012) PARP1 promotes nucleotide excision repair through DDB2 stabilization and recruitment of ALC1. J. Cell Biol. 199: 235-249.
- Shiomi, Y., Hayashi, A., Ishii, T., Shinmyozu, K., Nakayama, J., Sugasawa, K., and Nishitani, H. (2012) Two different replication factor C proteins, Ctf18 and RFC1, separately control PCNA-CRL4Cdt2-mediated Cdt1 proteolysis during S phase and following UV irradiation. Mol. Cell. Biol. 32: 2279-2288.
- Fischer, E. S., Scrima, A., Böhm, K., Matsumoto, S., Lingaraju, G. M., Faty, M., Yasuda, T., Cavadini, S., Wakasugi, M., Hanaoka, F., Iwai, S., Gut, H., Sugasawa, K., and Thomä, N. H. (2011) The molecular basis of CRL4DDB2/CSA ubiquitin ligase architecture, targeting, and activation. Cell 147: 1024-1039.
- Yanagihara, H., Kobayashi, J., Tateishi, S., Kato, A., Matsuura, S., Tauchi, H., Yamada, K., Takezawa, J., Sugasawa, K., Masutani, C., Hanaoka, F., Weemaes, C. M., Mori, T., Zou, L., and Komatsu, K. (2011) NBS1 recruits RAD18 via a RAD6-like domain and regulates Pol η-dependent translesion DNA synthesis. Mol. Cell 43: 788-797.
- Yatagai, F., Honma, M., Takahashi, A., Omori, K., Suzuki, H., Shimazu, T., Seki, M., Hashizume, T., Ukai, A., Sugasawa, K., Abe, T., Dohmae, N., Enomoto, S., Ohnishi, T., Gordon, A., and Ishioka, N. (2011) Frozen human cells can record radiation damage accumulated during space flight: mutation induction and radioadaptation. Radiat. Environ. Biophys. 50: 125-134.
- Tanaka, N., Goto, M., Kawasaki, A., Sasano, T., Eto, K., Nishi, R., Sugasawa, K., Abe, S., and Saitoh, H. (2010) An EF-hands protein centrin-1 is an EGTA-sensitive SUMO-interacting protein in mouse testis. Cell Biochem. Funct. 28: 604-612.
- Shimizu, Y., Uchimura, Y., Dohmae, N., Saitoh, H., Hanaoka, F., and Sugasawa, K. (2010) Stimulation of DNA glycosylase activities by XPC protein complex: roles of protein-protein interactions. J. Nucleic Acids 2010: pii:805698.
- Matsumoto, N., Toga, T., Hayashi, R., Sugasawa, K., Katayanagi, K., Ide, H., Kuraoka, I., and Iwai, S. (2010) Fluorescent probes for the analysis of DNA strand scission in base excision repair. Nucleic Acids Res. 38: e101.
- Sugasawa, K., Akagi, J., Nishi, R., Iwai, S., and Hanaoka, F. (2009) Two-step recognition of DNA damage for mammalian nucleotide excision repair: directional binding of the XPC complex and DNA strand scanning. Mol. Cell 36: 642-653.
- Kino, K., Sugasawa, K., Mizuno, T., Bando, T., Sugiyama, H., Akita, M., Miyazawa, H., and Hanaoka, F. (2009) Eukaryotic DNA polymerases alpha, beta and epsilon incorporate guanine opposite 2,2,4-triamino-5(2H)-oxazolone. Chembiochem 10: 2613-2616.
- Nishi, R., Alekseev, S., Dinant, C., Hoogstraten, D., Houtsmuller, A. B., Hoeijmakers, J. H. J., Vermeulen, W., Hanaoka, F., and Sugasawa, K. (2009) UV-DDB-dependent regulation of nucleotide excision repair kinetics in living cells. DNA Repair 8: 767-776.
- Roche, Y., Zhang, D., Segers-Nolten, G. M., Vermeulen, W., Wyman, C., Sugasawa, K., Hoeijmakers, J., and Otto, C. (2008) Fluorescence correlation spectroscopy of the binding of nucleotide excision repair protein XPC-hHr23B with DNA substrates. J. Fluoresc. 18: 987-995.
- Yatagai, F., Umebayashi, Y., Homma, M., Sugasawa, K., Takayama, Y., and Hanaoka, F. (2008) Mutagenic radioadaptation in a human lymphoblastoid cell line. Mutat. Res. 638: 48-55.
- Yasuda, G., Nishi, R., Watanabe, E., Mori, T., Iwai, S., Orioli, D., Stefanini, M., Hanaoka, F., and Sugasawa, K. (2007) In vivo destabilization and functional defects of the xeroderma pigmentosum C protein by a pathogenic missense mutation. Mol. Cell. Biol. 27: 6606-6614.
