Aonuma Lab

Publications

Journal papers


ORCID ID: 0000-0001-8380-1820

2024
[126] Angulo, E., Guénard, B., Balzani, P., Bang, A., Frizzi, F., Masoni, A., Meléndez, S. A., Suarez, A. V., Hoffmann, B., Benelli, G., Aonuma H., Lach L., Mothapo P.N., Wossler T., Santini G. (2024). The Argentine ant, Linepithema humile: natural history, ecology and impact of a successful invader. Entomologia Generalis. DOI:10.1127/entomologia/2023/2187 (Review paper)
2023
[125]
Aonuma, H. and Benelli, G. (2023). Aminergic control of aggressive behavior in social insects. Entomologia Generalis 43, 927-937.(Review paper)
[124]
Wyszkowska J., Kobak J. and Aonuma H. (2023) Electromagnetic field exposure affects the calling song, phonotaxis, and level of biogenic amines in crickets, Environmental Science and Pollution Research 30(40) 93255-93268.
[123]
Okada R., Ikeno H., Aonuma H., Sakura M. and Ito E. (2023) Honey bee waggle dance as a model of swarm intelligence, Journal of Robotics and Mechatronics 35 (4) 901-910. (Review paper)
[122]
Aonuma, H., Naniwa, K., Sugimoto, Y., Ohkawara, K. and Kagaya, K. (2023). Embodied latch mechanism of the mandible to power at ultra-high speed in the trap-jaw ant Odontomachus kuroiwae. Journal of Experimental Biology 226. https://doi.org/10.1242/jeb.245396
[121]
Niida, T., Terashima, Y., Aonuma, H. and Koshikawa, S. (2023). Photoreceptor genes in a trechine beetle, Trechiama kuznetsovi, living in the upper hypogean zone. Zoological Letters 9.
2022
[120] Ludwig J.C., Aonuma H. and Trimmer B.A. (2022) The larval scaffold controls fascicle number but is not required for formation of the dorsolongitudinal flight muscles in Manduca sexta, Arthropod Structure and Development 68: 101170. doi: 10.1016/j.asd.2022.101170.
2021

[119] Sasaki K., Okada Y., Shimoji H., Aonuma H., Miura T. and Tsuji K. (2021) Social evolution with decoupling of multiple roles of biogenic amines into different phenotypes in hymenoptera. Fronters in Ecology and Evolution 9:659160. doi: 10.3389/fevo.2021.659160 (Review paper)
[118] Kudo T., Aonuma H. and Hasegawa E. (2021) A symbiotic aphid selfishly manipulates attending ants via dopamine in honeydew, Scientific Reports 11: 18569. doi: 10.1038/s41598-021-97666-w
[117] Hayase Y., Aonuma H., Takahara S., Sakaue T., Kaneko S. and Nakanishi H. (2021) Fold analysis of crumpled sheet using micro computed tomography, Physical Review E 104: 025005. doi: 10.1103/PhysRevE.104.025005
[116] Scibelli A.E., Caron D.P, Aonuma H., Trimmer B.A. (2021) Proleg retractor muscles in Manduca sexta larvae are segmentally different suggesting anteroposterior specialization, Journal of Experimental Biology 224 (13), jeb242508. doi: 10.1242/jeb.242508
[115] Shepherd S., Lima M.A.P., Oliveira E.E., Sharkh S.M., Aonuma H., Jackson C.W., and Newland P.L. (2021) Sublethal neonicotinoid exposure attenuates the effects of electromagnetic fields on honey bee flight and learning, Environmental Advances doi.org/10.1016/j.envadv.2021.100051
[114] Shepherd S., Jackson C.W., Sharkh S.M., Aonuma H., Oliveira E.E. and Newland P.L. (2021) Extremely low-frequency electromagnetic fields entrain locust wingbeats, Bioelectromagnetics, doi:10.1002/bem.22336
[113] Naniwa, K. and Aonuma H. (2021) Descending and ascending signals that maintain rhythmic walking pattern in the cricket, Frontiers in Robotics and AI 8:625094. doi: 10.3389/frobt.2021.625094
[112] Owaki D., Aonuma H., Sugimoto Y. and Ishiguro A. (2021) Leg amputation modifies coordinated activation of the middle leg muscles in the cricket Gryllus bimaculatus, Scientific Reports 11: 1327. doi:10.1038/s41598-020-79319-6
2020
[111] Aonuma H. (2020) Serotonergic control in initiating defensive responses to unexpected tactile stimuli in the trap-jaw ant Odontomachus kuroiwae. Journal of Experimental Biology 223(19): jeb228874
[110] Naniwa K., Sugimoto Y., Osuka K. and Aonuma H. (2020) Novel method for analyzing flexible locomotion patterns of animals by using polar histogram. Journal of Robotics and Mechatronics 32(4) 812-821. https://doi.org/10.20965/jrm.2020.p0812
[109] Saito K., Pérez-de la Fuente R., Arimoto K., Young ah S., Aonuma H., Niiyama N, You Z. (2020) Earwig fan designing: biomimetic and evolutionary biology applications. Proceedings of the National Academy of Sciences U.S.A. 117(30): 17622-17626. doi: 10.1073/pnas.2005769117
[108] Sugimoto Y., Naniwa K., Aonuma H. and Osuka K. (2020) Microinjection support system for small biological subject. HardwareX e00103. doi: https://doi.org/10.1016/j.ohx.2020.e00103
[107] Aonuma H., Mezheritskiy M., Boldyshev B., Totani Y., Vorontsov D., Zakharov I.S., Ito E. and Dyakonova V. (2020) The role of serotonin in the influence of intense locomotion on the behavior under uncertainty in the mollusk Lymnaea stagnalis. Frontiers in Physiology 11:221. doi: 10.3389/fphys.2020.00221
[106] Wakita D., Kagaya K. and Aonuma H. (2020) A general model of locomotion of brittle stars with a variable number of arms. Journal of the Royal Society Interface 17:162. https://doi.org/10.1098/rsif.2019.0374
2019
[105] Kano T., Kanauchi D., Ono T, Aonuma H and Ishiguro A. (2019) Flexible coordination of flexible limbs: decentralized control scheme for inter- and intra-limb coordination in brittle stars’ locomotion. Frontiers in Neurorobotics 13:104. doi: 10.3389/fnbot.2019.00104
[104] Yasui K., KanoT., Standen E.M., Aonuma H., Ijspeert A.J. and Ishiguro A. (2019) Decoding the essential interplay between central and peripheral control in adaptive locomotion of amphibious centipedes. Scientific Reports 9: 18288. doi: org/10.1038/s41598-019-53258-3
[103] Kano T., Kanauchi D., Aonuma H., Clark E.G. and IshiguroA. (2019) Decentralized control mechanism for determination of moving direction in brittle stars with penta-radially symmetric body. Frontiers in Neurorobotics, 13:66. doi:10.3389/fnbot.2019.00066
[102] Wakita D, Hayase Y and Aonuma H. (2019) Different synchrony in rhythmic movement caused by morphological difference between five- and six-armed brittle stars. Scientific Reports 9: 8298. doi:10.1038/s41598-019-44808-w.
[101] Naniwa K., Sugimoto Y., Osuka K. and Aonuma H. (2019) Defecation initiates walking in the cricket Gryllus bimaculatus. Journal of Insect Physiology 112: 117-122.
[100] Clark E.G., Kanauchi D., Kano T., Aonuma H., Briggs D. and Ishiguro A. (2019) The function of the ophiuroid nerve ring: how a decentralized nervous system controls coordinated locomotion. Journal of Experimental Biology 222, jeb192104. doi: 10.1242/jeb.192104
[99]
Totani Y., Aonuma H., Oike A., Watanabe T., Hatakeyama D., Sakakibara M., Lukowiak K. and Ito E. (2019) Monoamines, insulin and the roles they play in associative learning in pond snails. Frontier in Behavioural Neuroscience 13:65. (Review paper)
2018
[98] Watanabe T., Ugajin A. and Aonuma H. (2018) Immediate-early promoter-driven transgenic reporter system for neuroethological researches in a hemimetabolous insect. eNeuro 5(4): e0061-18.