- Bergink, S., Severijnen, L.-A., Wijgers, N., Sugasawa, K., Yousaf, H., Kros, J.M., van Swieten, J., Oostra, B.A., Hoeijmakers, J.H.J., Vermeulen, W., and Willemsen, R. (2006) The DNA repair-ubiquitin associated HR23 proteins are constituents of neuronal inclusions in specific neurodegenerative disorders without hampering DNA repair. Neurobiol. Dis. 23: 708-716.
- Baba, D., Maita, N., Jee, J.-G., Uchimura, Y., Saitoh, H., Sugasawa, K., Hanaoka, F., Tochio, H., Hiroaki, H., and Shirakawa, M. (2006) Crystal structure of SUMO-3-modified thymine-DNA glycosylase. J. Mol. Biol. 359: 137-147.
- Sano, S., Chan, K. S., Kira, M., Kataoka, K., Takagi, S., Tarutani, M., Itami, S., Kiguchi, K., Yokoi, M., Sugasawa, K., Mori, T., Hanaoka, F., Takeda, J., and DiGiovanni, J. (2005) Signal transducer and activator of transcription 3 is a key regulator of keratinocyte survival and proliferation following UV irradiation. Cancer Res. 65: 5720-5729.
- Nishi, R., Okuda, Y., Watanabe, E., Mori, T., Iwai, S., Masutani, C., Sugasawa, K. and Hanaoka, F. (2005) Centrin 2 stimulates nucleotide excision repair by interacting with xeroderma pigmentosum group C protein. Mol. Cell. Biol. 25: 5664-5674.
- Baba, D., Maita, N., Jee, J.-G., Uchimura, Y., Saitoh, H., Sugasawa, K., Hanaoka, F., Tochio, H., Hiroaki, H., and Shirakawa, M. (2005) Crystal structure of thymine DNA glycosylase conjugated to SUMO-1. Nature 435: 979-982.
- Sugasawa, K., Okuda, Y., Saijo, M., Nishi, R., Matsuda, N., Chu, G., Mori, T., Iwai, S., Tanaka, K., Tanaka, K. and Hanaoka, F. (2005) UV-induced ubiquitylation of XPC protein mediated by UV-DDB-ubiquitin ligase complex. Cell 121: 387-400.
- Yasuda, T., Sugasawa, K., Shimizu, Y., Iwai, S., Shiomi, T., and Hanaoka, F. (2005) Nucleosomal structure of undamaged DNA regions suppresses the non-specific DNA binding of the XPC complex. DNA Repair 4: 389-395.
- Okuda, Y., Nishi, R., Ng, J.M.Y., Vermeulen, W., van der Horst, G.T.J., Mori, T., Hoeijmakers, J.H.J., Hanaoka, F. and Sugasawa, K. (2004) Relative levels of the two mammalian Rad23 homologs determine composition and stability of the xeroderma pigmentosum group C protein complex. DNA Repair 3: 1285-1295.
- Shimizu, Y., Iwai, S., Hanaoka, F. and Sugasawa, K. (2003) Xeroderma pigmentosum group C protein interacts physically and functionally with thymine DNA glycosylase. EMBO J. 22: 164-173.
- Sugasawa, K., Shimizu, Y., Iwai, S. and Hanaoka, F. (2002) A molecular mechanism for DNA damage recognition by the xeroderma pigmentosum group C protein complex. DNA Repair 1: 95-107.
- Sugasawa, K., Okamoto, T., Shimizu, Y., Masutani, C., Iwai, S. and Hanaoka, F. (2001) A multistep damage recognition mechanism for global genomic nucleotide excision repair. Genes Dev. 15: 507-521.
- Sugasawa, K., Ng, J. M. Y., Masutani, C., Iwai, S., van der Spek, P. J., Eker, A. P. M., Hanaoka, F., Bootsma, D. and Hoeijmakers, J. H. J. (1998) Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol. Cell 2: 223-232.
総 説
- 日下部将之、菅澤 薫 (2025) ヌクレオチド除去修復のDNA損傷認識を制御するクロマチンダイナミクス 生化学 97: 61-65.
- Sugasawa, K. (2019) Molecular mechanism of DNA damage recognition for global genomic nucleotide excision repair: a defense system against UV-induced skin cancer. in "DNA Repair Disorders" (Nishigori, C. and Sugasawa, K. eds., Springer) 1-23.
- Sugasawa, K. (2019) Mechanism and regulation of DNA damage recognition in mammalian nucleotide excision repair. Enzymes 45: 99-138.