[97] Aonuma H., Totani Y., Sakakibara M., Lukowiak K. and Ito E. (2018) Comparison of brain monoamine content in three populations of Lymnaea that correlates with taste-aversive learning ability. Biophys. Physicobiol. 15: 129-135.
[96] Momohara Y., Aonuma H. and Nagayama T. (2018) Tyraminergic modulation of agonistic outcomes in crayfish, J. Comp. Physiol. 5:465-473 http://doi.org/10.1007/s00359-018-1255-3
[95] Aonuma H., Totani Y., Kaneda M., Nakamura R., Watanabe T., Hatakeyama D., Dyakonovae V. E., Lukowiak K. and Ito E. (2018) Effects of 5-HT and insulin on learning and memory formation in food-deprived snails, Neurobiol. Learn. Mem., 148: 20-29.
[94] DiRienzo, N. and Aonuma H. (2018) Plasticity in extended phenotype increases offspring defense despite individual variation in web structure and behaviour, Animal Behav. 138: 9-17.
[93] 園山貴之,荻本啓介,石橋敏章,須田有輔、青沼仁志,松浦啓一 (2018) 沖縄島東岸の浜比嘉島から得られたアマミホシゾラフグの記載と飼育下での行動.魚類学雑誌 65:81-84.
2017
[92] Kano T., Sato E., Ono T., Aonuma H., Matsuzaka Y. and Ishiguro A. (2017) A brittle star-like robot capable of immediately adapting to unexpected physical damage, Royal Society Open Science. 4:171200.
[91] Matsuda K., Gotoh H., Tajika Y., Sushida T., Aonuma H., Niimi T., Akiyama M., Inoue Y. and Kondo S. (2017) Complex furrows in a 2D epithelial sheet code the 3D structure of a beetle horn. Sci. Rep. 7: 13939. doi:10.1038/s41598-017-14170-w.
[90] DiRienzo, N. and Aonuma H. (2017) Individual differences are consistent across changes in mating status and mediated by biogenic amines. Behav. Ecol. Sociobiol. 71: 118. https://doi.org/10.1007/s00265-017-2345-x.
[89] Shiratori C., Suzuki N., Momohara Y., Shiraishi K., Aonuma H., and Toshiki Nagayama. (2017) Cyclic AMP-regulated opposing and parallel effects of serotonin and dopamine on phototaxis in the Marmorkrebs (marbled crayfish). Europ. J. Neurosci.46, 1863–1874. doi:10.1111/ejn.13632
[88] Aonuma H., Kaneda M., Hatakeyama D., Watanabe T., Lukowiak K. and Ito E. (2017) Weak involvement of octopamine in aversive taste learning in a snail. Neurobiol. Learn. Mem. 141: 189-198.
[87] Matsuzaka Y., Sato E., Kano T., Aonuma H. and Ishiguro A. (2017) Non-centralized and functionally localized nervous system of ophiuroids: evidence from topical anesthetic experiments, Biol. Open, 6 : 425-438.
[86] Shimoji H., Aonuma H., Miura T., Tuji K., Sasaki K. and Okada Y. (2017) Queen contact and among-worker interactions dually suppress worker brain dopamine as a potential regulator of reproduction in an ant, Behavioral Ecology and Sociobiology, 71(35)
2016
[85] Aonuma H., Kaneda M., Hatakeyama D., Watanabe T., Lukowiak K. and Ito E. (2016) Relationship between the grades of a learned aversive-feeding response and the dopamine contents in Lymnaea, Biology Open, 5(12) : 1869-1873 (2016)
[84] Matsuo, R. Tanaka M., Fukuta R., Kobayashi S., Aonuma H. and Matsuo Y. (2016) Octopaminergic system in the central nervous system of the terrestrial slug, J. Comp. Neurol. 524 : 3849-3864 (2016).
[83] Ishikawa Y., Aonuma H., Sasaki K. and Miura T. (2016) Tyraminergic and octopaminergic modulation of defensive behaviour in termite soldier. PLoS ONE.
[82] Ohkawara, K. and Aonuma H. (2016) Changes in the levels of biogenic amines associated with aggressive behavior of queen in the social parasite ant Vollenhovia nipponica. Insectes Sociaux. doi:10.1007/s00040-016-0461-7.
[81] 高橋悟,奥田泰丈,川端邦明,青沼仁志,佐藤雄隆,岩田健司 (2016) クロコオロギの行動解析に向けた動画像計測手法 (英語表題:Method of dynamic image measurement for analyzing of cricket behavior). J. Signal Processing「信号処理」. 20 (2): 65-74.
Before 2015
[80] Newland P.L., al Ghamdi M., Sharkh S., Aonuma H. and Jackson C.W. (2015) Exposure to static electric fields leads to changes in biogenic amine levels in the brains of Drosophila. Proc. Roy. Soc. B., doi: 10.1098/rspb.2015.1198.
[79] 小林充,片岡崇,青沼仁志,柴田洋一 (2015) ヨトウガの性フェロモンに対する触角電位応答. (英語表題:Response of the bioelectric potential within antenna of Mamestra Brassicae against sex pheromone). 農業食料工学誌, 77(3): 179-185.
[78] Alessi A.M., O'Connor V., Aonuma H. and Newland P.L. (2014) Dopaminergic modulation of phase reversal in desert locusts. Front. Behav. Neurosci. 8:371, doi: 10.3389/fnbeh.2014.00371.
[77] Kawabata K., Aonuma H., Takahashi S., Hosoda K. and Xue J. (2014) Image-based pose estimation for analyzing cricket-robot interaction behavior. J. Signal Process. 118(3): 135-141.
[76] Okada R., Ikeno H., Kimura T., Ohashi M., Aonuma H. and Ito E. (2014) Error in the honeybee waggle dance improves foraging flexibility. Sci. Rep. 4: 4175, DOI:10.1038/srep04175
[75] Watanabe T. and Aonuma H. (2014) Tissue-specific promoter usage and diverse splicing variants of the found in neurons; an ancestral Hu/ELAV-like RNA binding protein gene of insects, in a direct developing-insect Gryllus bimaculatus. Insect Mol. Biol., 23(1): 26-41.
[74] Kawabata K., Aonuma H., Hosoda K. and Xue J. (2013) Active interaction utilizing micro mobile robot and on-line data gathering for experiments in cricket pheromone behavior. J. Robot. Auton. Syst. 61: 1529-1538.
[73] Yano S., Watanabe T., Aonuma H. and Asama H. (2013). Pitchfork bifurcation in a receptor theory-based model of the serotonergic system. Mol. BioSyst. 9: 2079-2084. doi:10.1039/c3mb25033d.
[72] Sakura M. and Aonuma H. (2013) Aggressive behavior in the antennectomized male cricket Gryllus bimaculatus. J. Exp. Biol. 216 (12): 2221-2228.
[71] Watanabe T., Sadamoto H. and Aonuma H. (2013) Molecular basis of the dopaminergic system in the cricket Gryllus bimaculatus. Invert. Neurosci., 13: 107-123.
[70] Kawabata K., Aonuma H., Hosoda K. and Xue J. (2013) A system for automated interaction with the cricket utilizing a micro mobile robot. J. Robot. Mech., 25(2): 333-339.
[69] 古橋一憲, 北川善政, 赤坂司, 亘理文夫, 青沼仁志 (2013) ヒト上皮3次元培養組織モデルを用いた生体材料軟組織間の封鎖性評価.北海道外科雑誌58(1) 87-88
[68] Aonuma H. and Watanabe T. (2012) Changes in the content of brain biogenic amine associated with early colony establishment in the queen of the ant, Formica japonica. PLoS ONE 7(8): e43377.doi:10.1371/journal.pone.0043377.