- Sakai, W., and Sugasawa, K. (2019) Importance of finding the bona fide target of the Fanconi anemia pathway. Genes Environ. 41: 6.
- Kusakabe, M., Onishi, Y., Tada, H., Kurihara, F., Kusao, K., Furukawa, M., Iwai, S., Yokoi, M., Sakai, W., and Sugasawa, K. (2019) Mechanism and regulation of DNA damage recognition in nucleotide excision repair. Genes Environ. 41: 2.
- 横井雅幸、菅澤 薫 (2016) 紫外線によるDNAの損傷とがん化のメカニズム コスメティックステージ 11.
- Sugasawa, K. (2016) Molecular mechanisms of DNA damage recognition for mammalian nucleotide excision repair. DNA Repair 44: 110-117.
- Sakai, W. and Sugasawa, K. (2016) DNA damage recognition and repair in mammalian global genome nucleotide excision repair. in "DNA Replication, Recombination, and Repair: Molecular Mechanisms and Pathology" (Hanaoka, F. and Sugasawa, K. eds., Springer) 155-174.
- 秋田眞季、菅澤 薫 (2015) ヌクレオチド除去修復におけるDNA品質管理の分子基盤 生物物理 55: 137-141.
- 菅澤 薫 (2012) ヌクレオチド除去修復におけるDNA損傷認識の分子基盤 放射線生物研究 47: 95-111.
- Sugasawa, K. (2011) DNA damage recognition for mammalian global genome nucleotide excision repair. in "DNA Repair" (Kruman, I. ed., InTech) 453-476.
- Naegeli, H. and Sugasawa, K. (2011) The xeroderma pigmentosum pathway: decision tree analysis of DNA quality. DNA Repair 10: 673-683.
- Sugasawa, K. (2011) Multiple DNA damage recognition factors involved in mammalian nucleotide excision repair. Biochemistry (Moscow) 76: 16-23.
- Sugasawa, K. (2010) Regulation of damage recognition in mammalian global genomic nucleotide excision repair. Mutat. Res. 685: 29-37.
- Yatagai, F., Sugasawa, K., Enomoto, S., and Honma, M. (2009) An approach to estimate radioadaptation from DSB repair efficiency. J. Radiat. Res. 50: 407-413.
- Sugasawa, K. (2009) UV-DDB: a molecular machine linking DNA repair with ubiquitination. DNA Repair 8: 969-972.
- Sugasawa, K. (2009) The CUL4 enigma: culling DNA repair factors. Mol. Cell 34: 403-404.
- 菅澤 薫 (2009) 色素性乾皮症遺伝子産物によるDNA損傷認識機構 医学のあゆみ 228: 137-142.
- Sugasawa, K. (2008) XPC: its product and biological roles. in "Molecular Mechanisms of Xeroderma Pigmentosum" (Ahmad, S. I. and Hanaaoka, F. eds.) Adv. Exp. Med. Biol. 637: 47-56.
- Sugasawa, K. (2008) Xeroderma pigmentosum genes: functions inside and outside DNA repair. Carcinogenesis 29: 455-465.
- Sugasawa, K. and Hanaoka, F. (2007) Sensing of DNA damage by XPC/Rad4: one protein for many lesions. Nat. Struct. Mol. Biol. 14: 887-888.
- 菅澤 薫 (2007) DNA修復におけるユビキチン化の役割 蛋白質核酸酵素 52: 760-767.
- Sugasawa, K. (2006) UV-induced ubiquitylation of XPC complex, the UV-DDB-ubiquitin ligase complex and DNA repair. J. Mol. Histol. 37: 189-202.
- 西良太郎、菅澤 薫 (2006) 紫外線によるDNA損傷の修復機構 蛋白質核酸酵素 51: 2126-2133.
- 菅澤 薫 (2006) Cul4AリガーゼによるDNA修復経路 蛋白質核酸酵素 51: 1339-1344.
- 菅澤 薫、花岡文雄 (2006) 紫外線による遺伝子損傷の修復メカニズム 生化学 78: 516-521.
- 菅澤 薫 (2006) ヌクレオチド除去修復における損傷認識機構とユビキチン化の役割 実験医学 24: 357-363.
著 書
- Nishigori, C. and Sugasawa, K. (eds.) (2019) DNA Repair Disorders. Springer, ISBN 978-981-10-6721-1.
- Hanaoka, F. and Sugasawa, K. (eds.) (2016) DNA Replication, Recombination, and Repair: Molecular Mechanisms and Pathology. Springer, ISBN 978-4-431-55871-2.