[67] Ito E., Otsuka E., Hama N., Aonuma H., Okada R., Hatakeyama D., Fujito Y. and Kobayashi S. (2012) Memory trace in feeding neural circuit underlying conditioned taste aversion in Lymnaea. PLoS ONE 7(8): e43151. doi:10.1371/journal.pone.0043151
[66] Yoritsune A. and Aonuma H. (2012) The anatomical pathways for antennal sensory information in the central nervous system of the cricket, Gryllus bimaculatus. Invert. Neurosci.doi:10.1007/s10158-012-0137-6
[65] Fukumitsu Y., Irie K., Satho T., Aonuma H., Dieng H., Ahmad A.H., Nakashima Y., Mishima K., Kashige N., Miake F. (2012) Elevation of dopamine level reduces host-seeking activity in the adult female mosquito Aedes albopictus. Parasite Vector 5:92 doi:10.1186/1756-3305-5-92
[64] Okada R., Akamatsu T., Iwata K., Ikeno H., Kimura T., Ohashi M., Aonuma H., and Ito E. (2012) Waggle dance effect: dancing in autumn reduces the weight loss of a honeybee colony. J. Exp. Biol. 215: 1633-1641.
[63] Okada R., Ikeno H., Kimuta T., Ohashi M., Aonuma H. and Ito E. (2012) Mathematical analysis of the honeybee waggle dance. Act. Biol. Hung., 63 (suppl. 2.8): 75-79.
[62] Sakura M., Watanabe T. and Aonuma H. (2012) Aggressive behavior of the white-eye mutant crickets Gryllus bimaculatus. Act. Biol. Hung., 63 (suppl. 2.7): 69-74.
[61] Aonuma H. and Watanabe T. (2012) Octopaminergic system in the brain controls aggressive motivation in the ant, Formica japonica. Act. Biol. Hung., 63 (suppl. 2.5): 63-68.
[60] Watanabe T. and Aonuma H. (2012) Identification and expression analyses of a novel serotonin receptor gene, 5-HT2β, in the field cricket Gryllus bimaculatus. Act. Biol. Hung., 63 (suppl. 2.6): 58-62.
[59] Yano S., Ikemoto Y., Aonuma H. and Asama H. (2012) Forgetting curve derived by serotonin hypothesis in cricket, Gryllus bimaculatus. Robot. Auton. Syst. 60: 722-728
[58] Kawabata K., Fujii T., Aonuma H., Suzuki T., Ashikaga M., Ota J. and Asama H. (2012) A neuro-modulation model of behavior selection in the fighting behavior of male crickets. Robot. Auton. Syst. 60: 707-713.
[57] Mizuno T., Sakura M., Ashikaga M., Aonuma H., Chiba R. and Ota J. (2012) Model of a sensory-behavioral relation mechanism for aggressive behavior of crickets. Robot. Auton. Syst. 60: 700-706.
[56] 川端 邦明,藤井 喬,鈴木 剛,青沼 仁志,太田 順,淺間 (2012) 相互作用効果ダイナミクスを持つ行動切り替えモデルによるマルチ・エージェント掃引作業 (英語表題:Sweeping task of multiple mobile agents by utilizing behavior selection model with interaction-based efficacy dynamics) 機械学会論文集 78(792): 3028-3032.
[55] Sakura M., Okada R. and Aonuma H. (2011) Evidence for instantaneous e-vector detection in the honeybee using an associative learning paradigm. Proc. Roy. Soc. B., 279: 535-542.
[54] Watanabe T., Sadamoto H. and Aonuma H. (2011) Identification and expression analysis of the genes involved inserotonin biosynthesis and transduction in the field cricket Gryllus bimaculatus. Insect Mol. Biol. 20(5): 619-635.
[53] FunatoT., Nara M., Kurabayashi D., Ashikaga M. and Aonuma H. (2011) A model for groupsize-dependent behaviour decision in insect using an oscillator network. J. Exp. Biol. 214: 2426-2434.
[52] Katsumata A., Yamaoka R. and Aonuma H.(2011) Social interactionsinfluence dopamine andoctopamine homeostasis in the brain of the ant, Formica japonica. J. Exp. Biol. 214: 1707-1713.
[51] Guerra R.D., Aonuma H., Hosoda K. and Asada M. (2010) Semi-automatic behavior analysisusing robot/insect mixed society and video tracking. J. Neurosci. Methods.191: 138-144.
[50] Guerra R.D., Aonuma H., Hosoda K. and Asada M. (2010) Behavior change of crickets in a robot-mixed society. J.Rob. Mech. 22(4): 526-531.
[49] Okada R., Ikeno H., Ohashi M., KimuraT.,Aonuma H. and Ito E. (2010)Markov model of honeybee social behavior. Information.13:1115-1113
[48] Ashikaga M.,Sakura M., Kikuchi M., Hiraguchi T., Chiba R., Aonuma H. and Ota J. (2009)Establishment of social status without individual discrimination in the cricket. AdvancedRobotics. 23: 563-578.
[47] Aonuma H., Kitamura Y., Niwa K., Ogawa H. and Oka K. (2008) Nitric oxide-cGMP signaling in the local circuit of the cricket abdominal nervous system. Neuroscience.157: 749-761.
[46]Okada R., Ikeno H., Aonuma H. and Ito E. (2008) Biological insights into robotics: Honeybee foraging behavior by waggle dance. Advanced Robotics. 22(15): 1665-1681.
[45] Ishikawa Y.,Aonuma H. and Miura T. (2008) Soldier-specific modification of the mandibular motor neurons in termites. PLoS ONE 3 (7) e2617: 1-8.
[44] Funato T., Kurabayashi D., Nara M. and Aonuma H. (2008) Switching mechanism of sensor-motor coordination through oscillator network model. IEEE Trans. Systems, Man and Cybernetics - Part B. 38 (3):764-770.
[43] Yono O. and Aonuma H. (2008) Cholinergic neurotransmission from mechanosensoryafferents to giant interneurons in the terminal abdominal ganglion of the cricket. Gryllus bimaculatus. Zool. Sci. 25: 517-525.
[42] Sakura M., Hiraguchi T., Ohkawara K., and Aonuma H. (2008) The Compartment structuresof the antennal lobe in the ant Aphaenogaster smythiesi japonica. Acta Biol. Hung. 59: 183-187.
[41] Okada R., Ikeno H., Sasayama N., Aonuma H., Kurabayashi D., and Ito E. (2008) The dance ofthe honeybee: how do they dance to transfer the food information effectively? Acta Biol. Hung. 59:157-162.
[40] Hatakeyama D., Aonuma H., Ito E. and Elekes K. (2007) Localization of glutamate-likeimmunoreactive neurons in the central and peripheral nervous system of the adult anddeveloping pond snail, Lymnaea stagnalis L. Biol. Bull., 213: 172-186.
[39] Ashikaga M., Kikuchi M., Hiraguchi T., Sakura M., Aonuma H. and Ota J. (2007) Foraging task of multiple mobile robots in a dynamic environment using adaptive behavior in crickets. J. Robot. Mech., 19(4): 446-473.
[38] Kawabata K., Fujiki T., Ikemoto Y., Aonuma H. and Asama H. (2007) A neuromodulation model for adaptive behavior selection of the cricket. J. Robot. Mech., 19(4): 388-394.
[37] Tsuji E., Aonuma H., Yokohari F. and Nishikawa M. (2007) Serotonin-immunoreactiveneurons in the antennal sensory system of the brain in the carpenter ant, Camponotus japonicus. Zool. Sci., 24, 836-849
[36] Iwasaki M., Nishino H., Antonia D. and Aonuma H. (2007) Effects of NO/cGMP signalling onthe behavioural change in subordinate male crickets, Gryllus bimaculatus. Zool. Sci., 24: 860-868
[35] Ott S. R., Aonuma H., Newland P.L. and Elphick M.R. (2007) Nitric oxide synthase in crayfishwalking leg ganglia: segmental differences in chemo-tactile centers argue against a generic rolein sensory integration. J. Comp. Neurol., 501: 381-399.
[34] Watanabe T., Kikuchi M., Hatakeyama D., Shiga T., Yamamoto T., Aonuma H., Takahata M.,Suzuki N. and Ito E. (2007). Gaseous neuromodulator-related genes expressed in the brain of honeybee Apis mellifera. Develop. Neurobiol., 67: 456-473.
[33] 舩戸徹郎,倉林大輔,奈良維仁,青沼仁志 (2007) 振動子網を用いた行動遷移メカニズムの考察. 物性研究, Vol. 87, No. 4, pp. 579-582.
[32] Matsumoto Y., Unoki S., Aonuma H. and Mizunami M. (2006) Nitric oxide-cGMP signaling is critical for cAMP-dependent long-term memory formation. Learn. Mem., 13(1): 35-44.
[31] Wagatsuma A., Azami S., Sakura M., Hatakeyama D., Aonuma H. and Ito E. (2006). De novo synthesis of CREB in a presynaptic neuron is required for synaptic enhancement involved in memory consolidation. J. Neurosci. Res., 84: 954-960.
[30] Delago A. and Aonuma H. (2006). Experience based agonistic behavior in female crickets, Gryllus bimaculatus. Zool. Sci. 23: 775-783.
[29] Iwasaki M., Delago A., Nishino H. and Aonuma H. (2006). Effects of previous experiences on the agonistic behaviour of male crickets Gryllus bimaculatus. Zool. Sci., 23: 863-872.
[28] Niwa K., Sakai J., Karino T., Aonuma H., Watanabe T., Ohyama T., Inanami O. and KuwabaraM. (2006) Reactive oxygen species mediate shear stress-induced fluid-phase endocytosis invascular endothelial cells. Free Radical Res., 40 (2): 167-174.
[27] Nagamoto J., Aonuma H. and Hisada M. (2005) Discrimination of conspecific individuals via cuticular pheromones by males of the cricket Gryllus bimaculatus. Zool. Sci., 22: 1079-1088.
[26] Seki Y., Aonuma H. and Kanzaki R. (2005) Pheromone processing center in the protocerebrum of Bombyx mori revealed by nitric oxide-induced anti-cGMP immunocytochemistry. J. Comp. Neurol., 481: 340-351.
[25] Sadamoto H., Sato H., Kobayashi S., Murakami J., Aonuma H., Ando H., Fujito Y., Hamano K.,Awaji M., Lukowiak K., Urano A. and Ito E. (2004) CREB in the pond snail Lymnaea stagnalis:Cloning, gene expression and function in identifiable neurons of the central nervous system. J.Neurobiol., 58(4): 455-466.
[24] Nagayama T., Kimura K., Araki M., Aonuma H. and Newland P.L. (2004) Distribution of glutamatergic immunoreactive neurons in the terminal abdominal ganglion of the crayfish, J.Comp. Neurol., 474(1): 123-135.
[23] Schuppe H., Araki M., Aonuma H., Nagayama T. and Newland P.L. (2004) Effects of nitric oxide on proprioceptive signaling. Zool. Sci., 21(1): 1-5.
[22] Aonuma H. and Niwa K. (2004) Nitric oxide regulates the levels of cGMP accumulation in the cricket brain. Act. Biol. Hung., 55(1-4): 65-70.
[21] 中山 由佳子,河原 剛一,青沼 仁志,山内 芳子,中島 崇行,鉢呂 (2004) 培養心筋細胞内Ca2+振動の細胞間同期とそのメカニズムの解析,電子情報通信学会技術研究報告2: 41-44.
[20] Aonuma H. (2002) Distribution of NO-induced cGMP-like immunoreactive neurones in the abdominal nervous system of the crayfish, Procambarus clarkii. Zool. Sci., 19: 969-979.
[19] Aonuma H. and Newland P.L. (2002) Synaptic inputs onto spiking local interneurons in crayfish are depressed by nitric oxide. J. Neurobiol., 52: 144-155.
[18] Fujie S., Aonuma H., Ito I., Gelperin A. and Ito E. (2002) The nitric oxide/cyclic GMP pathway in olfactory processing system of the terrestrial slug Limax marginatus. Zool. Sci., 19: 15-26.
[17] Schuppe H., Aonuma H. and Newland P.L. (2001) Distribution of NADPH-diaphorase- positive ascending interneurones in the crayfish terminal abdominal ganglion. Cell Tissue Res., 305: 135-146.
[16] Schuppe H., Aonuma H. and Newland P.L. (2001) NADPH-diaphorase histochemistry in the terminal abdominal ganglion of the crayfish. Cell Tissue Res., 303: 289-299.
[15] Aonuma H. and Newland P.L. (2001) Opposing actions of nitric oxide on synaptic inputs of identified interneurones in the central nervous system of the crayfish. J. Exp. Biol., 204: 1319-1332.
[14] Aonuma H., Nagayama T. and Takahata M. (2000) Modulatory effect of nitric oxide on the synaptic depression of the crayfish neuro-muscular system. J. Exp. Biol., 203: 3595-3602.
[13]
Newland P.L., Nagayama T. and Aonuma H. (2000) The role of proprioceptive signals in the crayfish escape circuit. Zool. Sci., 17: 1185-1195. (Review paper)
[12] Aonuma H. and Nagayama T. (1999) GABAergic and non-GABAergic spiking interneurones of local and intersegmental groups in the crayfish terminal abdominal ganglion. J. Comp. Neurol.,410(4): 677-688.
[11] Aonuma H., Nagao T., Nagayama T. and Takahata M. (1999) Modulatory effects of amino acids upon the neuromuscular transmission in the crayfish fast flexor muscle. J. Exp. Zool., 283: 531-540.
[10] Aonuma H., Newland P.L. and Nagayama T. (1999) Processing of proprioceptive signals by ascending interneurones in the terminal abdominal ganglion of the crayfish. J. Exp. Biol., 202:2975-2984.
[9] Aonuma H., Nagayama T. and Takahata M. (1998) L-glutamate as an excitatory transmitter of motor giant neurons in the crayfish Procambarus clarkii. J. Crust. Biol., 18: 243-252.
[8] Nagayama T., Aonuma H. and Newland P.L. (1997) Convergent chemical and electricalsynaptic inputs from proprioceptive afferents onto an identified intersegmental interneuron in the crayfish. J. Neurophysiol., 77: 2826-2830.
[7] Nagayama T., Namba H. and Aonuma H. (1997) Distribution of GABAergic premotor nonspikinglocal interneurones in the terminal ganglion of the crayfish. J. Comp. Neurol., 389: 139-148.
[6] Newland P.L., Aonuma H. and Nagayama T. (1997) Monosynaptic excitation of lateral giant fibers by proprioceptive afferents in the crayfish. J. Comp. Physiol., 181: 103-109.
[5] Aonuma H., Nagayama T. and Takahata M. (1996) Distribution of autofluorescent cell bodies in the nervous system of the crayfish. J. Exp. Zool., 275: 406-412.
[4] Nagayama T., Aonuma H. and Miyata H. (1996) GABA-like immunoreactivity of an identified nonspiking local interneurone in the crayfish terminal abdominal ganglion. J. Exp. Biol., 199(11):2447-2450.
[3] Newland P.L., Aonuma H., Sato M. and Nagayama T. (1996) Presynaptic inhibition of exteroceptive afferents by proprioceptive afferents in the terminal abdominal ganglion of the crayfish. J. Neurophysiol., 76: 1047-1058.
[2] Aonuma H., Nagayama T. and Hisada M. (1994) Output effect of identified ascending interneurons upon the abdominal postural system in the crayfish Procambarus clarkii (Girard). Zool. Sci., 11: 191-202.
[1] Nagayama T., Namba H. and Aonuma H. (1994) Morphological and physiological bases of crayfish local circuit neurons.
Histol. Histopathol., 9: 791-805. (Review paper)